International Journal of Analysis and Applications

Volume 17, Number 5 (2019), 734-751 IJAA

URL: https://doi.org/10.28924/2291-8639 INTERNATIONAL JOURNAL

DOI: 10.28924/2291-8639-17-2019-734

OF ANALYSIS AND APPLICATIONS

FIXED POINT THEOREMS FOR GENERALIZED F-CONTRACTIONS AND
GENERALIZED F-SUZUKI-CONTRACTIONS IN COMPLETE DISLOCATED
S,-METRIC SPACES

HAMID MEHRAVARAN, MAHNAZ KHANEHGIR* AND REZA ALLAHYARI
Department of Mathematics, Mashhad Branch, Islamic Azad University, Mashhad, Iran

*Corresponding author: khanehgir@mshdiau.ac.ir

ABSTRACT. In this paper, first we describe the notion of dislocated Sp-metric space and then we introduce
the new notions of generalized F'-contraction and generalized F-Suzuki-contraction in the setup of dislocated
Sp-metric spaces. We establish some fixed point theorems involving these contractions in complete dislocated

Sp-metric spaces. We also furnish some examples to verify the effectiveness and applicability of our results.

1. INTRODUCTION AND PRELIMINARIES

Bakhtin [1] and Czerwik [2] introduced b-metric spaces and proved the contraction principle in this frame-
work. In recent times, many authors obtained fixed point results for single-valued or set-valued functions,
in the setting of b-metric spaces.

In 2012, Sedghi et al. [11] introduced the concept of S-metric space by modifying D-metric and G-metric
spaces and proved some fixed point theorems for a self-mapping on a complete S-metric space. After that
Ozgﬁr and Ta$ studied some generalizations of the Banach contraction principle on S-metric spaces in [8].
They also obtained some fixed point theorems for the Rhoades’ contractive condition on S-metric spaces [7].
Sedghi et al. [10] introduced the concept of S,-metric space as a generalization of S-metric space and proved

some coupled common fixed point theorems in Sp-metric space. Kishore et al. [4] proved some fixed point

Received 2019-03-11; accepted 2019-07-24; published 2019-09-02.

2010 Mathematics Subject Classification. 47TH09, 47TH10.
Key words and phrases. Dislocated metric space; Fixed point; Generalized F-contraction; Generalized F-Suzuki-contraction;

Sp-Metric space.
(©2019 Authors retain the copyrights

of their papers, and all open access articles are distributed under the terms of the Creative Commons Attribution License.

734


https://doi.org/10.28924/2291-8639
https://doi.org/10.28924/2291-8639-17-2019-734

Int. J. Anal. Appl. 17 (5) (2019) 735

theorems for generalized contractive conditions in partially ordered complete Sp-metric spaces and gave some
applications to integral equations and homotopy theory.

On the other hand, Wardowski [12] introduced a new contraction, the so-called F-contraction, and ob-
tained a fixed point result as a generalization of the Banach contraction principle. Thereafter, Dung and
Hang [3] studied the notion of a generalized F-contraction and established certain fixed point theorems for
such mappings. Recently, Piri and Kumam [6] extended the fixed point results of [12] by introducing a
generalized F-Suzuki-contraction in b-metric spaces.

Motivated by the aforementioned works, in this paper, we first introduce the notion of dislocated Sp- metric
space and then we describe some fixed point results of [3], [6] by introducing generalized F-contractions and
generalized F-Suzuki-contractions in dislocated Sp-metric spaces. We begin with some basic well-known
definitions and results which will be used further on.

Throughout this paper R, R}, N denote the set of all real numbers, the set of all nonnegative real numbers

and the set of all positive integers, respectively.

Definition 1.1. [11] Let X be a nonempty set. An S-metric on X is a function S : X® — R, that satisfies

the following conditions:

(S1) 0 < S(z,y,2) for each x,y,z € X withx #y# 2z #x,
(52) S(x,y,2) =0 if and only if x =y = z,
(S3) S(x,y,2) < S(z,x,a)+ S(y,y,a) + S(z,z,a) for each x,y,z,a € X.

Then the pair (X, S) is called an S-metric space.

Definition 1.2. [10] Let X be a nonempty set and b > 1 be a given real number. Suppose that a mapping
Sy X3 — R, satisfies:

(Spl) 0 < Sp(z,y,2) for all x,y,z € X withx #y # z # x,

(Sp2) Sp(x,y,2) =0 if and only if x =y = z,

(Sp3) Sp(,y,2) < b(Sp(z,z,a) + Sp(y,y,a) + Sp(z, z,a)) for all z,y,2,a € X.

Then Sy, is called an Sy-metric on X and the pair (X, Sy) is called an Sy-metric space.

Definition 1.3. [10] If (X, Sy) is an Sy-metric space, a sequence {x,} in X is said to be:
(1) Cauchy sequence if, for each & > 0, there exists ng € N such that Sp(Zpn,Tpn,Tm)
< ¢ for all m,n > ngy.
(2) convergent to a point x € X if, for each ¢ > 0, there exists a positive integer ng such that

Sp(Tn, Tn,x) < & or Sp(z,x,x,) < € for all n > ng, and we denote by lim z, = x.
n—oo

Definition 1.4. [10] An Sy-metric space (X, Sp) is called complete if every Cauchy sequence is convergent

m X.
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Example 1.1. [9] Let X = R. Define S, : X® — Ry by Sp(z,y,2) = |z — 2| + |y — 2| for all x,y,z € X.

Then (X, Sp) is a complete Sy-metric space with b = 2.
Definition 1.5. Let (X, S,) be an Sy-metric space. Then Sy is called symmetric if

Sb(l',x,y) :Sb(yvyax) (11)

forallz,y € X.

