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ABSTRACT. The purpose of this paper is to establish weighted version of Ostrowski type integral inequalities.
The inequalities are obtained by using a newly developed special type of five steps weighted kernel. The
introduction of this new Kernel gives some new error bounds for various quadrature rules. Applications for

Cumulative Distributive Functions are considered.

1. INTRODUCTION

The field of inequalities have applications in most of the domains of Mathematics. The importance of
mathematical inequalities has increased during the past few decades and now it is studied as a separate
branch of Mathematics. A number of research papers and books have been written on inequalities and
their applications (see for instance [9]- [13]). In many practical problems, it is important to bound one
quantity by another quantity. The classical inequalities such as Ostrowski’s inequality is very useful for this
purpose. Ostrowski type inequalities have immediate applications in numerical integration, optimization
theory, statistics and integral operator theory.

In 1938, Ostrowski [8] discovered the following useful integral inequality.
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Theorem 1.1. Let f : [a,b] = R be continuous on [a,b] and differentiable on (a,b), whose derivative

/" (a,b) = R is bounded on (a,b), i.e.

1/ loe = sup |f" ()] < oo
t€la,b]
then for all x € [a, b
1 b 1 r — atb 2
f0) - [ 1w < 4+<ZF;/> (- a) ISl (1)

We mention another inequality called Griiss inequality [6] which is stated as the integral inequality that
establishes a connection between the integral of the product of two functions and the product of their

individual integrals. Mathematically, it is described as follows:

b b b
i [ s@es - 2 [ e [ gy (1:2)

IN

1

1@ =) =),

where

< f(z)<® and y<g(z) <T,

for all z € [a,b]. The constant § is sharp in (1.2) .

In [4], Dragomir and Wang combined Ostrowski and Griiss inequality to give a new inequality which they
named Ostrowski-Griiss type inequalities.

In [2], Barnett et.al proved some Ostrowski type inequality and generalized the trapezoidal inequality.
Dragomir [3] and Liu [5] established some companions of Ostrowski type integral inequalities.

Recently, Qayyum et. al. [15] proved some Ostrowski type inequalities, they obtained their results by
using kernel with five steps. In this paper, we will present the weighted version of the results obtained by
Qayyum et. al. [15].

Throughout the present paper, a weight function (or density function) over some interval [a,b], where

b
—00 < a < b < oo, is afunction w : [a,b] — [0,00) with 0 < [w(t)dt < co.
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2. MAIN RESULTS

Definition 2.1. Let —oo < a < b < 0o. Let w be a weight function over [a,b]. The 5-step linear kernel with

respect to w is denoted by P, and is defined as follows:

Jw (u) du, t € [a, 4]
iaftw(u)du—k}lbftw(u)du, te (¢, 1]
Py(z,t) = %jw(u)du—kébftw(u)du, t € (r,a+b— 1z , (2.1)
ijw(u)du+ibftw(u)du, te (a+b—ax,ot2=2]
) dn te (242 )

forxz e [a, “TH’} and t € [0,1].
The following lemma will be used repeatedly throughout the present paper.

Lemma 2.1. Let —0o < a < b < 0o. For a weight function w over [a,b], the identity

b
/Pw(:c,t)f "(t)dt (2.2)

_ i jw@ﬂt{Hm+fw+b—@+f<a;x>+f<a+?_x>}iiw@fﬁﬂt

a a

holds for all x € [a, %‘H’] and t € [0,1].
Proof: Obvious.

Lemma 2.2. Let —00 < a < b < 00, and w be a weight function over [a,b]. If w is symmetric about %rb,

then

b
/&uﬁﬁza

a+b
D)

b
/mmﬁ -

Proof: Since w is symmetric about

which implies that
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Using Identity (2.2) with f (¢) = ¢, we get that

b b

/wa(x,t)dt: b;a/w(t)dt—/tw(t)dtzo.

a a

The converse of Lemma 2.2 is not correct in general as shown in the following example.

