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1Technical Sciences Vocational School, Bingol University, Bingol, Turkey
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Abstract. In this paper, we obtain the parametric expressions of curves which have zero weighted curvature

in a plane with density eax+by and create the Smarandache curves of the obtaining curves. Also, we construct

the rotational surfaces which are generated by planar curves with vanishing weighted curvature and give

some characterizations for them.

1. Introduction

Differential geometers have studied the curves in a plane for a long time and the differential geometry of

curves has been interested widely in different spaces such as Euclidean, Minkowski, Galilean, pseudo Galilean
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and etc. The Frenet vectors and curvature of a curve α(u) = (x(u), y(u), 0) in the plane are (see [15] and [17])

T =
1√

x′(t)2 + y′(t)2
(x′(u), y′(u), 0),

N = ∓ 1√
x′(u)2 + y′(u)2

(−y′(u), x′(u), 0),(1.1)

B = ∓(0, 0, 1),

κ = ∓x
′(u)y′′(u)− x′′(u)y′(u)(
(x′(u))

2
+ (y′(u))

2
)3/2 .

Here we must note that, the sign of ”∓” which is stated in the above formulas of Frenet vectors and curvature

will be taken as ”+” throughout this study.

Recently, new curves have been obtained by using the Frenet frames of curves. One of these new curves is

Smarandache curve and if we denote TN -Smarandache curve as β(u), TB-Smarandache curve as δ(u) and

NB-Smarandache curve as γ(u), then they are given by

β(u) =
T (u) +N(u)

‖ T (u) +N(u) ‖
, δ(u) =

T (u) +B(u)

‖ T (u) +B(u) ‖
and γ(u) =

N(u) +B(u)

‖ N(u) +B(u) ‖
,

respectively. Since the Smarandache curves play an important role in Smarandache geometry, many ge-

ometers have been interested in these curves. More information about Smarandache curves can be found

in [1], [2], [18], [19].

Also, lots of studies have been done about rotational surface in Euclidean space E3 and Lorentz-Minkowski

space E3
1 in recent years (see [5], [6], [7], [12] and etc). A rotational surface in Euclidean space is generated

by rotating of an arbitrary curve about an arbitrary axis. In this sense, let α(u) = (x(u), y(u), 0) be a regular

plane curve in the xy−plane which is defined on a open invertal I ⊂ R. A rotational surface M in E3 is

defined by the following three cases:

If the axes of revolution are x-axis, y-axis and z-axis, then the rotational surfaces are given by

X(u, v) =


1 0 0

0 cos v − sin v

0 sin v cos v




x(u)

y(u)

0


= (x(u), y(u) cos v, y(u) sin v) ,(1.2)
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X(u, v) =


cos v 0 sin v

0 1 0

− sin v 0 cos v




x(u)

y(u)

0


= (x(u) cos v, y(u),−x(u) sin v)(1.3)

and

X(u, v) =


cos v − sin v 0

sin v cos v 0

0 0 1




x(u)

y(u)

0


= (x(u) cos v − y(u) sin v, x(u) sin v + y(u) cos v, 0) ,(1.4)

respectively.

On the other hand, after Morgan’s article [14], manifolds with density have been a very popular topic in

many areas for geometers, physicists, economicists. For example, in physics, an object may have differing

internal densities so in order to determine the object’s mass it is necessary to integrate volume weighted

with density. In differential geometry, let we consider a bounded curve on the closed Euclidean half plane

(boundary on the x-axis) and the surfaces of revolution formed by rotating that curve about x-axis. Areas

and arc lengths on that surface correspond to areas and arc lengths on the half plane with a weighting of

2πy. In government and economics, it is often necessary to consider aggregate properties of groups and

subgroups of people. For large groups, these aggregate properties can be determined by integrating over the

members of the group, the differing individual properties (much like different densities).