It is easy to see that the symmetry condition (1.1) is automatically satisfied by an S-metric [11].
We conclude this section recalling the following fixed point theorems of Dung and Hang [3] and Piri and

Kumam [6]. For this, we need some preliminaries.

Definition 1.6. [12] Let F be the family of all functions F : (0,4+00) — R such that:

(F1) F is strictly increasing, that is for all a, 8 € (0,+00) such that a < 8, F(«a) < F(B),
(F2) for each sequence {a,} of positive numbers, hr—? a, =0 if and only if EIE F(a,) = —o0,
n—-+0oo n o0

(F3) there ezists k € (0,1) such that lim o*F(a) = 0.
a—0t

In 2014, Piri and Kumam [5] described a large class of functions by replacing the condition (F'3) in the

above definition with the following one:
(F3') F is continuous on (0, +00).

They denote by § the family of all functions F' : (0,+00) — R which satisfy conditions (F1), (F2), and
(F3).

Example 1.2. (see [5], [13]) The following functions F' : (0,4+00) — R are the elements of §.

(1) Pla) = 2,
(2) Fla) =% +a,
(3) Fla) = =,
(4) Fla) =Ina,

(5) Fla)=lna+ «

Definition 1.7. [3] Let (X,d) be a metric space. A mapping T : X — X is said to be a generalized
F-contraction on (X,d) if there exist F € F and T > 0 such that, for all z,y € X,

d(Tz,Ty) > 0= 7+ F(d(Tz,Ty)) < F(N(z,y)),

i which

d(z, Ty) +d(y, Tz) d(T%x,z)+ d(T?x, Ty)

N(z,y) = max {d(z.y).d(z.Tx), d(y, Ty), . : .

L d(T%2, Tx), d(T?z,y), d(T?2, Ty) }.
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Theorem 1.1. [3] Let (X,d) be a complete metric space and let T : X — X be a generalized F'-contraction
mapping. If T or F' is continuous, then T has a unique fized point x* € X and for every x € X the sequence

{T"x} converges to x*.

We use F¢ to denote the set of all functions F' : (0,+00) — R which satisfy conditions (F1) and (F3')
and ¥ to denote the set of all functions ¢ : Ry — Ry such that ¢ is continuous and ¢ (t) = 0 if and only if
t =0 (see [6]).

Definition 1.8. [6]/ Let (X,d) be a b-metric space. A self-mapping T : X — X is said to be a generalized
F-Suzuki-contraction if there exists F' € g such that, for all z,y € X with x # y,
1

in which ¢ € ¥ and

d(Tx,y) +d(x,Ty) d(T?z,x) +d(T%z, Ty)

Mr(z,y) = max {d(z,y), (T2 ) . :
s 2s

d(T?2, Ty) + d(T%w, Tx), d(T%2, Ty) + d(T, ), d(T,y) + d(y, Ty) }.

Theorem 1.2. [6] Let (X,d) be a complete b-metric space and T : X — X be a generalized F-Suzuki-
contraction. Then T has a unique fized point ©* € X and for every x € X the sequence {T™x} converges to

*

xT.

2. Main results

In this section, we first introduce the concept of dislocated Sy-metric space and then we demonstrate some
fixed point results for generalized F-contractions and generalized F-Suzuki-contractions in such spaces. Our
results are remarkable for two reasons: first dislocated Sp- metric is more general, second the contractivity

condition involves auxiliary functions form a wider class.

Definition 2.1. Let X be a nonempty set and b > 1 be a given real number. A mapping Sy : X3 — R, is a
dislocated Sy-metric if, for all z,y, z,a € X, the following conditions are satisfied:

(dSpl) Sp(z,y,2) =0 implies x =y = z,

(dSp2) Sp(z,y,2) < b(Sp(z, 2, a) + Sy(y,y,a) + Sy(z,2,a)).

A dislocated Sp-metric space is a pair (X, Sp) such that X is a nonempty set and Sy is a dislocated Sy-metric
on X. In the case that b =1, Sy is denoted by S and it is called dislocated S-metric, and the pair (X,S) is

called dislocated S-metric space.

Definition 2.2. Let (X, S}) be a dislocated Sy-metric space, {x,} be any sequence in X and x € X. Then:

(1) The sequence {x,} is said to be a Cauchy sequence in (X, Sy) if, for each € > 0, there exists ng € N

such that Sy(xp, Tn, Tm) < € for each m,n > ng.
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(ii) The sequence {x,} is said to be convergent to x if, for each € > 0, there exists a positive integer ng
such that Sy(x,x,z,) < € for all n > ng and we denote it by lim z,, = x.
n—oo

(#i1) (X, Sp) is said to be complete if every Cauchy sequence is convergent.
The following example shows that a dislocated Sp-metric need not be a dislocated S-metric.

Example 2.1. Let X = R, then the mapping Sy : X> — R, defined by
Sp(z,y,2) = x +y+ 4z is a complete dislocated Sy-metric on X with b = 2. However, it is not a dislocated

S-metric space. Indeed, we have
4= 5,(0,0,1) £ 25,(0,0,0) + Sp(1,1,0) = 2.

Definition 2.3. Suppose that (X, Sy) is a dislocated Sy-metric space. A mapping T : X — X is said to be
a generalized F-contraction on (X, Sy) if there exist F € § and T > 0 such that for all z,y € X,

Sy(Tz, Tz, Ty) > 0= 1+ F(b2Sy(Tz, Tz, Ty)) < F(N(z,y)), (2.1)
where

Sp(y,y,Tx) Sp(x,z,Ty) Sb(y,y7T21)}
1008 109 10b4 '

N("E, y) = max {Sb(‘r7 z, y)) Sb(T:E’ T:E’ Ty):

Our first main result is the following.