Example 2.1. For —oco < a < b < o0, let h(x) and w () be defined as:

Clearly, w is not symmetric about GTH’ On the other hand, note that

b
58
Juwwit=250-a

and

which implies that

Thus,

b
/Pw(m,t)dt ~0.

Now with the help of Lemma 2.1, we state and prove some theorems in the following subsections.

2.1. The L' Case.

Theorem 2.1. Let —co < a < b< oo and f : [a,b] = R be a differentiable function on (a,b). Suppose that

b

b
w is a weight function over [a,b] with [tw (t)dt = 5% [w(t)dt. If f ' € L' [a,b] and Dy < f'(t) < Do, for

a a
all t € [a,b], where Dy, Dy are constants, then the inequality

L /bw(t)dt (f<x>+f<a+b_x>+f<“;”>+f<“+22”‘9”)>—/bw<t>f<t>dt
< 3 /bwu)dt (D2~ D) (b a)

a

holds for all x € [a, a;b] .

(2.3)
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Proof. Note that for ¢ € [0,1] and z € [a, “7“’}, we have

a

b
/ w(t)dt < Py(z,t) < / w (t) dt. (2.4)

b

b
Using Identity (2.2) with f (¢) = ¢ and the fact that ftw t)dt = e fw t) dt, we get that

which implies that

b

b
! /Pw(%t)f’(t)dt: - ! /Pw(x,t)f’(t)dt— (b_la)Q/Pw(x,t)dt/f’(t)dt

b—a

a

Applying Griiss Inequality, we get that

b
o [ Puten)f e (2.5)
ab b b
_ a/Pw 50f Ot = s a/Pw(x,t)dta/f/(t)dt
b a
< i(/w()dt/w(t)d) (D — Dy)
a b
1 b
= 3 [/w(t)dt] (Ds — Dy)
By Lemma 2.1,
b
/Pw z ) f (2.6)

i( w ( ) )+ f(a +b—x)+f(a;x)+f<a+22bx>>_/bw(t)f(t)dt.

Therefore,

| =

(w ) +f(a+b—1:)+f<a;rm>+f<a+22b_x))—/bw(t)f(t)dt

[ dt] (DQ —Dl) (b—a).

<

N =



Int. J. Anal. Appl. 17 (3) (2019) 425

Corollary 2.1. In Theorem 2.1, if w is a weight function over [a,b] and is symmetric about %H’, then

Inequality (2.3) becomes

i(/bw(t)dt) (f<x>+f<a+b_x>+f(“;“’) +f(+22’)‘”)) —/bwos)f(t)dt

a

b
< ip@@ﬁpm—mﬂw@. (2.7)
G?er

Proof. Since w is symmetric about , we have

b
/RA%ﬂﬁ:Q
a

and
a

/w@ﬁgmuﬁg

b

N =
N —
:\O‘
g
—~
~
S—

S
~

We can generalize Theorem 2.1 as follows:

Theorem 2.2. Let —co < a < b< oo and f : [a,b] = R be a differentiable function on (a,b). Suppose that
w is a weight function over [a,b]. If f' € L' [a,b] and Dy < f'(t) < Da, for all t € [a,b], where D1, Dy are
constants, then the inequality

[i(;w@ﬁ)<ﬂ@+f@+b@+f<a;x)+f(“+?z>)Mﬂ@N#

a

f/w@f@ﬁ

a

b
< ;U@@ﬁp%—mﬂ%@ (2.8)

a

b

holds for all x € [a, “F2], where M (z) = [ Py(z,t)dt and Nt = W'

a

Proof. By Lemma 2.1, we have
b

b b
1 i 1 !
b_g/&@@iﬁ(ﬂﬁ—xb_MQZF@@JMi/f(ﬂﬁ

a

s [fros] e (52 e (22259
_ﬂg;ﬁwj&mﬁﬁ—#;;w@f@ﬁ
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By Gruss Inequality, we have

IA

N | =
—
\@

g

=

S~—

U

~

Therefore,

% /bw(t)dt (f(x)+f(a+b—x)+f(a;x>+f(“+22b_m>) — M} () N2

w(t)dt| (Dy — Dy) (b—a).

