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been identified by setting particular values to parameters involved in the Mittag-Leffler special function.

Presented results contain several fractional integral inequalities which reflects their importance.
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1. INTRODUCTION

In 1935, Griiss [5] proved the following inequality

as ial /:2 hB)fo(t)dt = (a2 ial /:2 fl(t)dt) <a21a1 /:2 fz(t)dt> (1.1)
< M =m)(N —n)

= )

where f and g are two integrable functions on [a,b] and satisfying the following conditions
mgfl(x)SMa nSfQ(x)SN m7M7n7N€R7 I‘€[a,b].

In the literature inequality (1.1) is well known as the Griiss inequality. Inequality (1.1) remains in the focus
of researchers especially working in the field of mathematical analysis. A lot of authors are working on (1.1)
and have produced important results for different kinds of functions. In recent years, many important and
fascinating Griiss type inequalities have been established (see for example [7,9,15]). Our interest in this
paper is to give some generalized fractional integral inequalities of Griiss type by use of generalized fractional
integral operators due to the Mittag-Leffler function.

In the following we define an extended generalized Mittag-Leffler function Elfi”?’c(t; p) as fallows:

Definition 1.1. [3] Let p,a,l,v,c € C, R(u),R(a),R({) > 0, R(c) > R(y) > 0 withp >0, 6§ > 0 and
0<k<d+R(u). Then the extended generalized Mittag-Leffler function E'Y’S’k’c(t;p) 1s defined by

ool
> +nkc—7) (S 1"
proke .y = 3 Py £k , 1.2
ol ( p) nz::o ﬁ(fy, c— fy) F(lun + O() (l)né ( )

Here (¢)ni denotes the generalized Pochhammer symbol

B, is an extension of the beta function
1 p
By(ag) = [ (=0 te T d (R(a). Rl R() > 0).
0

The corresponding generalized fractional integral operator eZiklZ .| is defined as fallows:

Definition 1.2. [3] Let w, p,a,l,v,c € C, R(p), R(«), R(1) > 0, R(c) > R(y) > 0 withp >0, § > 0 and
0<k<d+R(n). Let f € Li[a,b] and x € [a,b]. Then the generalized fractional integral operator eroke f

woslw,a

is defined by:

(105 uf) (i) = / (z = )" B wle — 0 p) f(1)dt. (13)
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From generalized fractional integral operator we have
,8,k, .
(EZ,a7l,Z,a1) (.’E,p)
x
= [ @0 i - i
a

e By ke =) (D wa— P
*/a ) Z Blrc—7) Tunta) (m

7+nkc—) (©nk__ w7 yuntan
‘Z e Nt Tnel) G

=(z—a)” 3 Bp<’y+nk’c_7) (¢)nk w" r— )" 1
B )ng() B(v,e =) F(N”+a)(l)n5( ) un+a’

Hence
.k, oy 5.k, .
(o a1) (@:p) = (@ — @) E)24Y (wla — a)"sp).
We use the following notation in our results
10,k
Calwip) = (F255.1) (@:p). (14)

Integral operators are very useful in solving integral as well as differential equations. Several types of
integral operators have been studied by the mathematicians (see for example [1,2,4,6,8,11-14]).

In this paper at first some generalized fractional integral inequalities and their particular cases are es-
tablished. Then a generalized fractional Korkine’s identity is proved. At the end Griiss fractional integral
inequality via generalized fractional integral operator have been obtained. The presented inequality contained
several versions of Griiss inequality in fractional calculus.

2. MAIN RESULTS

First we prove the following fractional inequality.
Theorem 2.1. Let f 11,19 € Li[a,b] such that
Ui(x) < f(z) <ta(x) Vo€ la,b]. (2.1)
Then for extended generalized fractional integral operator (1.3) we have the following inequality:
(rahe we) (@sm) (U5l ) @) + (250 o) @) (4355 0w ) (w59) (2.2)
> (i avs) @) (555 an ) @im) + (255 o8 ) @im) (0045 o ) (@ip)
Proof. From (2.1) we have

(¢a(u) = f(u)) (f (v) = ¢2(v)) =20 Vu,v € [a,b]. (2.3)
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This gives the following inequality:

Po(u) f(v) + 1 (v) f(u) = Yr(v)iha(u) + f(u) f(v). (2.4)

Multiplying (2.4) by (x — u)o‘_lEZ:i’ﬁ’c(w(x — u)*;p) on both sides and integrating with respect to u over

[a, 2], the following inequality is obtained:
[ = Bt — s et f0) (25)
4 [ =0 B e — s o) )
> / - w)*  ENON (w(m — w) p)iby (v) i () du
+ [t Bl — 0 () )
Using the Definition 1.2 we get
F0) (085 at62) (@ip) + 01 (0) (1045 uF) (w5p) (2.6)
> i (v) (25 n(w)) (sp) + F(0) (555 f) (wip).