Theorem 2.1. Let (X,Sy) be a complete dislocated Sy-metric space and T : X — X be a generalized
F-contraction mapping satisfying the following condition:

Se(y,y,Ty) | Sp(Tx,Tx,Ty) Sp(z,z,Ty) Sply,y,T?x
maX{

)
, < Sy(Tz, Tz, T
567 1067 T 100 oot = S(TwTe,Ty)

forall x,y € X.

Then T has a unique fized point v € X.

Proof. Let xy be an arbitrary point in X and let {z,} be the Picard sequence of T based on z, that
is, p41 = T, for n = 0,1,2,.... If there exists ng € N such that Sy(zpny, Tng, Tng,,) = 0, then z,,
is a fixed point of T" and the existence part of the proof is finished. On the contrary case, assume that

Sp(Zns Tn, Tny1) > 0 for all n € NU{0}. Applying the contractivity condition (2.1), we get
F(02Sy(Ton—1,Ton—1,T2n)) < F(N(zn-1,2n)) — 7. (2:2)
Using the definition of N(z,y) and the property (dS2), we obtain that
max {Sp(Tn—1,Tn—1,2Zn), Sp(Tn, Tn, Tnt1)} < N(@n—1,zn) (2.3)

Sp(Tn, Tn, TTn—1
= max () @n-1,8n-1, 20, (o, an, Ta), 2L,
Sb(rnfl,mnflﬁrxn) Sb(xnywnyT@n)}

1069 ’ 1064

3Sb(xn7 T, l’n_i,-l)
1067

IN

max{Sy(Tn—1,Tn—1,Tn), Sp(Tn, Tn, TTn), ,

Sp(n—1,%n-1,TTn) Sb(l'n733n7T$n)}
1069 ’ 10b4

= max{Sy(Tn-1,Tn—1,%n), Sp(Tn, Tn, Tnt1) }-



Int. J. Anal. Appl. 17 (5) (2019) 739

Then N(zn—1,%n) = max {Sy(Tn-1,Tn-1,%n), Sp(Tn, Tn,Tnt1)} and so (2.2), becomes
F(b2Sy(Ttn—1,T%n-1,Tn)) < F(max {Sy(Tn—1,Tn-1,%n), Sp(Tn, Tn, Tni1)}) — 7.
If we assume that
max {Sb(azn,l,xn,l,xn), Sp(Txp—1,TTn_1, T{En)} =Sp(Txp—1,Txn—1,TTn)
for some n, then we have

F02Sy(Ton—1,Ten—1,Tan)) < F(Sy(Txn-1,TTn-1,Tzn)) —7T

< F(Sb(Txn_l,Tmn_l,TIn)).

Using condition (F'1) we conclude that Sy (2, Tn, Tnt1) < Sp(Tn, Tn, Tna1), which is a contradiction. There-

fore, for each n € N we have
max{Sb(xnflyxnflyxn)ysb(wn,mnvwnjtl)} = Sb(fvnflyxnflyxn)-

Applying again (2.2) and condition (F'1), we deduce that

Sb(xna T, xn—&-l) < Sb(xn—lv Tn—1, xn)

for each n. Thus {Sb (Tn, Tn, .Tn+1)} is a nonnegative decreasing sequence of real numbers. Then there exists

A > 0 such that

lim Sy(x,,Tn,T = inf Sy(xy,, Tn, T = A.
nosbeo b( nyLn,y n+1) neN b( nyny n+1)

We claim that A = 0. To support the claim, let it be untrue and A > 0. Then, for any £ > 0, it is possible

to find a positive integer m so that
So(Trmy Ty TTm) < A+ €.
So, from (F'1), we get
F(Sp(2m, @m, Txm)) < F(A+e¢). (2.4)

It follows from (2.1) that

T+ F(0*Sy (T, Txm, T?20)) < F(N(zpm, Tzm)). (2.5)
By a similar argument as (2.3), it yields that
N(2m, Tom) = max {Sy(Tm, Tm, TTm), Sp(Tm, TTm, T>Tm) }.
Hence (2.5), becomes
F(02Sy(T2m, Tom, T?zm)) < F(max {Sp(¥m, Tm, TTm), Sp(Txm, Tem, T?zm)}) — 7. (26)

Now if, max{Sy(@m,Tm,TTm),Sp(TTm,TTm,T?zm)} = Sp(Txm,Txm,T?zm) for some m, then (2.6) gives us a

contradiction. Thus, we infer that

max {Sb(a:m, Tm, TTm), Sp(TTm, Txm,TQJ:m)} = Sp(Tm, Tm, TTm),
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and therefore, we have
F(bQSb(T:cm,Txm,Tme)) < F(Sb(xm,mm,Txm)) — T
It implies that
F(bQSb(Tgxm,Tzzm,T‘D’xm)) < F(Sb(Tmm,Txm,Tme)) -7
< F(szb(Txm,Txm,Tme)) -7
< F(S’b(xm,xm,Txm)) — 27

Continuing the above process and taking (2.4) into account, we deduce that

FO2Se(T™2m, T"%m, T" M om)) < F(So(T" 'am, T om, T em)) — T

< F(b2Sb(T"_1xm,T”_1mm,T"zm)) -7
< F(Sb(Tn_Qmma Tn_szan_lxm)) —27
< F(Sb($m7xm7Txm)) - nT

< F(A+¢)—nr,
and by passing to the limit as n — +o00 we obtain

im F(b?Sy(T" @, T"xp T 2y,)) = —o0.