In 2003, Gromov [8] firstly has described κϕ weighted curvature of curves and Hϕ weighted mean curvature

of n−dimensional hypersurfaces on a manifold with density eϕ as

κϕ = κ− dϕ

dN

and

Hϕ = H − 1

n− 1

dϕ

dη
,

respectively. Here, N is the normal vector, κ is the curvature of the curve; η is the normal vector field, H is

the mean curvature of the hypersurfaces and 〈N ,∇ϕ〉 = dϕ
dN , 〈η ,∇ϕ〉 = dϕ

dη . Furthermore, Corwin [4] has

defined weighted Gaussian curvature of a surface in a manifold with density by

Gϕ = G−∆ϕ,

where G is Gaussian curvature of the surface and ∆ is the Laplacian operator. For another characterizations

of manifolds with density, we refer to [3], [9], [10], [11], [13], [16], [20] and etc.
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2. Curves with Vanishing Weighted Curvature in a Plane with Density eax+by

In this section, firstly we construct the weighted curvature of a curve in a plane with positive density

eax+by. After that, we investigate the curves whose weighted curvatures are equal to zero according to the

cases of a and b. Followingly, we create Smarandache curves of these curves as examples.

Weighted curvature κϕ of a curve α(u) = (x(u), y(u), 0) in a plane with density eax+by is obtained as

κϕ = κ− dϕ

dN

=
x′(u)y′′(u)− x′′(u)y′(u)− (x′(u)2 + y′(u)2)(−ay′(u) + bx′(u))

(x′(u)2 + y′(u)2)
3/2

.(2.1)

So,

Corollary 2.1. If the curve α(u) = (x(u), y(u), 0) is a unit speed curve, then the weighted curvature κϕ of

the curve α(u) in the plane with density eax+by is

κϕ = x′(u)y′′(u)− x′′(u)y′(u) + ay′(u)− bx′(u).

Proposition 2.1. Weighted curvature κϕ of the curve α(u) = (x(u), y(u), 0) in the plane with density eax+by

vanishes if and only if

x′(u)y′′(u) + ax′(u)2y′(u) + ay′(u)3 = x′′(u)y′(u) + bx′(u)y′(u)2 + bx′(u)3.

Now, we will examine the weighted curvature of a curve in a plane with density eax+by for different values

of constants a and b.

First, let’s assume that b = 0; i.e. the density of the plane is eax.

Then from (2.1), the weighted curvature κϕ of the curve α(u) = (x(u), y(u), 0) in a plane with density eax

is obtained as

κϕ =
x′(u)y′′(u)− x′′(u)y′(u) + ay′(u)

(
x′(u)2 + y′(u)2

)
(x′(u)2 + y′(u)2)

3/2
.

Hence, we have

Proposition 2.2. Weighted curvature κϕ of the curve α(u) = (x(u), y(u), 0) in the plane with density eax

is zero if and only if

(2.2) x′(u)y′′(u) + ay′(u)
(
x′(u)2 + y′(u)2

)
= x′′(u)y′(u).

From (2.2), we have

y(u) = c2 ∓
arctan

(√
c1e2ax(u) − 1

)
a

.

So, taking the sign of ”∓” which has been stated in the last equation as ”+”, we have
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Theorem 2.1. Let α(u) be a curve with vanishing weighted curvature in a plane with density eax. Then, it

can be parametrized by

(2.3) α(u) =

x(u),
arctan

(√
c1e2ax(u) − 1

)
a

+ c2, 0

 ,

where c1, c2 ∈ <.

In Figure 1, one can see the graph of curve (2.3) for x(u) = sin(u), c1 = 3, c2 = 5 and some different

values of a.

Figure 1. Curve (2.3) with vanishing weighted curvature in a plane with density eax

Now, we construct Smarandache curve of curve (2.3), obtain the Frenet vectors and curvature of this

Smarandache curve and draw it.

