International Journal of Analysis and Applications

Volume 17, Number 5 (2019), 734-751

URL: https://doi.org/10.28924/2291-8639

DOI: 10.28924/2291-8639-17-2019-734

FIXED POINT THEOREMS FOR GENERALIZED F-CONTRACTIONS AND GENERALIZED F-SUZUKI-CONTRACTIONS IN COMPLETE DISLOCATED S_b -METRIC SPACES

HAMID MEHRAVARAN, MAHNAZ KHANEHGIR* AND REZA ALLAHYARI

Department of Mathematics, Mashhad Branch, Islamic Azad University, Mashhad, Iran

*Corresponding author: khanehgir@mshdiau.ac.ir

ABSTRACT. In this paper, first we describe the notion of dislocated S_b -metric space and then we introduce the new notions of generalized F-contraction and generalized F-Suzuki-contraction in the setup of dislocated S_b -metric spaces. We establish some fixed point theorems involving these contractions in complete dislocated S_b -metric spaces. We also furnish some examples to verify the effectiveness and applicability of our results.

1. Introduction and Preliminaries

Bakhtin [1] and Czerwik [2] introduced b-metric spaces and proved the contraction principle in this framework. In recent times, many authors obtained fixed point results for single-valued or set-valued functions, in the setting of b-metric spaces.

In 2012, Sedghi et al. [11] introduced the concept of S-metric space by modifying D-metric and G-metric spaces and proved some fixed point theorems for a self-mapping on a complete S-metric space. After that \ddot{O} zg \ddot{u} r and Ta \S studied some generalizations of the Banach contraction principle on S-metric spaces in [8]. They also obtained some fixed point theorems for the Rhoades' contractive condition on S-metric spaces [7]. Sedghi et al. [10] introduced the concept of S_b -metric space as a generalization of S-metric space and proved some coupled common fixed point theorems in S_b -metric space. Kishore et al. [4] proved some fixed point

Received 2019-03-11; accepted 2019-07-24; published 2019-09-02.

²⁰¹⁰ Mathematics Subject Classification. 47H09, 47H10.

Key words and phrases. Dislocated metric space; Fixed point; Generalized F-contraction; Generalized F-Suzuki-contraction; S_b -Metric space.

theorems for generalized contractive conditions in partially ordered complete S_b -metric spaces and gave some applications to integral equations and homotopy theory.

On the other hand, Wardowski [12] introduced a new contraction, the so-called F-contraction, and obtained a fixed point result as a generalization of the Banach contraction principle. Thereafter, Dung and Hang [3] studied the notion of a generalized F-contraction and established certain fixed point theorems for such mappings. Recently, Piri and Kumam [6] extended the fixed point results of [12] by introducing a generalized F-Suzuki-contraction in b-metric spaces.

Motivated by the aforementioned works, in this paper, we first introduce the notion of dislocated S_b - metric space and then we describe some fixed point results of [3], [6] by introducing generalized F-contractions and generalized F-Suzuki-contractions in dislocated S_b -metric spaces. We begin with some basic well-known definitions and results which will be used further on.

Throughout this paper \mathbb{R} , \mathbb{R}_+ , \mathbb{N} denote the set of all real numbers, the set of all nonnegative real numbers and the set of all positive integers, respectively.

Definition 1.1. [11] Let X be a nonempty set. An S-metric on X is a function $S: X^3 \to \mathbb{R}_+$ that satisfies the following conditions:

- (S1) 0 < S(x, y, z) for each $x, y, z \in X$ with $x \neq y \neq z \neq x$,
- (S2) S(x, y, z) = 0 if and only if x = y = z,
- (S3) $S(x,y,z) \le S(x,x,a) + S(y,y,a) + S(z,z,a)$ for each $x,y,z,a \in X$.

Then the pair (X, S) is called an S-metric space.

Definition 1.2. [10] Let X be a nonempty set and $b \ge 1$ be a given real number. Suppose that a mapping $S_b: X^3 \to \mathbb{R}_+$ satisfies:

- (S_b1) $0 < S_b(x, y, z)$ for all $x, y, z \in X$ with $x \neq y \neq z \neq x$,
- (S_b2) $S_b(x, y, z) = 0$ if and only if x = y = z,
- (S_b3) $S_b(x, y, z) \le b(S_b(x, x, a) + S_b(y, y, a) + S_b(z, z, a))$ for all $x, y, z, a \in X$.

