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Abstract. We present a class of univalent functions Tm(κ, α) formulated by a new differential-difference

operator in the open unit disk. The operator is a generalization of the well known Salagean’s differential

operator. Based on this operator, we define a generalized class of bounded turning functions. Inequalities,

extreme points of Tm(κ, α), some convolution properties of functions fitting to Tm(κ, α), and other properties

are discussed.

1. Introduction

Let Λ be the class of analytic function formulated by

f(z) = z +

∞∑
n=2

anz
n, z ∈ U = {z : |z| < 1}.
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We symbolize by T (α) the subclass of Λ for which <{f ′(z)} > α in U. For a function f ∈ Λ, we present the

following difference operator

D0
κf(z) = f(z)

D1
κf(z) = zf ′(z) +

κ

2
(f(z)− f(−z)− 2z) , κ ∈ R

...

Dm
κ f(z) = Dκ(Dm−1

κ f(z))

= z +

∞∑
n=2

[n+
κ

2
(1 + (−1)n+1)]m anz

n.

(1.1)

It is clear that when κ = 0, we have the Salagean’s differential operator [1]. We call Dm
κ the Salagean-

difference operator. Moreover, Dm
κ is a modified Dunkl operator of complex variables [2] and for recent

work [3]. Dunkl operator describes a major generalization of partial derivatives and realizes the commutative

law in Rn. In geometry, it attains the reflexive relation, which is plotting the space into itself as a set of

fixed points.

Example 1. (see Figs 1 and 2)

• Let f(z) = z/(1− z) then

D1
1f(z) = z + 2z2 + 4z3 + 4z4 + 6z5 + 6z6 + ...

• Let f(z) = z/(1− z)2 then

D1
1f(z) = z + 4z2 + 12z3 + 16z4 + 30z5 + 36z6 + ...

We proceed to define a generalized class of bounded turning utilizing the the Salagean-difference operator.

Let Tm(κ, α) denote the class of functions f ∈ Λ which achieve the condition

<{(Dm
κ f(z))′} > α, 0 ≤ α ≤ 1, z ∈ U, m = 0, 1, 2, ... .

Clearly, T0(κ, α) = T (α) (the bounded turning class of order α). The Hadamard product or convolution of

two power series is denoted by (∗) achieving

f(z) ∗ h(z) =
(
z +

∞∑
n=2

anz
n
)
∗
(
z +

∞∑
n=2

ηnz
n
)

= z +

∞∑
n=2

anηnz
n.

(1.2)

The aim of this effort is to present several important properties of the class Tm(κ, α). For this purpose,

we need the following auxiliary preliminaries.
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Figure 1. D1
1(z/(1− z))

Figure 2. D1
1(z/(1− z)2)

Lemma 1. Let {an}∞n=0 be a convex null sequence (a0 − a1 ≥ a1 − a2, ... ≥ 0). Then the function ρ(z) =

a0/2 +
∑∞
n=1 an z

n, is analytic and <ρ(z) > 0 in U .

Lemma 2. If ρ(z) is analytic in U , ρ(0) = 1 and <ρ(z) > 1/2, z ∈ U, then for any function % analytic in

U , the function ρ ∗ % assigns its credits in the convex hull of %(U).
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Lemma 3. [4] For all z ∈ U the sum

<
(∑
n=2

zn−1

n+ 1

)
> −1

3
.

There are different techniques of studying the class of bounded turning functions, such as using partial

sums or applying Jack Lemma [5]- [7].

2. Results

In this section, we illustrate our results.

Theorem 4. Tm+1(κ, α) ⊂ Tm(κ, α).

Proof. Let f ∈ Tm+1(κ, α), then we have

<{1 +

∞∑
n=2

n[n+
κ

2
(1 + (−1)n+1)]m+1 anz

n−1} > α.

Dividing the last inequality by 1− α and adding +1 we obtain the inequality

<{1 +
1

2(1− α)

∞∑
n=2

n[n+
κ

2
(1 + (−1)n+1)]m+1 anz

n−1} > 1

2
.

By employing the definition of the convolution, we have the construction

(Dm
κ f(z))′ = 1 +

∞∑
n=2

n[n+
κ

2
(1 + (−1)n+1)]m anz

n−1

=
(

1 +
1

2(1− α)

∞∑
n=2

n[n+
κ

2
(1 + (−1)n+1)]m+1 anz

n−1
)

∗
(

1 + 2(1− α)

∞∑
n=2

zn−1

n+
κ

2
(1 + (−1)n+1)

)
.

In view of Lemma 1, with a0 = 1 and an = 1/(n+
κ

2
(1 + (−1)n+1), n = 1, 2, ..., we have

<
(

1 + 2(1− α)

∞∑
n=2

zn−1

n+
κ

2
(1 + (−1)n+1)

)
> α.