Example 2.1. From (1.1), the tangent, normal and binormal vectors of the curve (2.3) are obtained as

T (u) =
1√

c1e2ax(u)

(√
−1 + e2ax(u)c1, 1, 0

)
,

N(u) =
1√

c1e2ax(u)

(
−1,

√
−1 + c1e2ax(u), 0

)
,

B(u) = (0, 0, 1) ,

respectively. Then, the TB-Smarandache curve δ(u) which is defined with the aid of the Frenet vectors of

curve (2.3) can be written as

(2.4) δ(u) =
T (u) +B(u)

‖T (u) +B(u)‖
=

(√
−1 + c1e2ax(u)√

2c1e2ax(u)
,

1√
2c1e2ax(u)

,
1√
2

)
.
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Also, the Frenet vectors and the curvature of the TB-Smarandache curve δ(u) are obtained as

Tδ(u) =
1√

c1e2ax(u)

(
1,−

√
−1 + c1e2ax(u), 0

)
,

Nδ(u) =
1√

c1e2ax(u)

(√
−1 + c1e2ax(u), 1, 0

)
,

Bδ(u) = (0, 0, 1) ,

κδ(u) = −
√

2,

respectively.

Note that, the TN -Smarandache curve β(u) and the NB-Smarandache curve γ(u) of the curve (2.3) can

be obtained with the similar procedure of above.

Now, taking x(u) = sinu, c1 = 3 in (2.4), we get

(2.5) δ(u) =

(√
−1 + 3e2a sin(u)

√
6e2a sin(u)

,
1√

6e2a sin(u)
,

1√
2

)
.

Figure 2 shows the graph of this curve for some different values of a.

Figure 2. TB-Smarandache curve (2.5) of curve (2.3)

Similarly, from (2.2) we have

x(u) = c2 −
ln (cos(c1 + ay(u)))

a
.

So,

Theorem 2.2. The curve α(u) with vanishing weighted curvature in a plane with density eax can be

parametrized by

(2.6) α(u) =

(
c2 −

ln (cos(c1 + ay(u)))

a
, y(u), 0

)
,

where c1, c2 ∈ <.
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Figure 3 shows the graph of curve (2.6) for y(u) = arccos(eu), c1 = 0, c2 = 5 and some different values

of a.

Figure 3. Curve (2.6) with vanishing weighted curvature in a plane with density eax

Now, let us construct Smarandache curve of curve (2.6), obtain the Frenet vectors and curvature of this

Smarandache curve and draw it.

Example 2.2. Let β(u) be the TN -Smarandache curve which is defined with the aid of the Frenet vectors

of curve (2.6). Then, the TN -Smarandache curve β(u), its tangent, normal and binormal vectors and the

curvature are obtained as

β(u) =
T (u) +N(u)

‖ T (u) +N(u) ‖
(2.7)

=
1√
2

(sin(c1 + ay(u))− cos(c1 + ay(u)), cos(c1 + ay(u)) + sin(c1 + ay(u)), 0) ,

Tβ(u) =
1√
2

(sin(c1 + ay(u)) + cos(c1 + ay(u)),− sin(c1 + ay(u)) + cos(c1 + ay(u)), 0),

Nβ(u) =
1√
2

(sin(c1 + ay(u))− cos(c1 + ay(u)), sin(c1 + ay(u)) + cos(c1 + ay(u)), 0),

Bβ(u) = (0, 0, 1) ,

κβ(u) = −1,

respectively. Here the Frenet vectors of curve (2.6) are

T (u) = (sin(c1 + ay(u)) , cos(c1 + ay(u)), 0),

N(u) = (− cos(c1 + ay(u)), sin(c1 + ay(u)), 0) ,

B(u) = (0, 0, 1).
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TN -Smarandache curve of curve (2.6) for conditions y(u) = arccos(eu), c1 = 3 is

β(u) =
1√
2

(sin(3 + a arccos(eu))− cos(3 + a arccos(eu)),

cos(3 + a arccos(eu)) + sin(3 + a arccos(eu)), 0)(2.8)

and the graph of this curve for some different values of a can be seen in Figure 4 .