n—-+oo

This fact together with the condition (F'2) implies that

lim  Sy(T" @, T" @, T" 2,,) = 0.
n—-+oo

Thus Sp(T" @y, T" T, T t,,) < A for n sufficiently large, which is a contradiction with the definition of
A. Then,
lim Sy(zn, zn, Tnt1) = 0. (2.7)

n—-+4oo

Next, we intend to show that the sequence {z,} is a Cauchy sequence in X. Arguing by contradiction, we

assume that there exist € > 0, and subsequences {2(,,)} and {z)} of {2} with n < ¢(n) < p(n) such that

Sb(q(n)s Tq(n) Tp(n)) 2 € (2.8)

for each n € N. Further, corresponding to g(n), we can choose p(n) in such a way that it is the smallest
integer with ¢(n) < p(n) satisfying the above inequality, then

Sb(.’L‘q(n), Zq(n)s l‘p(n),l) <€ (2.9)

for all n € N.
In the light of (2.8) and the condition (2.1), we conclude that

F(b?Sp(Tg(n)— 1, TTg(n)— 15 TTp(n)—1)) < F(N(@g(n)—1, Tp(n)—1)) — T (2.10)
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By our hypothesis and in view of (dS,2), we get
max { Sy (Z4(n)—1> Tq(n)— 15 Tp(n)—1)> Sb (TZg(n) 1, TTg(n)—1, TTp(ny—1) }
< N(xq(n)flvxp(n)fl)

= mnax {Sb(xq(n)flv Lg(n)—1s xp(n)fl)v Sb(qu(n)flvqu(n)flv Txp(n)fl)v

Sb(xp(n)flv Tp(n)—1> Tzq(n)fl) Sb(xq(n)flv Lg(n)—1s TxP(n)fl)

1068 10b9
Sp(Zp(n)—11Tp(n)—1, TTq(n)) )
1064
< max {S(Tq(n)—1, Tg(n) 1 Tp(n)— 1) S (TZg(n) ~ 1, TTq(n) -1, TTp(n) 1)
Sb(xp(n)flva(n)flvTxp(n)fl) + Sb(Tzq(n)flvqu(n)flvap(n)fl)
567 1067 ’
Sb(xq(n)—la Lg(n)—1s TxP(n)—l) Sb(xp(n)—lixp(n)—lszq(n)) }
1069 ’ 1064
< max{Sb(zq(n)—l’mq(n)—l»zp(n)—l)vSb(Tzq(n)—lyqu(n)—lvTmp(n)—l)}‘

It enforces that

N(mq(n)—lzxp(n)—l) = max {Sb(mq(n)—lv Lg(n)—1s Ip(n)—l): Sb(T‘rq(n)—lv qu(n)—lysz(n)—l)}‘

Suppose that the maximum on the right-hand side is equal to Sy(T2q(m)—1,TTgn)—1,TTpm)—1) for some n,

then from relation (2.10) together with the condition (F'1) we get
So(TZq(n)—1: TZg(m)— 1 TTp(m)—1) < So(T2g(m)— 1 TTq(m) 15 TTp(n) 1)
which is a contradiction. Thus, we find that
max {%(n)—lvmq(n)—h%(m—l)’ Sb(Zq(n)s Tq(n)> xp<n>)} = Sp(Zq(n)—15Tq(n)~1> Tp(n)—1)
for all n. Accordingly, (2.10) becomes
F(bSp(Tg(n) -1, TTg(n)— 15 TTp(n)—1)) < F(Sp(ZTg(n)—1Tq(n)—1>Tp(n)—1)) — T (2.11)
and so using (F'1) we get

Sb (I‘Z(”)’ IQ(”)’ xp(’ﬂ)) < Sb(‘xq(n)flvmq(n)flamp(n)—l) (212)

Regarding to (2.8), (2.12) and employing (dSy2) we observe that

™
IA

Sb(Zg(n)s Tq(n)s Tp(n))

< Sb(xq(n)flvwq(n)717xp(n)71)

<2655 (%g(n) -1, Tq(n)—15 Tq(n)) + B (Tp(n)—15 Tp(n) —1> Tq(n))

<268y (Tg(n)—15 Tq(n)—1> Ta(n)) F 26256 (Tp(n) — 15 Tp(n)—15 Tp(n)—1)
+b28y (@q(n)> Ta(n) Tp(n)—1)

< 265y(Tg(n)—15 Tg(n)—15 Ta(n)) + 6> Sp(Tp(n) 1, Tp(n)—1, Tp(n))

+02 85 (Zq(n) Tq(n) Tp(n)—1)-

Combining this result with (2.7) and (2.9) we get

¢ < limsup Sb(xq(n)7 Tg(n)s -rp(n)) < limsup Sb(xq(n)fh Tg(n)—1s 'Z‘p(n)fl) < be. (213)
n—-+oo

n—-+oo
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In view of (2.13) and (2.11) and applying the conditions (F'1) and (F'3’), we have

F(b25) S F(b2 1imsup Sb(rq((n>,xq(n>,1‘p(n>))
n—-+oo

< F(limsup Sb(xq(n)—lvwq(n)—lvxp(n)—l)) -7

n——+oo

IN

F(b%e) — .