IN
N =
@\v

O

Theorem 2.3. Let f : I CR — R be a differentiable mapping on I°, the mtemor of the interval I, and let
a,b € I with a < b. Let w be a weight function over [a,b] with ftw t)dt = b+a fw t)ydt. If f' € L' [a,b]

with D1 < f'(t) < Do for all t € [a,b], where D1, Do are constants then for each z € [a, 2], we have

i [/bw(t)dt] {f(x)+f(a+b—x)+f<a;x>+f<a+22b_$)]

a

b b
—/f(t)w(t)dt < %/Ww(:ﬂ,tndt. (2.9)

Proof. Let D = 21tP2

b
Using Identity (2.2) with f (t) = ¢, and the fact that [ tw (t)dt = 212 f w (t) dt, we get that

which implies that
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Using Lemma 2.1, we have
b

/Pw(m,t) (F'(t) - D) dt

a

b b

= el [f@srer-aar () (R - [roen

a

a

Note that, for each t € [a, ],

Dy — D Dy — D
(221)D1D§f’(t)D§D2D221
which implies that
Dy — Dy
! - DI < —7.
tgl[gfg]lf (t) =Dl < —

Thus,

IN

t€la,b]

b b
/Pw(x,w (f'(t)-Dydt| < max |f'(t)- D / Py (o, 1)] dt

b
Dy — D
< 202 [P an,

which implies that

=

/bw(t)dt [f(x>+f<a+b—$>+f<a;x) +f<a+22b_x)]

b b
—/f(t)w(t)dt < %/Ww(atﬂdt.

We can generalize Theorem 2.3 as follows:

Theorem 2.4. Let f : I CR — R be a differentiable mapping on I°, the interior of the interval I, and let
a,b € I with a < b. Let w be a weight function over [a,b]. If f' € L*[a,b] with Dy < f'(t) < Dy for all

t € [a,b], where Dy, Ds are constants, then for each x € [a, %H’], we have

{i (/bw(t)dt) (f(x)+f(a+b—x)+f<a—;x>+f<a+22b_$>> ~ M (2)D

a

b b
—/w(t)f(t)dt < %/ww(x,mdt. (2.10)

where M? = bew(x,t)dt and D = 214Dz,
a
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_ Di+D
Proof. Let D= =522
Using Lemma 2.1, we have

b

/&@ﬁﬁ%ﬂ—mﬁ

a

- jl[/bwu)dt] T () ey (U]

b b
—D/&uﬁﬁ—/f@w@ﬁ

Using same argument as in the proof of Theorem 2.3, we get

b
Dy, —-D
<= {ﬂamﬁMa

b
/Pw(x,t) (f'(t)—D)dt

which implies that

[i (/bw(t)dt) (f(x)+f(a+b—x)+f<a;r$>+f<a+22b_x)> — M (z) D

a

b

Dy — D

< 221/UM%Mﬁ
a

b
—/w@f@ﬁ

Theorem 2.5. f : I CR — R be a differentiable mapping on (a,b) .Let w be a weight function over [a, b]
b b
with [tw (t)dt = 252 [w(t)dt. If f' € L' [a,b] with D1 < f'(t) < D for all t € [a,b], where Dy, Dy are

a

constants, then for each x € [a, “TH’] , we have

i V“’(t)df] {f(l’)+f(a+b—a:)+f<a;x>+f<a+22bg:)]

a

b

—/f@wumt

a

§(b——a)<ij)_”f00——lh> sup |Py(z,t)|, (2.11)

b—a tE(a,b]

and

B~ =

|

/WGM4{f@%ﬁﬂa+b—@+f<a;x>+f<a+?—x)]

b

—/f(t)w(t)dt

a

<w—@(DT=”2:£@”)mm|RA%@y (2.12)

te(a,b]
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b
Proof. Using Identity (2.2) with f (¢) = ¢, and the fact that ftw t)dt = e fw t)dt, we get that

which implies that

/f’(t)Pw(x,t)dt:/Pw(:c,t) (f'(t) — Dy)dt,

and
b

/f (2, 1)t — /Pw(x,t)(f'(t)—pg)dt.