Now multiplying (2.6) by (x — U)B’lEZ’g’lf’c(w(x — v)¥;p) on both sides and integrating with respect to v

over [a, x], the following inequality is obtained:
(it ) wsn) [ =0 B wla — o) ()0 (27)
(G350 u0) @ip) [ (=0 Ll — o) sy ()
> (e av2) @:p) / (o 0) B ol — o)) ()
+ (G500 uf) @) / )P B e — o)) ()
By using the Definition 1.2 and then after simple calculation we get the required inequality (2.2). |
A particular case is given as follows.
Corollary 2.1. Let f € Li[a,b] and my, my be two real numbers such that
my < f(z) <my  Vz € [a,b].
Then we have
maCalwip) (1555 oS ) (@ip) +ma (10450 F ) (2:9)Calaip)

> mumaCa (w3 p)Cs (w3p) + (055 .oF) (@30) (555 oS ) @ip). (28)
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Proof. Proof follows on the same lines as the proof of Theorem 2.1 just use ¥1(x) = my and ¥9(x) = mq as

constant functions. O

Some more inequalities are given in the next result.
Theorem 2.2. Let f,11,1%3 € Li[a,b] such that (2.1) holds. Also let g € L1]a,b] and there exist ¢p1 and ¢o
such that
d1(x) < g(x) < ¢o(x) Va € [a,b]. (2.9)

Then for extended generalized fractional integral (1.3) we have the following inequalities:

(@) (555000 ) @) (556 o) (m) + (1555 uv2) (im) (1045 00) (i) (2.10)
> (e atn ) (p) (ot ie) (@ip) + (G050 uF) (@ip) (550 09) (@),
(i) (50 ) (@) (o u9) (@) + (1550 w2) (wip) (G0 o ) (asp)
> (e ) @ip) (G055 002) (@) + (056 09) @i0) (G550 oS ) (@5),

(
> ,6,k,c 6.k, 0.k, .
§ate) @ip) (050 002 ) (@ip) + (3560 S ) (@ip) (055 09) (i)
(

—
-~
-~
~.

=

VS
(o)
2
>
=&

7
0.k, 5k 5,k 5,k .
Z (GZ,B,Z,Z,aw2) (I5p) (€Zalfuag> + (EZaliza ) x,p)( ZLBlfJaf) (J},p),
; ,6,k, . ,0,k, 8.k, 0.k, .
(iv) (0555 1) @) (25 001 ) @ip) + (L35S uf) @ip) (§0055.09) (@)
0.k, ) 5k, 8.k, 5.k, .
> (0 atn) @) (556 09) @ip) + (245001 ) @) (555.0F) (i),

Proof. (i) From (2.1) and (2.9) we have

(¢2(u) = f(u)(g(v) = ¢1(v)) = 0, (2.11)

that gives

Pa(u)g(v) + ¢1(v) f(u) = 1 (v)va(u) + f(u)g(v). (2.12)

Multiplying (2.12) by (z — u)*~ lEli,k “(w(z —u)*;p)(z — v)#~ lE;’gllC “(w(x — v)*;p) on both sides and
integrating with respect to u and v over [a, z] then by using Definition 1.2 we get (7).