It is a contradiction with 7 > 0, and therefore it follows that {z,} is a Cauchy sequence in X. By
completeness of (X, S), {x,} converges to some point v € X. Then, for each € > 0, there exists N; € N
such that

Sp(v,v,x,) <€, (2.14)

for all n > N;. We are going to show that v is a fixed point of 7. For this aim, we consider two following

cases:

Case 1. If Sp(Tv, Tv, Tx,) = 0 for some n > Ny, then from (dS,2) we find that
Sp(Tv, Tv,v) < 2bSp(Tv, Tv, Txy) + bSp(v,v, Txy) < be.
Case 2. If Sp(Tv, Tv, Txy,) > 0 for all n > Ny, then using (2.1), we get
F(*S,(Tv,Tv, Txzy,)) < F(N(v,2,)) — 7. (2.15)

From our assumptions, and using (dS;2), it follows that

max { Sy (v, v, zn), Sp(Tv, Tv, Txn)}

< N(v,zn)
Sb(xn:xan'U) Sb(U,U,T:Cn) Sb(xn,x,,“TZU)
= S b b ’S T 7T 7T b b b
max {Sy(0, v, 2n), S (Tv, Tv, Tn) 1058 1069 1064 }
S T Sp(Tv, Tv, T
S max{Sb(’l},v,l‘n)7Sb(TU,TU7T$n)7 b(xn75a;:7 $n) b( ’Uiobq’}; xn)?

Sb(vv’umin) Sb(znyxanQU)}
1069 ’ 1064

= max {Sb(v, v, Tn), Sp(Tv, Tv, Ta:n)}

It enforces that N(v,zn) = max {Sy(v,v,2n), Sp(Tv, Tv,Tzs)}. Now, if we assume that the maximum on the
right-hand side of this equality is equal to Sy(Tw,Tv,Tx,), then by replacing it in (2.15), we obtain
Sp(Tv, Tv, Txy) < Sp(Tv, Tv, Tx,) which is a contradiction. Consequently, for each n € N we have

max{Sb(U,v,wn), Sb(T’U7T’UaT$n)} = Sb(’U,’U,(En).
Hence, (2.15) turns into

F(bQSb(Tv,TU,Txn)) < F(Sb(v,v,zn)) -7

< F(Sb(v,v,zn)).
Employing the condition (F'1), we get

Sp(Tv, Tv, Txn) < Sp(v,v,Tn). (2.16)



Int. J. Anal. Appl. 17 (5) (2019) 743

From (dSp2), (2.16) and (2.14), we deduce that
Sp(Tv, Tv,v) < 208y, (Tv, Tv, Tz N, ) + bSy(v,v, TN, ) < 3be.

From the arbitrariness of ¢ in each case, it follows that S,(Tv,Tv,v) = 0 which implies that Tv = v. Hence,
v is a fixed point of T.

Finally, we show that T has at most one fixed point. Indeed, if v;,v, € X are two fixed points of T, such
that v; # vg, then we obtain

F(62Sy(Tvr, Tv1, Tvz)) < F(N(v1,v2)) — T, (2.17)

From our hypothesis and by using (dSy2), it follows that

Sp(vi,v1,v2) < N(vi,v2)

(v2,v2,Tv2) = Sp(Twi,Tvi, Tva2)

S,
max{Sb(vl,vl,vg),Sb(Tvl,Tvl,Tvg), b =7 1007

IA

)

Sp(v1,v1,Tva) Sp(Tva, Tvs, Tzvl) }
1009 ’ 1064

= max {S,(v1,v1,v2), S (Tv1, Tv1, Tv2)}

= Sp(vi,v1,v2).
Then (2.17) becomes

F(b2Sb(v1,v1,v2)) < F(Sb(vl,vl,vg)) —T.

It gives us a contradiction. Therefore, v; = vy and the fixed point is unique. O

Now we illustrate our result contained in Theorem 2.1 with help of two examples.

Example 2.2. Let (X,Sp) be as in Example 2.1 and let 7 > 0 be an arbitrary fixzed number. Define
the mapping T : X — X by T'(x) = e7 7§ and take F(a) = Ina + « (o > 0). It is easily verified that
N(z,y) = Sp(z, x,y) = 2x + 4y. Assume that x or y is nonzero, then Sy(Tx,Tx,Ty) > 0 and we have
T+ F(b2Sb(T:c,T:c,Ty)) = 74+Ine” " (z+2y)) +e " (z+2y)

= In(z+2y)+e " (x+2y)

< In(2z+4y) + 2z + 4y

= F(Sb(x,x,y))

= F(N(=z,v)).

Hence, T is a generalized F-contraction. On the other hand, if we assume that 0 < 7 < 0.0250587314, then

the following estimate holds:

max{Sb(y7y7Ty) Sy(Tz, Tz, Ty) Sy(w,z,Ty) Sb(y,y,T%)}
5b7 1067 ’ 1009 1064

y+e 7Y eTT(E+Y) 2wteTY 2yt T E

_ 1
= max{— X2 " 10x® 0 10x2 )
< 677—(% + g) = Sy(Tz, Tz, Ty).

Thus all conditions of Theorem 2.1 hold and 0 is a unique fixed point of T'.
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Example 2.3. Let X =R, and Sy : X2 — R, be a mapping defined by

Sp(z,y,2) = ‘"’32—2 + y; + 222, Then (X, Sp) is a complete dislocated Sy-metric with b= 2. Define the mapping
T:X — X byT(x) =% and take F(a) = Ina (o > 0). It is easily checked that N(z,y) = Sy(z,,y) =
x? +2y2. Assume that x or y is nonzero, then Sy(Tx, Tz, Ty) > 0 and we have

T+ F(szb(Tac7 Tx, Ty)) < F(N(x,y)) & ln(%) >

Also, we observe that

Sy (y,9,Ty) + Sp(Tz, Tz, Ty) Sp(zx,Ty) Sb(yyny%)}
567 1069

max { 1067 ’ 1063

48y2 + 222 18x2 4 4y? 162y> + 422
23040 92160 25920 }
1024022 + 20480y
- 92160

Sp(Tz, Tz, Ty)

max {

for all x,y € X. Now, if we assume that 0 < 7 < ln(%), then all the conditions of Theorem 2.1 hold and 0

is a unique fized point of T'.