Figure 4. TN -Smarandache curve (2.8) of curve (2.6)

Here, the TB-Smarandache curve δ(u) and the NB-Smarandache curve γ(u) of the curve (2.6) can be

obtained with the similar procedure of above.

Now, let’s assume that a = 0; i.e. the density of the plane is eby.

Then from (2.1), the weighted curvature κϕ of the curve α(u) = (x(u), y(u), 0) in the plane with density eby

is obtained as

κϕ =
x′(u)y′′(u)− x′′(u)y′(u)− bx′(u)(x′(u)2 + y′(u)2)

(x′(u)2 + y′(u)2)
3/2

.

So, we get

Proposition 2.3. Weighted curvature κϕ of the curve α(u) = (x(u), y(u), 0) in the plane with density eby

is zero if and only if

(2.9) x′(u)y′′(u) = x′′(u)y′(u) + bx′(u)(x′(u)2 + y′(u)2).

From (2.9), the results are similar to the curves with vanishing weighted curvature in the plane with

density eax.
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3. Rotational Surfaces Generated By Planar Curves with Vanishing Weighted Curvature in

E3 With Density

In this section, we obtain the parametric representations of rotational surfaces which are generated by

curves with vanishing weighted curvature in a plane with density eax+by and give their mean and Gaussian

curvatures. Also, we draw the graphics of these curves, surfaces, the Gaussian and mean curvatures functions’

graphics and the variations of Gaussian and mean curvatures on these surfaces.

3.1. Rotational Surfaces Generated By Curve (2.3).

First, we suppose that the axis of revolution is x-axis. Then, from (1.2) and (2.3), the rotational surface

M can be parametrized by

X(u, v) = (x(u), (
arctan(

√
c1e2ax(u) − 1)

a
+ c2) cos(v),

(
arctan(

√
c1e2ax(u) − 1)

a
+ c2) sin(v)).(3.1)

The Gaussian and mean curvatures of this surface are obtained by

G =
a2e−2ax(u)

√
c1e2ax(u) − 1

ac1c2 + c1 arctan(
√
c1e2ax(u) − 1)

and

H =

(
c1e

2ax(u) − 1 + ac2
√
c1e2ax(u) − 1 +

√
c1e2ax(u) − 1 arctan(

√
c1e2ax(u) − 1)

)
a

2(ac2 + arctan(
√
c1e2ax(u) − 1))

√
c1e2ax(u)(c1e2ax(u) − 1)

,

respectively.

We know that, minimal surfaces are defined as surfaces with zero mean curvature and a surface for which

the Gaussian curvature vanishes everywhere is called a flat surface. Also, a point p on a regular surface

M ⊂ R3 is said to be elliptic, parabolic and hyperbolic, if the Gaussian curvature G(p) > 0, G(p) = 0 and

G(p) < 0, respectively.

Hence, we have

Theorem 3.1. The rotational surface (3.1) which is generated by curve (2.3) with vanishing weighted cur-

vature isn’t minimal and flat.

Theorem 3.2. i) All of the points of the surface (3.1) are elliptic, if ac2 > 0;

ii) the points of the surface (3.1) which satisfy the conditions ”x(u) = − ln(c1)
2a ” and ”c2 6= 0” are parabolic;

iii) all of the points of the surface (3.1) are hyperbolic, if ac2 ≤ −π2 .

In Figure 5, one can see the curve (2.3) which generates the rotational surface and the rotational surface

(3.1) for x(u) = sinu, c1 = 3, c2 = 5 and a = 1.
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Figure 5. The curve (2.3) which generates the rotational surface and the rotational surface (3.1)

Also, in Figure 6, one can see the Gaussian and mean curvatures functions’ graphics above and the

variations of Gaussian and mean curvatures on rotational surface (3.1) below.

Figure 6.

Now, let us assume that the axis of revolution is y-axis. Then, from (1.3) and (2.3), the rotational surface

M can be parametrized by

(3.2) X(u, v) =

x(u) cos v,
arctan

(√
c1e2ax(u) − 1

)
a

+ c2,−x(u) sin v

 .

