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ABSTRACT. The aim of this paper is establish the Heisenberg-Pauli-Weyl uncertainty principle and Donho-

Stark’s uncertainty principle for the Weinstein L2-multiplier operators.

1. INTRODUCTION

The Weinstein operator Afj, , defined on RY =R? x (0,00), by

192 2a+1 0
81’? Tgr1 OTgi1

A%V,a: :Ad+La7 Oé>—1/2,

j=1
where Ay is the Laplacian operator for the d first variables and L, is the Bessel operator for the last variable

defined on (0, o) by

0%y 20+1 Ou

Lou=
5 .
0x5,, Tagy1 OTgy1

The Weinstein operator A%Vﬂ has several applications in pure and applied mathematics, especially in

fluid mechanics [4].
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The Weinstein transform generalizing the usual Fourier transform, is given for ¢ € L;(Riﬂ) and A €
RE by
Fial @) = [, c@AL Ao )
+

where dpuq () is the measure on RT™ = R? x (0, 00) and AZ is the Weinstein kernel given respectively later
by (2.1) and (2.4).
Let m be a function in Li(Riﬂ) and let o be a positive real number. The Weinstein L2-multiplier

operators is defined for smooth functions ¢ on R‘iﬂ, in [14] as

Twmoe(@) = Fh, (meFw.a(e)) (z), xe R, (1.1)

where the function m, is given by
me(z) = m(ox).

These operators are a generalization of the multiplier operators 7, associated with a bounded function m
and given by T,.(p) = F1(mF(p)), where F(p) denotes the ordinary Fourier transform on R™. These
operators gained the interest of several Mathematicians and they were generalized in many settings in
[1,3,6,13,14,16-18].

In this work we are interested the L? uncertainty principles for the Weinstein multiplier operators. The
uncertainty principles play an important role in harmonic analysis. These principles state that a function ¢
and its Fourier transform F () cannot be simultaneously sharply localized. Many aspects of such principles
are studied for several Fourier transforms.

Many uncertainty principles have already been proved for the Weinstein transform Fy o, namely by
N. Ben Salem, A. R. Nasr [2] and Mejjaoli H. and Salhi M. [9]. The authors have established in [9] the

Heisenberg-Pauli-Weyl inequality for the Weinstein transform, by showing that, for every ¢ in L? (R‘fl)

a(P)la2- (1.2)

lllaz < 5
Ple2 = o0 v dt2
In the present paper we are interested in proving an analogue of Heisenberg-Pauli-Weyl uncertainty

principle For the operators 7Ty m,. More precisely, we will show, for ¢ € L? (Riﬂ)

2 y]:Wa «, :
follaz < AT 0 () <// P Ta i r0l@) 20 2 >> ,

provided m be a function in L? (Riﬂ) satisfying the admissibility condition

e d
/ Ime ()| = =1, ae xecR (1.3)
0 g
Moreover, for 8,6 € [1,00) and ¢ € R, such that Se = (1 — €)d, we will show

2 pe -
lelloe < (5rprss) NelTomaoels I Fivatollls
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Using the techniques of Donoho and Stark [5], we show uncertainty principle of concentration type for
the L? theory. Let ¢ be a function in L2 (R%Z') and m € LL(RET™) N L2 (REH) satisfying the admissibility
condition (1.3). If ¢ is e-concentrated on  and Ty o is v-concentrated on X, then

Il (o2 ([ [ e d®a(on)) 1= (40
where ©,, is the measure on (0, 00) x R given by dO, (0, x) := (do/o)dapu(z).
This paper is organized as follows. In section 2, we recall some basic harmonic analysis results related
with the Weinstein operator A“i,ua and we introduce preliminary facts that will be used later.
In section 3, we establish Heisenberg-Pauli-Weyl uncertainty principle For the operators Ty m o
The last section of this paper is devoted to Donoho-Stark’s uncertainty principle for the Weinstein L2-

multiplier operators.

2. HARMONIC ANALYSIS ASSOCIATED WITH THE WEINSTEIN OPERATOR

In this section, we shall collect some results and definitions from the theory of the harmonic analysis
associated with the Weinstein operator Agv_’a. Main references are [10-12].
In the following we denote by
o RET =R x (0, 00).
o z=(x1,...2q,Tay1) = (&', Tgq1)-
o —u= (-2 2411).
o O, (R¥1) the space of continuous functions on R4+!, even with respect to the last variable.
o S, (RI*1), the space of the C* functions, even with respect to the last variable, and rapidly decreasing
together with their derivatives.

o [P (R‘f‘l), 1 < p < o0, the space of measurable functions f on Rf‘l such that

1/p
1 fllap = (/Rd+1 |f(m)pdlta(x)> <00, p € [1,00),

[fllq,00 =ess sup [f(z)| < oo,
IERi+1

where
20041

dpa(x) = (Qw)d;i;;(a Y dx. (2.1)

o A (RN = {pe LL(RI); Fiyap € LL(RET)} the Wiener algebra space.