a

Using Lemma 2.1 and the triangle inequality we get

i [/bw(t)dt] {f(:c)+f(a+bx)+f<a;$>+f<a+22b_x)]
/bf t)dt

< / Pu(a.t) (£ () — Do)l dt,

and

[/bw(t)dt] [f(x)+f(a+b—x)+f<a—;x) +f<“+22b_x)]

a

=

b

—/f(t)w(t)dt

a

b
< / Py 1) (' (t) — Do) dt.
Note that

/\P (. )dt (f7 (1) — Dy)| dt

b

< swp (Pt [ 1570 - Dilds

t€la,b]

and

b b

/If’(t)fDlldt - /(f’(t)fDl)dt

a a
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Similarly,
b
[ 1Patat) (7 0) = D)l
’ b
< s |Pue ) / () = Dyl dt.
and
b b
[0 -Diae = [ w0
= Dy(b—a)—(F(b)— F(B)
_ (ba>[02f(bg_({(b>]
Therefore,
b
i[/w(t)dt] {f(x)+f(a+b—x)+f<a;x>+f<a+22b_x)]
b
- [rowoal<o-o (L9512 b)) s Pt
and

=

[/bw(t)dt] [f(x)+f(a+b—x)+f(a;x) +f<“+22b_x)]

b

—/f(t)w(t)dt

a

<=0 (D= LOZLDY sy 2o,

t€la,b]

2.2. The L? Case.

Theorem 2.6. Let f : [a,b] — R be an absolutely continuous mapping on (a,b) with f' € L?[a,b].

b b
Suppose that w is a weight function over [a,b] with [tw (t)dt = Y% [w (t)dt. Then for each x € [a, *E]

a a

[/bw(t)dt] {f(x)—kf(a—kb—x)—i—f(a;x) +f<“+22b_””)]

2
<Pzl \/ 7 (Z9 =) 0-a, (2.13)

we have

A~

b
—/f(t)w(t)dt

a
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Proof. Let

b
D=/f’(y)dy-
b

b
Using Identity (2.2) with f (t) = ¢, and the fact that [tw (t)dt = 2% [‘w (t) dt, we get that

b

/ Py (w,t)dt = 0,

a

which implies that
b b

/Pw(x,t)f’(t) dt = /Pw(x,t)dt (f'(t) - D)t

a a

Using Lemma 2.1, we have

Vw(t)dt] {f(z)+f(a+b—x)+f<a;x>+f<a+22bx)]

b

—/f(t)w(t)dt

a

NG

b
/(f "(t) — D) Py(x,t)dt

By Cauchy Schwartz inequality,

b

/(f’(t) — D) Py(z,t)dt

a

I IN
i ~—
=TT
s <
= =
P |
— 5
< e
< U
&
= ~
oI
|
)
=, \c:-
£ v
~ -
N u&
Nt
o
Q
=
~

Since f’ € L?[a,b],
b 2
[ o-prasisi- (L9=E2) 60,

Therefore,

[/bw(t)dt] {f(;v)—kf(a—kb—x)—i—f(a;x) +f<“+22b_””)]

2
< IPu(e )l \/|f'||§ (M) o-a.

e

b
—/f(t)w(t)dt

a
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Theorem 2.7. Let f : [a,b] — R be an absolutely continuous mapping on (a,b) with f” € Ls[a,b].

b b
Suppose that w is a weight function over [a,b] with [tw (t)dt = 25¢ [w (t)dt. Then for each x € [a, *E]

a

[/bw(t)dt] {f(x)+f(a+b—x)+f<a42-x>+f<a+22b—x>} —/bf(t)w(t)dt

a

we have

N

(b—a)

s

D:f’(a;b>.

b b
Using Identity (2.2) with f (t) = ¢, and the fact that [ tw (t)dt = 2% [‘w (t) dt, we get that

<

1"l (1w (5 ) - (2.14)