Now, we describe the concept of generalized F-Suzuki-contraction in the framework of dislocated Sp-metric

spaces.

Definition 2.4. Let (X,S}) be a dislocated Sy-metric space. A mapping T : X — X is said to be a
generalized F-Suzuki-contraction if there exists F € § such that for all x,y € X

%Sb(x,x,Tx) < Splz,z,y) = F(203Sy (T2, Tz, Ty)) < F(Mr(z,y)) — ¢ (Mr(z,y)), (2.18)

where ¥ € ¥ and

Sb(y7 Y, Ty) Sb(l’, Z, TJJ)
10 ' 10

MT(xvy) :max{Sb(az,x,y), ,Sb(TJ?,TJ?,Ty)7

Sy(y,y, Tz) Sb(T%T%T%)}
18b ’ 2 '

Our second main result is the following.

Theorem 2.2. Let (X,Sy) be a complete dislocated Sy-metric space and T : X — X be a generalized

F-Suzuki-contraction satisfying the following condition:

2
max{sb(yvyv ,I’y)7 Sb(fC,Z‘,TZ‘)7 Sb(:l/,y,Ty) + Sb(TI,TZ‘,Ty)7 Sb(Tvava CC)} < Sb(Tl’,T.Z‘,Ty)
10 10 9 18 2

for all xz,y in X. Then T has a unique fized point in X.

Proof. Let z be arbitrary. Define =, = T'z,,_; for each n € N. If there exists n € N such that Sy(z,,, z,, Tz,) =
0, then x,, = Tz, and x,, becomes a fixed point of T', which completes the proof. Therefore, we assume that

Sy (@, Tpn, Tay) > 0 for all n € N. Taking into account (2.18), we deduce

F(263Sy(Tan, Ten, Ttnt1)) < F(Mr(zn, tnt1)) — % (M7 (20, Tni1)). (2.19)
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Using (dSp2) we get

max {Sb(l‘m Tn, Tnt1), Sp(Tntl, Tnil, Txn+1)}

< Mp(@n, Tni1)

Sp(nt1, Tnt1, Tony1) Sp(@n, Tn, Txn)

< max{Sg Tn, Lo, Ln+l), R s
( e ) 10 10
Sy(Txn, Txn, Tx S T r
S (T n,T n,T " )7 b( ) ) n+1)7 b(xn+17 n+1, n+2)}

max{Sb(xn,xn,xn+1),5b(xn+1,xn+1,:L‘n+2)}
and combining it with the relation (2.19) we derive
F(2b3Sb(Twn,Txn,Tzn+1)) < F(max {Sb(mn, Ty Tn+1)s Sp(Tn+1, Tnti, zn+2})
- w( max {Sb(xn, Tny Tn+1)s So(Trnt1, Tnt1, xn+2}). (2.20)
If max {Sb(xn,zn,zn+1), Sb(xn+1,xn+1,xn+2)} = Sy(Tn+1,Tnt1, Zni2), then (2.20) becomes
F(2b3Sb(T:r:n,Txn,Txn+1)) < F(Sb(xn+1,xn+1,xn+2)) — zp(S(a:n+1,xn+1,xn+2)).
By the property of ¢ and using condition (F1), we obtain
2038y (T, Tn, TTnt1) < Sp(TTn, Txn, TTni1),

which is a contradiction. Hence max {Sy(2n,2n, Znt1), So(Tn41, Tnt1, Tnt2)} = Sp(Tn, Zn,2nt1), then (2.20) be-
comes

F(203Sp(Tan, Ton, Ttnt1)) < F(Sp(n, Tn, 2nt1)) — ¥ (S(@n, Tn, Tni1))- (2.21)

This together with condition (F'1) implies that Sp(Txp, Txn, TZnt1) < Sp(Tn, Tn, Tpy1) for each n € N.
Then {Sy(zn, Zn, Tn+1)} is a nonnegative decreasing sequence of real numbers. Therefore, there exists A > 0
such that lim Sp(zp,Tn, Tnt1) = A.

n—-+oo

Letting n — +00 in (2.21) and using (F'3') and continuity of ¢, we get
F(26°A) < F(A) = 9(A).
It gives us ¥(A) = 0. By property of ¢ we deduce that A = 0. Consequently, we have
JMm Sy (@, @n, 20 11) = 0. (2.22)

Next, we prove that {z,} is a Cauchy sequence in X. If it is not true, then there exist € > 0 and increasing

sequences of natural numbers {p(n)} and {g(n)} such that
n < g(n) <p(n),
Sb(Tq(n)s Tq(n)> Tp(n)) = &
Sp(g(m)s Ta(m)s Tp(n)—1) < € (2.23)
for all n € N.

Owing to (2.22), there exists N1 € N such that

Sb(:vq(n), Zg(n)s qu(n)) <e (2.24)
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for all n > Nj. Hence, from (2.23) and (2.24) it follows that

1 1
3520 (@) () Tq(m)) < 53 < So(Tq(n)s Tg(n)> Tp(n)
for all n > N;. By using (2.18) we obtain
F(26* (T g(n), Tq(n), TTp(n)) < F(Mr(2q(n)s Tp(n))) = ¥ (M1 (Zg(n)s Tp(n)))- (2.25)

From our assumptions and regarding (d.Sy2), we get

max {Sb(arq(n), Zg(n)s Tp(n))s 6 (TTq(n) TTq(n)> T%(n))}

< Mr(zg(n)s Tp(n))

S (&p(n)> Tp(n)> Tp(n)+1)
10

Sb(xq(n) » Lg(n)» mq(nH»l) Sh (mq(n)+1v Lg(n)+1> Iq(n)+2)
10 ’ 2 ’