In virtue of Lemma 2, we arrive at the required result. �

Theorem 5. Tm+1(κ, α) ⊂ Tm(κ, β), β ≤ α, 0 ≤ κ ≤ 1/2.

Proof. Let f ∈ Tm+1(κ, α) then we have

<{1 +

∞∑
n=2

n[n+
κ

2
(1 + (−1)n+1)]m+1 anz

n−1} > α.
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Also, we have the convolution

(Dm
κ f(z))′ = 1 +

∞∑
n=2

n[n+
κ

2
(1 + (−1)n+1)]m anz

n−1

=
(

1 +

∞∑
n=2

n[n+
κ

2
(1 + (−1)n+1)]m+1 anz

n−1
)

∗
(

1 +

∞∑
n=2

zn−1

n+
κ

2
(1 + (−1)n+1)

)
.

It is clear that

n+
κ

2
(1 + (−1)n+1) ≤ n+ 2κ ≤ n+ 1, 0 ≤ κ ≤ 1/2.

By applying Lemma 3 on the second term of the above convolution, we obtain

<
(

1 +

∞∑
n=2

zn−1

n+
κ

2
(1 + (−1)n+1)

)
> 2/3.

Thus, we attain that

<(Dm
κ f(z))′ >

2

3
α.

By considering

β :=
2

3
α ≤ α, α ∈ [0, 1],

we attain the requested result. �

Theorem 6. Let f ∈ Tm(κ, α) and h ∈ C, the set of convex univalent functions (C ⊂ Λ ). Then f ∗ h ∈

Tm(κ, α).

Proof. By the Marx-Strohhacker theorem [8], if h is convex univalent in U , then

<{h(z)

z
} > 1/2.

Utilizing convolution properties, we obtain

<(Dm
κ (f ∗ h)(z))′ = <

(h(z)

z
∗Dm

κ f(z)′
)
.

But <(Dm
κ f(z)′) > α; thus, in view of Lemma 2, we have the desire conclusion. �

Theorem 7. Let f, h ∈ Tm(κ, α). Then f ∗ h ∈ Tm(κ, β), where

β :=
κ(2α+ 1) + 4α− 1

2(κ+ 1)
, 0 ≤ κ ≤ 1.
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Proof. Define a function h ∈ Λ as follows:

h(z) = z +

∞∑
n=2

ϑnz
n, z ∈ U.

Since h ∈ Tm(κ, α) then

<{1 +

∞∑
n=2

n[n+
κ

2
(1 + (−1)n+1)]m ϑnz

n−1} > α.

Let ϕ0 = 1, and in general, we have

ϕn =
κ+ 1

[(n+ 1)(n+
κ

2
(1 + (−1)n+2) + 1)]m

, n ≥ 1, 0 ≤ κ ≤ 1, m = 1, 2, ....

Obviously, the sequence {ϕn}∞n=0 is a convex null sequence. Therefore, by Lemma 1, we conclude that

<{1 +

∞∑
n=2

κ+ 1

[(n+ 1)(n+
κ

2
(1 + (−1)n+2) + 1)]m

zn−1} > 1

2
.

Now the convolution

(
1 +

∞∑
n=2

n[n+
κ

2
(1 + (−1)n+1)]m ϑnz

n−1
)
∗
(

1 +

∞∑
n=2

κ+ 1

[(n)(n+
κ

2
(1 + (−1)n+1))]m

zn−1
)

= 1 +

∞∑
n=2

(κ+ 1)ϑnz
n−1

satisfies the real

<{1 +

∞∑
n=2

(κ+ 1)ϑnz
n−1zn−1} > α.

In other words, we have

<{h(z)

z
} = <{1 +

∞∑
n=2

ϑnz
n−1} > κ+ α

α+ 1
.

Thus,

<{h(z)

z
} = <{1 +

∞∑
n=2

ϑnz
n−1 − 2α+ κ− 1

2(κ+ 1)
} > 1

2
.

But f, h ∈ Tm(κ, α), this implies that

<{
(h(z)

z
− 2α+ κ− 1

2(κ+ 1)

)
∗Dm

κ (f)(z))′} > α.

Consequently, we conclude that
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<{
(h(z)

z

)
∗Dm

κ (f)(z))′} > κ(2α+ 1) + 4α− 1

2(κ+ 1)
:= β.

Thus, by Lemma 2 and the fact

<(Dm
κ (f ∗ h)(z))′ = <

(h(z)

z
∗Dm

κ f(z)′
)
,

we realize the requested result. �

Note that some applications of the Dunkl operator in a complex domain can be found in [9].
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