Proof. Let

which implies that

Using Lemma 2.1, we have

[/bw(t)dt] {f(z)+f(a+b—x)+f<a;x>+f<a+22bx)]

a

By Diaz -Metcalf inequality [16]

b 2
[uro-pra< Sy,
Therefore, '
% Uw(t)dt] {f(x)+f(a+bx)+f<“;$>+f<“+22bxﬂ /bf(t)w(t)dt

(b—a)

™

< LMo [P, )l -
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|
3. SOME APPLICATIONS
The following Lemma will be useful in calculations.
Lemma 3.1. Let —0o < a < b < oo and w be a weight function over [a,b]. If w is symmetric about QT'H’,
then
(1) t
Jw (u) du, t € [a, 4E]
Lo e
2w (u) du — tfw(u)du7 te (e,
a
u.T—I—b
J w(u)du, te (z, 4]
|Pu(z,t)| = y (3.1)
J w(u)du, te (L a+b— 2
a+b
2
a+b—t QTH?
W[ wwdu— [ w(u)du|, t€ (a+b—z,2F2L=2]
a a+b—t
b
a+2b—x
{w(u)du7 te ( +22 ’b]
(2)
b e o :
/|Pw(1:,t)|dt:2 / B () dt + 2 / U (t) dt + / 1@ (1) — W ()] dt
a a T %
and
b % aT-HJ 1 x
[1Pu@Pae=2 [ @@Pare [ waPdas; [oo-vePe
a a T HTE
where
a+b
2

t

@(t):/w(u)du and ¥ (t) = /w(u)du,te[a,b].

Remark 3.1. When w(t) =1 on [a,b], where —oco < a < b < oo, we get that

(1)

b
/|Pw(x,t)|dt:i(a+b—2x) (b—12),

a

forx € [a7 3‘IT+b} .

b
1 s 5/a+b > /3a+b 2
/|Pw(x,t)|dt—1(x—a) +4< ; —z) +< - —x) ,

forx e (3QT+b,b] .

(2)
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Now we give some applications on the results found. Recall that a tagged partition P of a finite interval
[a,b] is a finite sequence of numbers a = 29 < z1 < --- < z, = b, with corresponding values t; € [x;_1, z;],

fori=1,...,n.

Theorem 3.1. Let —o00 < a < b < oo and f : [a,b] — R be a differentiable function on (a,b), and
P:a=mx9g <z < - <mpy =b be a tagged partition with corresponding values t; € [x;_1, == 1+r‘] for
i=1,...,n. Suppose that w is a weight function over [a,b]. If f' € L'[a,b] and Dy < f'(t) < Da, for all

€ [a,b], where Dy, Do are constants, then we have the quadrature formula

b
[w®7@di= 0057 + R (1),
where

n— 1
i Tt
Aw (f,P) = Z4qu+1 ( z+1)+f($i+$i+1—ti+1)+f(zzﬂ)

it 2T —
w (a: + 2241 +1)> _ M;:*l (terl)N it

2
Tit1
Wit = / w(t)dt,0 <i<n-—1,
Tig1
M:lfprl (tiJr]) = / Pw(.%'7t)dt,0 <1<n-—1,
T4
NZt1 = M,Ogign—l,
N Tit1 — X

and the remainder satisfies the inequality

D D n—1
R (2 = PP S W iy ).
=0

Proof. For each 0 <i <n — 1, applying Theorem 2.2 on [z;_1, 2;] with = t;11, we get that

Ti+1
1 tiv1) + f(zi + 2401 — 8
w(t) f(t)dt — ijzﬂ f (i) + f (s z+21 i+1) L ME (f) NE
J n (ac +t1+1)+f<w)
Dy —D ,
< (2721)[/]/;;#1 (:Ci—&-l _ ifz’)-

Using the Triangle Inequality, we find that

n—1 Tit1

1 ftigr) + f (@i + @i — tipa
> [wwswd- g (*f( ) ) e ) N
(g (g

(D —D
(£ ” Bn) ZW%H (i1 — i)
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But

which implies that
b
/w@f®ﬁ:AMﬁm+RMﬁH

and

Do—D n—1 v
|Rw (f, P)| < (2721) Z Weit (@i — @) -

=0

]