Sb(xp(n) » Tp(n)s xp(n)+1) + Sb (mq(n)+17 Tg(n)+1> zp(n)+1) }
9 18

< max {Sb(xq(n)rxq(n)vxp(n))v 7Sb(TxQ(")’TxQ(n)’TIP(”))

< max {Sb(zq(n) » Lg(n)» xp(n))v Sb(xq(n)+1v Ccq(n)«klvxp(n)«l»l)}'

Then (2.25) becomes
F (2638, (T2g(n), TZq(n), TTp(n)))

< F(max {Sy(@g(n): Ta(n)s Tptm)s o (@a(m) 115 Ta(m) 115 Tp(my £1) )

- "p(max {Sb(xq(n)7 Tg(n)s xp(n))7 Sb(xq(n)Jrl’ Lg(n)+1> x?(”)+1)})'
If max {Sb(xq(n),xq<n),xp(n)), Sb(xq(n)+1, xq(n)+17xp(n)+l)} = Sb(xq(n)+1,xq(n>+1, Ip(n)+1) for some n, then we have

F(2b35b(qu(n)’qu(n)’Txp(n))) < F(Sb(@g(n)+1 Tg(n)+1> Tp(n)+1))

- w(sb(xq(n)—O—laxq(n)+19xp(n)+l))'

Obviously, Sp(Zq(n)+1, Tq(n)+1, Tp(n)+1) > 0 and by the property of ¢ and (F1), we get
So(Txq(ny, Tq(n)s TZp(n)) < So(Tg(n)+1> Ta(n)+1> Tp(n) +1)5
which is a contradiction. Duo to this fact, we find that

max {Sb(xq(n) »Tg(n)» mp(n))v Sb(xq(n)+1u zq(n)+1:$p(n)+l)} = Sb(wq(n)u Tq(n)s zp(n))

for all n. Therefore
F (25°Sp(T2q(n)s Tg(n) T2p(m))) < F(So(@g(n) Ta(n)s Tp(m)) = ¥ (So(@q(n)s Ta(m) Tpim)): (2.26)

and by (F'1), it follows that

Sb(Tg(n)+15 Tg(n)+1> Tp(n)+1) < Sb(Tg(n), Tq(n)> Tp(n))-
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In view of (2.23) and (dSy2), we infer that

€ < Sp(@g(n)r Tg(n) Tp(n)) < 2656(Zq(n)s Ta(n)s Tp(n)—1) + b6 (Tp(n)s Tp(n)> Tp(n)—1)
< 265y(Eq(n)r Ta(n)> Tp(n)—1) + 26258 (Tp(n) Tp(n) Tp(n)) + 02 Sb(@p(n)—15 Tp(n)—15 Tp(n))
< 2bsb(zq(n) » Lg(n)» xp(n)fl) + 6b35b(xp(n) s Lp(n)s xp(n)+1)

+b25b(xp(n)flv Tp(n)—1- xp(n))'

Taking the limit as n — +o0 in the above inequality and regarding (2.22) and (2.23), we deduce that

e < lim Sb(xq(n),xq(n),xp(n)) < 2be. (2.27)

n——+00

On the other hand, we have

€ < S(Zg(n)s Tg(n)s Tp(n)) < 2656(Zq(n)s Tq(n) Tq(n)+1) T 056(Zp(n), Tp(n)> Tq(n)+1)

IN

2bSy (xq(n) y Lg(n)» xq(n)«l»l) + 21)25})(2?1](”) » Tp(n)s xp(n)+1)

+b25b(xq(n)+17 Tg(n)+1> Tp(n)+1)-

Taking the limit supremum as n — +oco in the above inequality. By using (2.22) we obtain

£ .
73 < limsup Sb(xq(n)-‘rlaxq(n)+1axp(n)+1)' (2.28)
b n—-+oo

Taking the limit supremum as n — +o00 on each side of (2.26) and using conditions (2.27) and (2.28) together

with (F'1) and (F3'), we deduce that

3 .
F(2be) = F(2b3b72) < F(%g hszrup Sb(Tq(n)+15 Sb(xq(n)ﬂy%(n)ﬂ))
n—-+0oo
S F( lim sup Sb(xq(n), Sb(l‘q(n), 'Tp(n)))
n—+4o00
*1/1( lﬁgl}rgg Sb(zq(n); Sb(xq(n)v xp(n)))
< F(20e) — (e).

It enforces that 1 (e) = 0, which leads to a contradiction. Therefore {xz,} is a Cauchy sequence in X. Since
X is a complete dislocated Sp-metric space, it follows that there exists v € X in which for each € > 0, there

exists Ny € N such that

Sp(v,v,2,) < € (2.29)

for all n > Ns. Now, we prove that v is a fixed point of T. To this end, we show that Sy(Tv,Tv,v) = 0.

We consider the following cases:

Case 1. If Sy(v,v,z,) = 0 for sufficiently large n, then v = x,. Thus, for sufficiently large n, we can

write

Sp(Tv, Tv,v) = Sp(Txn, TTn,v) < 205y (Tnt1, Tnt1, Tnt2) + bSp(v, v, Tni2).
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Letting n — +oo in the above inequality. From (2.22) and (2.29) we get Sp(Tv, Tv,v) = 0. Thus Tv = v
and v is a fixed point of T
Case 2. If there exists n > Ny such that Sy(v,v,2,) > 0 and Sy(Tv, Tv,Tx,) = 0, then from (dSy2) we

have

Sp(Tv, Tv,v) < 2bSp(Tv, Tv, Txy) + bSp(v, v, Tpi1) < be,

which implies that Tv = v by virtue of the arbitrariness of €.