We consider the Weinstein operator A“fv}a defined on R’f‘l by

o2 241 9

A=)
W,a —
&T? Tgr1 OTgi1

=Ag+ Lo, a>—1/2, (2.2)
j=1
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where Ay is the Laplacian operator for the d first variables and L., is the Bessel operator for the last variable
defined on (0, c0) by

B 0%u 2a+1 Ju
Oxk.,  Tay1 OTay1

Lou

The Weinstein operator A%V, ., have remarkable applications in diffrerent branches of mathematics. For

instance, they play a role in Fluid Mechanics [4].

2.1. The eigenfunction of the Weinstein operator. For all A = (\q,..., \g41) € C?*!, the system

0?u 9
— = — )\ i <7<
81‘]2- (2) )\]u(x), ifl1<j<d
Lou(z) = _A§+lu('r)7 (2.3)
ou ou
0)=1, 0)=0, —(0)=—iN;, if1<j<d
WO =1 G0) =0, SO = ik, 1<)

has a unique solution denoted by A% (), .), and given by
AL\ @) = e TN o (Tap1 Mar1) (2.4)

where & = (2/,z441), A = (N, Ag+1) and j, is is the normalized Bessel function of index « defined by

) =Tty D
Ja(z) =T(a £ 2R (o + k+ 1)

The function (\, z) — A% (), z) has a unique extension to C?*! x C4*+1 and satisfied the following properties.

Proposition 2.1. 4). For all (\,z) € C¥T! x C™*! we have

AL(n z) = AL (z, \). (2.5)

ii). For all (\,z) € CT1 x CT*1 we have
AN, —z) = A% (=), z). (2.6)

iii). For all (A, x) € C1 x C1 we get
A% (X 0) = 1. (2.7)

vi). For allv € N*H1 2 € R4*L and X € C4 we have
|DKAi(>\"I)| < ||x||‘y| ellz ISl (2.8)
where DY = 9" /(ON*...0N, 1) and |v| = v1 + ... +vay1. In particular, for all (A, z) € R™ x R4, we have

AL\ )| < 1. (2.9)
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2.2. The Weinstein transform.
Definition 2.1. The Weinstein transform is given for ¢ € L}, (R‘f‘l) by
Fwa@) = [ c@rl0a)dua(a), A e R, (210)
+
where (o, 1S the measure on Rf‘l given by the relation (2.1).
Some basic properties of this transform are as follows. For the proofs, we refer [11,12].

Proposition 2.2. (1) For all € LL(REM), the function Fuw,a(p) is continuous on RET and we have

[Fw,abllg oo < llellas - (2.11)

(2) The Weinstein transform is a topological isomorphism from S, (R‘f‘l) onto itself. The inverse trans-
form is given by

Fio(N) = Fwa(=X), forall X € RE (2.12)

(3) Parseval formula: For all p,¢ € S*(Riﬂ), we have

L., #@id@idnate) = [ Falo) @) P @@ ) (2.13)

d+1
RY

(4) Plancherel formula: For all ¢ € S.(RT™), we have

[Fw,aellyo = llella- (2.14)

(5) Plancherel Theorem: The Weinstein transform Fw, extends uniquely to an isometric isomor-
: d+1
phism on L2(R{T).
6) Inversion formula: Let o € L} (RTY) such that Fyap € LE(RYTY), then we have
¥ o \UIRL P a\UR
p(\) = . Fw.a@(x)AL (=X, 2)dpa (), a.e. X € ]R‘_frl. (2.15)
R+
2.3. The translation operator associated with the Weinstein operator.
Definition 2.2. The translation operator 7%, x € Riﬂ associated with the Weinstein operator A%VVQ, 18

defined for a continuous function ¢ on Riﬂ which is even with respect to the last variable and for all

Yy E Rf‘l by

Too(y) = Ca / @ (x’ + 1, \/ 251+ Yie + 2%a41Yas cos 9) (sin 0)* df,
0

with
_ T(a+1)
Ca = Val(a+1/2)
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By using the Weinstein kernel, we can also define a generalized translation, for a function ¢ € S, (R**1)

and y € Ri“ the generalized translation 7% is defined by the following relation

Fwa(m2e)y) = MG (@, 9) Fw,a () (). (2.16)

The following proposition summarizes some properties of the Weinstein translation operator.