Theorem 3.2. Let f : I C R — R be a differentiable mapping on I°, the interior of the interval I,

a,be ]l witha<b, and P:a =29 <z <--- <z, =b be a tagged partition with corresponding values

Ti—1+T;

ti € [xi1, ==5—], fori=1,...,n. Suppose that w is a weight function over [a,b]. If f' € L' [a,b] with

Dy < f'(t) < Ds for all t € [a,b], where D1, Dy are constants, then we have the quadrature formula

b
/w®f®ﬁ=AMﬁﬂ+RMﬂm,

where
w1 i+t
Ay (f,P) = ) ZWEH (f (tip1) + f(zi + @i —tig1) + f (sz)
i=0

T+ 2w501 — U -
+f ( ~2H +1)> _ DMIZ'+1 (tiJrl)»

Tit1
Wit = / w(t)dt,,0<i<n—1,
Zq
Ti41
M;ﬁl (ti+1) = / Pw($,t)dt, ,0 S ) S n — 1,
Dy +D
D = %

and the remainder satisfies the inequality

b
|Rw (f, P)| < L;Dl)/ww(x,t)\dt.

a
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Proof. For each 0 <i <n — 1, applying Theorem 2.4 on [z;_1,x;] with = t; 11, we get that

Tig1
1 figr) +f (@i + 201 — 1
w(t) f(t)dt — | JW ( 1) ( o fl) — DM (t4)
() o (g
Ti41
Dy — D
< (2271) / |Py(z,1)| dt.

Zq
Using the triangle inequality, we find that

ma‘+1

— tq' + €Ty + iz — ti
Z t) dt — ingﬂ a “t) A o jl) — DM (t4)
Pt J +f($+z+1)+f(1+11+1 1,+1)
(Dy — Dy) it
< 220N PG o)
1=0 =
But
n—1 Titl b
3 / w(t)f(t)dt:/w(t)f(t)dt
=0 T; a
and

Ti41

ni T b
> / |Pw(gc,t)|dt:/|Pw(:zc,t)\dt,
=0 J

which implies that
b
/w@fwﬁzAuﬂﬂ+Ruﬂm

and
b

R (7.P) < P22 [P

a

O

Before we introduce the next application, recall that if X is a random variable with values in a finite
interval [a,b], a < b, and f : [a,b] — [0, 1] is a probability density function, then the cumulative distribution

function with respect to f is denoted by F' and is defined as:

:/wf(t)dt for each = € [a, b] .

Kf@m:

we find that F'(b) = 1, and clearly F'(a) = 0. The expectation of X is defined as:

E(X)= /btdth

Since f satisfies the condition
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Using integration by parts, we get that

E(X) = bF(b)—aF(a)—/ F(t)dt

b— thdt.
| ro

Theorem 3.3. Let X be a random variable with values in a finite interval [a,b], a < b, and f : [a,b] — [0, 1]

be a probability density function. Let w be a differentiable weight function over [a,b] such that w (b) =1 and
b b
Jtw (t)dt = 252 [w(t)dt. Let F be the cumulative distribution function with respect to f . If f € L' [a,b]

and Dy < f(t) < Do, for allt € [a,b], where Dy, Dy are constants, then the inequality

1 Fx)+F(a+b—=x
: /w(t)dt (@) +F( %) ~(b- Eg)
f HF(557) + F (5=F)
. b
< 3 [/w(t) dt] (Ds—Dy) (b—a). (3.2)
holds for all x € [a, “‘{b] , where
b
o :b—/ w () F (t) dt
Proof. Define the function G over [a, b] as follows:
“d
G (2) :/ 4 wPydt,z € o).
dt
Note that
G(a)=0
and
d
b) = — (wF)dt
¢w = [ g
= w(b) F(b) —w(a)F(a)
= 1
Let
b
Eq = — (wF
. / o (wF) dr
Using integration by parts, we get that
b
Ec; = bw((b)F(b)—aw(a)F (a) —/ w(t) F(t)dt