Also, the Gaussian and mean curvatures of this surface are calculated as follows

G = −ae
−2ax(u)

c1x(u)
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and

H =
1− ax(u)

2x(u)
√
c1e2ax(u)

,

respectively. Hence,

Theorem 3.3. The rotational surface (3.2) which is generated by curve (2.3) with vanishing weighted cur-

vature isn’t minimal and flat.

Theorem 3.4. i) If a and x(u) have different signs, then the points which satisfy this condition on the

surface (3.2) are elliptic;

ii) none of the points of the surface (3.2) are parabolic;

iii) if a and x(u) have same signs, then the points which satisfy this condition on the surface (3.2) are

hyperbolic.

Figure 7 shows the curve (2.3) which generates the rotational surface and the rotational surface (3.2), for

x(u) = sinu, c1 = 3, c2 = 5 and a = 1.

Figure 7. The curve (2.3) which generates the rotational surface and the rotational surface (3.2)

In Figure 8, the Gaussian and mean curvatures functions’ graphics and the variations of Gaussian and

mean curvatures on rotational surface (3.2) can be seen above and below, respectively.
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Figure 8.

Finally, we suppose that the axis of revolution is z-axis. Then, from (1.4) and (2.3), the rotational surface

M can be parametrized by

X(u, v) = (x(u) cos v − (
arctan(

√
c1e2ax(u) − 1)

a
+ c2) sin v,

x(u) sin v + (
arctan(

√
c1e2ax(u) − 1)

a
+ c2) cos v, 0).(3.3)

So, it is clear that the mean and Gaussian curvatures of this surface are zero.

Then, Figure 9 shows the curve (2.3) which generates the rotational surface and the rotational surface

(3.3), for x(u) = sinu, c1 = 3, c2 = 5 and a = 1.

Figure 9. The curve (2.3) which generates the rotational surface and the rotational surface (3.3)

In Figure 10, one can see the Gaussian and mean curvatures functions’ graphics above and the variations

of Gaussian and mean curvatures on rotational surface (3.3) below.
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Figure 10.

3.2. Rotational Surfaces Generated By Curve (2.6).

First, let the axis of revolution be the x-axis. Then, by following the similar procedure with previous

subsection, from (1.2) and (2.6), the rotational surface M is obtained as

(3.4) X(u, v) =

(
c2 −

ln (cos(c1 + ay(u)))

a
, y(u) cos v, y(u) sin v

)
.

Hence, the Gaussian and mean curvatures of this surface are

G =
a sin(2(c1 + ay(u)))

2y(u)

and

H =
sin(c1 + ay(u)) + ay(u) cos(c1 + ay(u))

2y(u)
,

respectively.

Theorem 3.5. The rotational surface (3.4) which is generated by curve (2.6) with vanishing weighted cur-

vature isn’t minimal and flat.

Theorem 3.6. For 2kπ < c1 + ay(u) < π
2 + 2kπ, k ∈ N,

i) if a and y(u) have same signs, then the points which satisfy this condition on the surface (3.4) are

elliptic;

ii) if a and y(u) have different signs, then the points which satisfy this condition on the surface (3.4) are

hyperbolic.

For 3π
2 + 2kπ < c1 + ay(u) < 2π + 2kπ, k ∈ N,



Int. J. Anal. Appl. 17 (3) (2019) 324

i) if a and y(u) have different signs, then the points which satisfy this condition on the surface (3.4) are

elliptic;

ii) if a and y(u) have same signs, then the points which satisfy this condition on the surface (3.4) are

hyperbolic.

Also, the points of the surface (3.4) which satisfy the condition ”c1 + ay(u) = 2kπ, k ∈ N” are parabolic.

Next, taking y(u) = arccos(eu), c1 = 0, c2 = 5 and a = 1, then the curve (2.6) which generates the

rotational surface and the rotational surface (3.4) can be seen in Figure 11.