Proposition 2.3. The translation operator 7, x € R‘fl satisfies the following properties.

i). For p € C,(R1L), we have for all v,y € R‘f‘l
T oy) = 1 0(x) and 750 = .
). Let ¢ € Lg(Rf‘l), 1<p<oandze€ Ri"'l. Then 5@ belongs to Lg(Ri‘H) and we have
7@l < llella.p - (2.17)

Note that the A,(R%E™) is contained in the intersection of LL(RE™) and L (R%T) and hence is a

subspace of L2 (RE™). For ¢ € A, (RTM) we have
720) = Cot [ A DN (0 2) v ()i 2). (218)
+

By using the generalized translation, we define the generalized convolution product @y 1 of the functions

¢, ¥ € LL(RIT) as follows
e v(o) = [ mEel-p)on)dua(v) (2.19)

This convolution is commutative and associative, and it satisfies the following properties.

Proposition 2.4. i) For all ¢,¢ € LLRIY), (resp. ¢, ¢ € S.(RUT)), then ¢ xw ¢ € LLREM), (resp.
oxw P € S*(Ri"’l)) and we have

Fw,ale xw V) = Fw,a (@) Fw,a(¥)- (2.20)

i) Let p,q,r € [1,00], such that 1% + % — % = 1. Then for all ¢ € Lﬁ(R‘f‘l) and i € Lg(R‘f‘l) the function

@ xw 1 belongs to L, (R‘f‘l) and we have

||S0 *W ¢||o¢7r S ”90”@,;,; ‘w”a,q M (221)

iii) Let p,1 € L2(RE™). Then
w1 = Fo (Fwa(9)Fwa(¥)) - (2:22)

w) Let o,¢ € L2(RUT). Then o s ¢ belongs to L2(RTY) if and only if Fiw,a(0)Fw,a(¥) belongs to

L2 (R and we have

Fw,a(p*w V) = Fw,a(0) Fw,a(¥). (2.23)
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v) Let p, 1) € Li(Rf‘l). Then
e *w ¥)lla2 = 1Fw,a (@) Fw,a(¥)lla,2; (2.24)
where both sides are finite or infinite.
3. HEISENBERG-PAULI-WEYL UNCERTAINTY PRINCIPLE

In this section we establish Heisenberg-Pauli-Weyl uncertainty principle for the operator 7y o

Theorem 3.1. Let m be a function in Li(R‘f‘l) satisfying the admissibility condition (1.3). Then, for

(RS Li(Ri"'l), we have

-

2

fiolloz < AT (PMloz (/ | Pt n L sl )). (31)

Proof. Let ¢ € L2(R%™). The inequality (3.1) holds if

Iyl Fw.a(#)lla2 = +oo

or

/Rm/ |2 T . P ()22 —dua( ) = too.

Let us now assume that

d
2~ djia(x) < +o0.

lFva@loz+ [ [ P Tamee@)?
R{T Jo

Inequality (1.2) leads to

[ T sdialz)
R+

(L.

+

L.

+

[V

IxIQIE,m,aw(w)Ii,zdua(x)>

1
2

Iy2|fw,a(%,m,a<p(~))(y)Ii,zdua(y)>

Integrating with respect to do /o, we get

ITomalas < [ (/ M|x|2n,m,gso<x>|i,2dua<x>>
+
do

x (/d+1 |y|2|}—W’O‘(7L”vaSO('))(y) i,2d:uoz<y)> o
R+

1
2

SIS

From [14, Theorem 2.3] and Schwarz’s inequality, we obtain
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1
& do \”
lel2s < (/ /d1|x|2|n,m,g@<x>i,2dua<x>)
0 R++ g

X (/OOO Ai+1 |y|2fW,oz(’]:v,m,J(P(.))(y)|(21’2d,u,a(y)f) )

From (1.1), Fubini-Tonnelli’s theorem and the admissibility condition (1.3), we have

o do
[ [ PP T ) ) s 0)
o JRrIT! g

e do
= [ [ PP Fwa0)0) i)
0 ]R++1 g

= [ WP D st
:

This gives the result and completes the proof of the theorem. O

Theorem 3.2. Let m be a function in Li(RiH) satisfying the admissibility condition (1.3) and 3,0 € [1,00).
Let ¢ € R, such that Be = (1 — )8 then, for ¢ € L2(RE™), we have

1—¢

Be
lellaz < ( ) N2l Tames | [l Fival) |7 (3.2

200+ d+2
Proof. Let ¢ € L2(R%). The inequality (3.1) holds if

l1—¢

27T ol o = +00 0r  [|ly* Fwalp)]], , = +oo.

a,2

Let us now assume that ¢ € L2 (RE™) with ¢ # 0 such that

1—¢

H|x|ﬂ7;l),m,a§0HZ,2 + H'yl(s]:W’a(SD)H < +OO,

a,2

therefore, for all § > 1, we have

1
2

’
a,p’