Il
o

\

—
o

g
=
|
—
~
S~—
Q
\‘k‘%

which implies that
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Applying Theorem 2.1 on F', we get that

b
% /w(t)dt (F(w)+F(a+b—m)+F<a;x>+F<a+22b_x)>
b b
—/w(t)F(t)dt g% /w(t)dt (Dy — D1) (b—a),
which implies that
b
1 F(z)+ F(a+b—1)
- w(t) dt —(b—FE
O o) gy ) 5
b

< % /w(t)dt (Dy — D1) (b—a). (3.3)

a

REFERENCES

[1] M.W. Alomari, A companion of ostrowski’s inequality for mappings whose first derivatives are bounded and applications
numerical integration, Kragujevac J. Math. 36 (2012), 77-82.
[2] N.S. Barnett, S.S. Dragomir and I. Gomma, A companion for the Ostrowski and the generalized trapezoid inequalities, J.
Math. Comput. Model. 50 (2009), 179-187.
[3] S.S. Dragomir, Some companions of Ostrowski’s inequality for absolutely continuous functions and applications, Bull.
Korean Math. Soc. 40(2) (2005), 213-230.
[4] S.S. Dragomir and S. Wang, An inequality of Ostrowski-Griss type and its applications to the estimation of error bounds
for some special means and for some numerical quadrature rules, Comput. Math. Appl. 33(11) (1997), 15-20.
[5] Z. Liu, Some companions of an Ostrowski type inequality and applications, J. Inequal. Pure Appl. Math. 10(2) (2009),
10-12.
[6] D.S. Mitrinvi¢, J.E. Pecari¢ and A.M. Fink, Classical and New Inequalities in Analysis, Kluwer Academic Publishers,
Dordrecht, (1993).
[7] D.S. Mitrinovié, J.E. Pecari¢ and A.M. Fink, Inequalities involving functions and their integrals and derivatives, Mathe-
matics and its Applications. (East European Series), Kluwer Acadamic Publications Dordrecht, Vol. 53., (1991).
[8] A. Ostrowski, Uber die Absolutabweichung einer differentienbaren Funktionen von ihren Integralimittelwert, Comment.
Math. Hel. 10 (1938), 226-227.
9] A. Qayyum and S. Hussain, A new generalized Ostrowski Griiss type inequality and applications, Appl. Math. Lett. 25
(2012), 1875-1880.
[10] A. Qayyum, M. Shoaib, A.E. Matouk and M.A. Latif, On New Generalized Ostrowski Type Integral inequalities, Abstr.
Appl. Anal. 2014 (2014), Art. ID 275806.
[11] A. Qayyum, M. Shoaib and M. A. Latif, A generalized inequality of ostrowski type for twice differentiable bounded mappings
and applications, Appl. Math. Sci. 8(38) (2014), 1889-1901.
[12] A. Qayyum, L. Faye, M. Shoaib and M.A. Latif, A Generalization of Ostrowski type inequality for mappings whose second

derivatives belong to Li(a,b) and applications, Int. J. Pure Appl. Math. 98(2) (2015), 169-180.



Int. J. Anal. Appl. 17 (3) (2019) 439

[13] A. Qayyum, M. Shoaib and I. Faye, Some New Generalized Results on Ostrowski Type Integral Inequalities With Applica-
tion, J. Comput. Anal. Appl. 19(4) (2015), 693-712.

[14] A. Qayyum, M. Shoaib and I. Faye, On New Weighted Ostrowski Type inequalities Involving Integral Means over End
Intervals and Application, Turk. J. Anal. Number Theory, 3(2) (2015), 61-67.

[15] A. Qayyum, M. Shoaib and I. Faye, A Companion of Ostrowski Type Integral Inequality Using a 5-Step Kernel with Some
Applications, Filomat, 30(13) (2016), 3601-3614.

[16] N. UJevié, New bounds for the first inequality of Ostrowski-Griss type and applications, Comput. Math. Appl. 46 (2003),
421-427.



	1. Introduction
	2.  Main Results
	2.1. The L1 Case.
	2.2. The L2 Case.

	3. Some Applications
	References