Figure 11. The curve (2.6) which generates the rotational surface and the rotational sur-

face (3.4)

In Figure 12, one can see the Gaussian and mean curvatures functions’ graphics above and the variations

of Gaussian and mean curvatures on rotational surface (3.4) below.

Figure 12.
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Now, let’s assume that the axis of revolution is the y-axis. Then, from (1.3) and (2.6), the rotational

surface M can be parametrized by

(3.5) X(u, v) =

((
c2 −

ln (cos(c1 + ay(u)))

a

)
cos v, y(u),−

(
c2 −

ln (cos(c1 + ay(u)))

a

)
sin v

)
.

The Gaussian and mean curvatures of this surface are

G = − a2 cos(c1 + ay(u))2

ac2 − ln (cos (c1 + ay(u)))

and

H =
(1− ac2 + ln(cos(c1 + ay(u)))) a cos(c1 + ay(u))

2 (ln(cos(c1 + ay(u)))− ac2)
,

respectively.

Theorem 3.7. The rotational surface (3.5) which is generated by curve (2.6) with vanishing weighted cur-

vature isn’t minimal and flat.

Theorem 3.8. i) If a and c2 have same signs, then all of the points of the surface (3.5) are hyperbolic;

ii) none of the points of the surface (3.5) are parabolic;

iii) If a and x(u) have different signs and |ac2| > |ln(cos(c1 + ay(u)))| , then the points which satisfy these

conditions on the surface (3.5) are elliptic;

if a and x(u) have different signs and |ac2| < |ln(cos(c1 + ay(u)))| , then the points which satisfy these

conditions on the surface (3.5) are hyperbolic.

Figure 13 shows the curve (2.6) which generates the rotational surface and the rotational surface (3.5),

for y(u) = arccos(eu), c1 = 0, c2 = 5 and a = 1.

Figure 13. The curve (2.6) which generates the rotational surface and the rotational sur-

face (3.5)

In Figure 14, one can see the Gaussian and mean curvatures functions’ graphics above and the variations

of Gaussian and mean curvatures on rotational surface (3.5) below.
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Figure 14.

Finally, let we suppose that the axis of revolution is z-axis. Then, from (2.6) and (1.4), the rotational

surface M can be parametrized as

X(u, v) = ((c2 −
ln(cos(c1 + ay(u)))

a
) cos(v)− y(u) sin v,

(c2 −
ln(cos(c1 + ay(u)))

a
) sin(v) + y(u) cos v, 0).(3.6)

From above, it is obvious that the mean and Gaussian curvatures of this surface are zero. Figure 15 shows the

curve (2.6) which generates the rotational surface and the rotational surface (3.6), for y(u) = arccos(eu), c1 =

0, c2 = 5 and a = 1.

Figure 15. The curve (2.6) which generates the rotational surface and the surface of rev-

olution (3.6)
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In Figure 16, one can see the Gaussian and mean curvatures functions’ graphics above and the variations

of Gaussian and mean curvatures on rotational surface (3.6) below.

Figure 16.

4. Conclusion and Future Work

In the present paper, we’ve obtained the weighted curvature of a curve in a plane with density eax+by,

where a, b ∈ R not all zero constants and investigated the curves with vanishing weighted curvature according

to the cases a 6= 0, b = 0 and a = 0, b 6= 0. Later, we’ve constructed the Smarandache curves of these curves

and obtained the tangent, normal and binormal vectors and curvature of them. Also, we’ve constructed

the rotational surfaces which are generated by curves with vanishing weighted curvature in the plane with

density eax+by and give some characterizations by obtaining their mean and Gaussian curvatures. We’ve

drawn these curves and surfaces with the aid of Mathematica.

We think that, this study will provide a different perspective to the researchers who’re dealing with the

weighted spaces. As a problem, these curves and surfaces can be studied in different spaces such as Minkowski

space, Galilean space and pseudo Galilean space and etc. Also, these structures can be studied in Euclidean

or other spaces with different densities and in the near future, the authors will deal with these open problems

in detail.
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