1 N 2|3 2
H|$|ﬁ7:u,m,o'90H§ 2 ||7:v,m,a(p||§:2 = H"T‘thﬁu,m,cr@' B H ’ 8 H|7:v,m,090| p’
, o,

with 8/ = %

Applying the Holder’s inequality, we get

1 1
|||x|7;11,m,f7§0”a72 < H‘ﬂﬁlﬁmm,awns,g Hﬁu,m,o@”aﬁjr

According to [14, Theorem 2.3], we have for all § > 1

.
12 Teo,m0 Pl 5 < 1217 Tl 2, Il ae (3.3)
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with equality if 5 = 1. In the same manner, for all § > and using Plancherel formula (2.14), we get

1 1
191 Fw.a (@)l o5 < [[191° Fwa (@], 1011372 (3-4)

with equality if § = 1. By using the fact that e = (1 —¢)d and according to inequalities (3.3) and (3.4), we

have
86
2| Tw,m,o@ll o 2 1Yl Fwa (@), 2
7t
||<P||5,2 ’

< 2l T ll2 191 Fwa (@)l

with equality if 5 = & = 1. Next by Theorem 3.1, we obtain

Be
2 € 1—¢
llella2 < <2a—|—d+2) |||af|ﬁ7zu,m,a<PHa72 Hly\5]-“w,a(<P)Ha,2 )
which completes the proof of the theorem. O

4. DONOHO-STARK’S UNCERTAINTY PRINCIPLE

Definition 4.1. (i) Let Q be a measurable subset of RIT, we say that the function ¢ € L2(R%) is

e-concentrated on S, if

o = xo@lla2 < €ll@lla2; (4.1)

where xq is the indicator function of the set ).
1) Let X be a measurable subset of (0,00) X R and let p € L2 (RIY, We say that Ty m.op s
+ alRy m,

v-concentrated on X, if

||7;u,m,a<)0 - XZn,m,a§O| >~

2,0 < Vlln,m,a| 2,0 (4.2)

where xx is the indicator function of the set X.
We need the following Lemma for the proof of Donoho-Stark’s uncertainty principle.

Lemma 4.1. Let m,p € Lé(RiH) N Li(RiH), Then the operators Ty m.o satisfy the following integral
representation.

1
T = =53 [ ., Voo 0)e0)dia(w). (2) € (0.00) x REF,
+

where

Vofo) = [, ma@AL )AL ~0)di ()

Proof. The result follows from the definition of the Weinstein L2-Multiplier operators (1.1) and the inversion

formula of the Weinstein transform (2.12) using Fubini-Tonnelli’s theorem. O
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Theorem 4.1. Let ¢ be a function in L?, (Rf‘l) and m € LL(RT) N L2 (Ri"'l) satisfying the admissibility
condition (1.3). If ¢ is e-concentrated on Q and Ty m ¢ is v-concentrated on ¥, then

1
2

Il (o ([ [ (o)) 2 1= (40

where O, is the measure on (0,00) x RI! given by dO, (0, ) := (do/o)dap().

Proof. Let ¢ be a function in L2 (R%™). Assume that 0 < 114(Q) < oo and

1

According to [14, Theorem 2.3] and inequalities (4.1)-(4.2), we get

A

H%,m,o@ - XZ%,W,U(XQ@)”Q,& > ||7ZU,m,U<p - XZ%,m,o‘pHQ,a

HTw,m,0@ = X Tw,m.,o (@ — x@)||2,a

< N Twm,o® = X5 Twm,o (@ — X0®)|l2,a
V| Tw,m,o@ll2,a
< (e+v)[ell2.a-

By triangle inequality it follows that

||7Tw,m,a()0 2« S Hn,m,a(p - XZ%,m,a(XQ(p)HZ,a + HXZﬂu,m,o(XQ@)HZa

IN

(e +v)lellz,a + XS Tw,m.o(xa®)2,q- (4.3)

On the other hand, we have

1
2

sToma(xelze = ( [ [ 1Tamatras)(@)Paa(o.2))

and moreover m, xop € LL(RT) N L2(R%!), then by Lemma 4.1, we obtain

1 1
Tw.m.e(xp)(@)] < —5 g Imlliallellzaua ()=

Therefore, thus

1
IX£Twmo(XeP)ll2.a < [Iml1allellza(ma()?

1 >

Hence, according to last inequality and (4.3)

1
1Twme(@)llza < [mll1allellza(ka()?

1
1 2
X (//Z md@a(o, x)) + (e + v)||¢ll2,a-
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Applying Plancherel formula [14, Theorem 2.3], we obtain

s @) ([ [ msamma®aton)) 2 1= (e,

which completes the proof of the theorem. |
Corollary 4.1. If ¥ = {(0,2) € (0,00) x RI! : ¢ > o} for some o > 0, one assumes that

p=max{1/c: (o,x) €Y for some x € REHL.
Then by the previous Theorem, we deduce that

P a1 (1 (2)* (Oa()* 2 1 (e +v).
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