Case 3. If Sp(v,v,2zy,) > 0 and Sp(Tv, Tv, Tx,) > 0 for all n > N, then using (2.18) we obtain

F(26°Sy(Tv, Tv, Tx,)) < F(My(v,2,)) — (Mr(v, z,,)). (2.30)

Thus, by using the hypothesis and taking into account (dS,2), it yields
max {Sb (v,v,Zn), Sp(Tv, Tv, T:cn)}

< MT('Uymn)
Sb($n7$7uT$n)
10
Sp(v,v,Tv) Sp(xn, Tn, TTn) n Sp(Tv, Tv, Txy) Sb(TU,TU,T2’U)}
10 ’ 9 18 2
max{Sb(v,v,xn),Sb(Tv,TU,Tmn)}.

< max {Sb(v, v, Tn), Sp(Tv, Tv, Txy),

)

IN

Then (2.30) becomes

F (2638, (Tv, Tv, Tz,)) < F(max{Sb(v,v,zn),Sb(Tv,Tv,Tzn)})

- w(max{Sb(v,v,zn),Sb(Tv,Tv,Tzn)}).

If max {Sy(v,v,zn), Sp(Tv, Tv,Tzn)} = Sp(Tv, Tv, Tzr), then we have

F(263Sy(Tv, Tv, Tzn)) < F(Sy(Tv, Tv,Tzn)) — ¢ (Se(Tv, Tv, Tzn)).
From this it follows that 2635, (Tv, Tv, Txy) < Sy(Tv, Tw, Txy), which is a contradiction. Therefore,

max {Sp (v, v, zn), Sp(Tv, Tv, Txn) } = Sp(v,v, Tn)
and (2.30) becomes
F(26°Sy(Tv, Tv, Tzyn)) < F(Sp(v,0,2n)) — %(Sp(v,v,2n))
< F(Sp(v,v,zn)).
Thus, from (F'1) we get
Sp(Tv, Tv, Tx,) < Sp(v,v,2,). (2.31)
Applying (2.29), (2.31) and (dSp2) we get
Sy(Tv, Tv,v) < 2bSy (T, Tv, Tzn) + bSp(v, v, Tny1) < 3be

for sufficiently large n. It enforces that Tv = v by virtue of the arbitrariness of €. Then v is a fixed point
of T.
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Next, we show the uniqueness. Indeed, if v1, vy are two fixed points of T' such that vy # ve, then in view of

(2.18) we get

F(263Sy(Tv1, Tvr, Tvz)) < F(Mr(vi,v2)) — ¢ (Mr(v1,v2)). (2.32)

According to our assumptions and by using (dS2), we find that

Sy(vi,v1,v2) < Mr(vi,v2)

< max{Sb(vl,vl,vg),Sb(Tvl,Tvl,Tv2)7
Sy(v2,v2,Tv2) Sp(vi,v1,Tv1) Sp(va,v2, Tvz)
10 ’ 10 ’ 9
+Sb(TU1,T1)1,Tv2)
18
max{Sb(vl,m,vg),Sb(Tv1,Tv1,Tv2)}

IN

= Sy(v1,v1,v2).

Then (2.32) becomes

F(QbSSb(vl,vl,vg)) < F(Sy(v1,v1,v2)) — 9 (Sp(v1,v1,v2)).

From this it follows that 2b3Sy(v1,v1,v2) < Sp(v1,v1,v2), which is a contradiction. Then v; = vy and so T'

has a unique fixed point in X. O
Example 2.4. Let X = {—1,0,1}. Define the mapping Sy : X> — R, by

, O=zx=y#z=1lor—-1l=x=y#z=1

[ ][9]

W 1=2=y+#2
Sb(xayvz):
0, z=y=z2z=-1orl

,  otherwise

for all x,y,z € X. It is easy to show that (X, Sy) is a complete dislocated Sy-metric space with b = % Put
Fla)=Ina (a>0) and ¢(t) =t (t > 0). Define T : X — X by

Note that Sp(x,x,y) > 0 and Sp(T(x), T(z),T(y)) > 0 if and only if € {-1,0}, y=1orx =1, y €
{—1,0}. Also, for each x,y € X we have Mp(z,y) = Sp(x,z,y) and we find that

Sb(mz xvy)

235, (T(w), T(2), T(y)) = (&9

F(ngsb(T(ib),T(l‘),T(y))) < F(Sb(xzx» y)) - ¢(Sb(17xyy)) < In

Now, we consider two cases:
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Case 2.1. Case 1. Let x € {—1,0} andy = 1, then
3
Sb(:l?,fl‘,y) = 57
1
Sp(T(2), T(x), T(y)) = Sp(-1,-1,0) = 5
Sb(0707T(0)) = %7 Sb(i]w 717T(71)) =0.

So, we have

Sp(z, z,y) % 120 3
—In 2 =1In-—— =3.0377 > Sy(z,z,y) = -.
Y 2B85,(T(w), T(2), T(y)) 2% 108 2 S@my) =3
Case 2. Let x =1 and y € {—1,0}, then
10
Sb(l‘,l',y) = E?
1
Sp(T(2), T(2), T(y) =
10
Sb(l‘,fC7T($)) = g
So, we have
Sy(x,z,y) 9 400 10
1 =In 2 =In— = 3.4369 > S = —.
Y285, (T(@), T(2), T(y)) 25 324 2 S(@2,9) = 3

On the other hand, for all x,y € X we have

s { ST Sal08.7@) Sulye T) , Su(T(e). 7). T) sb<T<x>,T<x>,T2<x>>}
10 ’ 10 ’ 9 18 ’ 2
< £ = S(T(@), T@), T)).

Hence, T is a generalized F-Suzuki-contraction which satisfies the assumption of Theorem 2.2 and so it has

a unique fixed point —1.
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