To prove (i4) — (iv), we use the following inequalities instead of (2.11) respectively

(i7) (p2(u) — g(u))(f(v) = ¢1(v)) = 0

(i) (2(u) = f(u))(g(v) = ¢2(v)) <0

(i) (P1(u) = f(w)(g(v) = ¢1(v)) <O

then on the same lines as done to obtain (i) one can get inequalities (i) — (iv). O

Special cases are stated as follows.
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Corollary 2.2. Let f,g € Li[a,b]. Also let mi, ma,n1 and ny be real constants such that
my < f(z) < mg, ny < g(z) <ng, Vz€la,b].
Then we have

(i) mCalwip) (z:i’iza ) (@:p) +maCalwsp) (€555.49) (@:p)
P+ (G045 1) xp>( TN a9) (@ip),
(i0) m1Cpl(a:p) (z,i’”;;ag) #) + n2Calwip) (555, o ) (@:p)
)+ (35 ol ) @) (€055 09) (@im),
(iii) maCa(w;p) ( 7;;3’? £.09) (@0) +n2Ca(wip) (245 o ) (@)
> manaC(a:p)Calwsp) + (s, of ) @ip) (§555.9) (@ip).
(iv)  miCalwsp) (1545 00) (@ip) + mCalaip) (045 o) (w3)

18,k sk,
> mum Ca(@:p)Ca(w59) + (550 o) (@i0) (1555.09) (@ip).

> nimaoCg(x;p)C

> myanaCa(x; p)C

Proof. Proof follows on the same lines as the proof of Theorem 2.1 just use ©1(z) = my, ¥ (x) = ma, ¢1(x) =

ny and ¢o(x) = ngy as constant functions. O
Next we give the Korkine’s identity which is used in the next result.

Theorem 2.3. Let f, 11,12 € L1]a,b] such that (2.1) holds. Then for extended generalized fractional integral

(1.3) we have the following equality:

Ca(;p) (6Zj§§ji,af2> (z:p) — [( o of )(x,p)] (2.13)
= (e, n) wim) = (355 o) (5]

<[(qaheaf) @ = (4 ’i”zzawl) )]
= Calasp) [ (045 a02) @ip) = (2350, F) (@)
x [ (8 f) @m = (

+ Calwip) (afitatnf) i) = (G255.000) (i) (G055 T) (a:9)
+ Calwip) (050 vnf ) @ip) = (255 e (@ip) (2555 . f) (@sp)

= Calwsp) (i atrvn ) (@ip) + (250 on ) (@ip) (G055 a2 ().

€ ’i%a%) P)}

o,
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Proof. For any wu,v € [a,b] we have

(¢a(v) = f(0))(f(w) = 1 () + (a(u) = f(u))(f(v) = ¥1(v)) (2.14)
— (Ya(u) = f(w)(f () = ¢1(u)) = (Y2(v) = f(0))(f(v) = ¢1(v))

= [2(w) + /2 (v) = 2f (W) f(v) + ¥2(0) f () + ¥ (u)f(v)

— Y1(w)2(v) + Ya(w) f(0) + 1 (v) f(w) = 1 (v)$ha(v)

— Ya(u) f(u) + 1 (w)ta(w) — Y1 (w) fu) = pa(v) f(v)

+ 1(v)a(v) = 1 (v) f(v).

Now multiplying (2.14) by (z — u)*~ 1EZZ}? “(w(z — u)H;p)(x — v)*~ lE;’gﬁ “(w(xz — v)*;p) on both sides

and integrating with respect to u and v over [a, x] then by using Definition 1.2 we get the required identity

(2.13). ]
The last result is the generalized fractional Griiss inequality.

Theorem 2.4. Let f and g be a two functions such that f,g € Li[a,b]. Also let y1,12, d1 and ¢o be four
integrable functions satisfying (2.1) and (2.9). Then for extended generalized fractional integral (1.3) we
have the following inequality:

Calwip) (045 .at9) (sp) = (0550 F) (sp) (125 09) (i) (2.15)
S \/G(f7 1/’17 ¢2)G(9a ¢17 ¢2)7

where

G(u,v,w)

= [(he.aw) @ip) - (ezvi”?z ) (z:p)]

x (e ) im) — (G55 o) )]

+ Ca(z;p) (GZ o aUU) ( ana ) (Glii’ﬁiﬁ,,aU) (z:p)

+ Calaip) (550 aw) (w5p) = (550 aw) (@ip) (05 4u) (@)

— Caf(x;p) (EZ’,Z’,’?ZZ,@W) (z;p) + (EZ’,Z,'?Z o ) (z;p) ( a0 ) (z;p).
Proof. Since f and ¢ are two integrable functions we have

[f(u) = f(0)] lg(u) — g(v)] (2.16)
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Multiplying (2.16) by 3(z —u)*"1ET> SR ((x — u)H; p) (x — ) LEY 2R (2 — v)#; p) and integrating with

ual ool

respect to u and v over [a, z], the following inequality is obtained:
(5[ [ om0 Epihtete - 0t = 0 B ol = o))
x [f(u) = f(v)][g(u) — g(v)] dudv)
= (i ufa) @p) = (Gohe of) @p) (Gak u9) (i)
Now by using Cauchy-Schwarz inequality we have
(3 [ -0 Ehtete = 0t = 0 B ol = o))
X [f(w) = f(©)] [9(u) — g(v)] dudv)®
<3 / / (@ =) ELOY (w@ — ) p)(x = 0)* T BN (w(@ — v)sp)
x [f(w) = f(v)]* dudv
<5 [ [ om0 Bl — 0t - 0 B el — )
x [g(u) — g(v)]” dudv.
From (2.18) one can have
/ / ) T B (w(w — ) p) (@ — v B (- o) p)
— f(v)]? dudv
= Calasp) (2555 ,12) @) — [ (54, ) i)
Similarly,
3| a0t Bt — e — o) B e - o)
x [g(u) = g(v))* dudv
= Calwsp) (0055,09%) (@sp) = [ (555,9) (w;p)r-

Using (2.19) and (2.20) in (2.18) we have

< / / Ziljc( (x —u)sp)(x —v)*~ lEli];C( (x —v)*;p)
% [f(u) = £(0)] [g(w) — g(v)] dudv)®
< Cufaip) (G250.1%) i) = [(25507) (i)

2
8.k, 18,k
Xca(x;p)<7talz)ag2) |:<€Zo¢l2ag) l’p)i| .

(2.17)

(2.18)

(2.19)

(2.20)

(2.21)
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Now combining (2.17) and (2.21) we have

(288 10 i) — (350.uF) i) (1555, 09) ) (222)
< Calwsp) (Gohuf?) @ip) = [ (250.0F) (m))r
% Colwp) (2547 0?) ip) — [(1545 10) @ip)]

Since
(¥2(@) = @)/ (@) =1 (@) = 0
and
(#2(2) = 9(@)) (9(x) — d1(2)) = 0.
therefore
Calwsp) (045 a0 = N(f 1) (30) 2 0,
and

Ca(w;p)(liliwa(@ 9)(g - </>1)) (z;p) 2 0.

By Theorem 2.3 we have

2

Calwsp) (255 o1 sp) = [(255 1) (ip)] (2:23)
< [(EZ o ada) (z;p) — (EZ";"?Z af) (x;p)]

< (el @) = (s ) i)

+ Calwsp) (s avnf ) (@im) = (350 0n ) @im) (055 uF) (@sp)

+ Ca(z;p) (EZZZ,’ZZ@%/‘) (z;p) — <GZ o mz) (z;p) (GZ o af) (z;p)

— Calaip) (2055 v ) (ip) + (G055 w0 ) (i) (255 iz ) ().

= G(f, Y1, ).
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Similarly
Calezp) (540 17 (@ip) — [(G24 09) (aem)] (224)
< [(a8h5.02) (sp) = (G545 49) ()]
[(:55.09) @) = (22055 001 ) (@ip)]
+ Calaip) (555 a0 f) (w59) = (555 001 ) (w0) (555, 09) (:p)
+ Calaip) (555 a029) (w0) = (100 002) (@) (1055 00) (@ip)
— Calwsp) (i a0102) @ip) + (20 101 ) (@ip) (055 002) @ip).
= Glg. 61 62).
Combining (2.23),(2.24) with (2.22), we get the required inequality (2.15). O

CONCLUDING REMARKS

Since the extended generalized fractional integral operator contains itself several known fractional integral
operators for particular values of involved parameters. For example selecting p = 0, fractional integral
inequalities for fractional integral operators defined by Salim and Faraj in [12], selecting | = 6 = 1, fractional
integral inequalities for fractional integral operators defined by Rahman et al. in [11], selecting p = 0 and
l = 0 = 1, fractional integral inequalities for fractional integral operators defined by Shukla and Prajapati
n [13] and see also [14], selecting p = 0 and | = § = k = 1, fractional integral inequalities for fractional
integral operators defined by Prabhakar in [10], selecting p = w = 0 fractional integral inequalities for
Riemann-Liouville fractional integrals. Therefore the presented results contain all such results for these

particular fractional integral operators as special cases.
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