Then S_b is called an S_b -metric on X and the pair (X, S_b) is called an S_b -metric space.

Definition 1.3. [10] If (X, S_b) is an S_b -metric space, a sequence $\{x_n\}$ in X is said to be:

- (1) Cauchy sequence if, for each $\varepsilon > 0$, there exists $n_0 \in \mathbb{N}$ such that $S_b(x_n, x_n, x_m) < \varepsilon$ for all $m, n \geq n_0$.
- (2) convergent to a point $x \in X$ if, for each $\varepsilon > 0$, there exists a positive integer n_0 such that $S_b(x_n, x_n, x) < \varepsilon$ or $S_b(x, x, x_n) < \varepsilon$ for all $n \ge n_0$, and we denote by $\lim_{n \to \infty} x_n = x$.

Definition 1.4. [10] An S_b -metric space (X, S_b) is called complete if every Cauchy sequence is convergent in X.

Example 1.1. [9] Let $X = \mathbb{R}$. Define $S_b : X^3 \to \mathbb{R}_+$ by $S_b(x, y, z) = |x - z| + |y - z|$ for all $x, y, z \in X$. Then (X, S_b) is a complete S_b -metric space with b = 2.

Definition 1.5. Let (X, S_b) be an S_b -metric space. Then S_b is called symmetric if

$$S_b(x, x, y) = S_b(y, y, x) \tag{1.1}$$

for all $x, y \in X$.

It is easy to see that the symmetry condition (1.1) is automatically satisfied by an S-metric [11]. We conclude this section recalling the following fixed point theorems of Dung and Hang [3] and Piri and Kumam [6]. For this, we need some preliminaries.

Definition 1.6. [12] Let \mathcal{F} be the family of all functions $F:(0,+\infty)\to\mathbb{R}$ such that:

- (F1) F is strictly increasing, that is for all $\alpha, \beta \in (0, +\infty)$ such that $\alpha < \beta, F(\alpha) < F(\beta)$,
- (F2) for each sequence $\{\alpha_n\}$ of positive numbers, $\lim_{n\to+\infty}\alpha_n=0$ if and only if $\lim_{n\to+\infty}F(\alpha_n)=-\infty$,
- (F3) there exists $k \in (0,1)$ such that $\lim_{\alpha \to 0^+} \alpha^k F(\alpha) = 0$.

In 2014, Piri and Kumam [5] described a large class of functions by replacing the condition (F3) in the above definition with the following one:

(F3') F is continuous on $(0, +\infty)$.

They denote by \mathfrak{F} the family of all functions $F:(0,+\infty)\to\mathbb{R}$ which satisfy conditions (F1), (F2), and (F3').

Example 1.2. (see [5], [13]) The following functions $F:(0,+\infty)\to\mathbb{R}$ are the elements of \mathfrak{F} .

- (1) $F(\alpha) = -\frac{1}{\sqrt{\alpha}}$,
- (2) $F(\alpha) = -\frac{1}{\alpha} + \alpha$,
- (3) $F(\alpha) = \frac{1}{1 e^{\alpha}}$,
- (4) $F(\alpha) = \ln \alpha$,
- (5) $F(\alpha) = \ln \alpha + \alpha$.

Definition 1.7. [3] Let (X,d) be a metric space. A mapping $T: X \to X$ is said to be a generalized F-contraction on (X,d) if there exist $F \in \mathcal{F}$ and $\tau > 0$ such that, for all $x,y \in X$,

$$d(Tx, Ty) > 0 \Rightarrow \tau + F(d(Tx, Ty)) \le F(N(x, y)),$$

in which

$$N(x,y) = \max \Big\{ d(x,y), d(x,Tx), d(y,Ty), \frac{d(x,Ty) + d(y,Tx)}{2}, \frac{d(T^2x,x) + d(T^2x,Ty)}{2}, d(T^2x,Tx), d(T^2x,y), d(T^2x,Ty) \Big\}.$$

Theorem 1.1. [3] Let (X, d) be a complete metric space and let $T: X \to X$ be a generalized F-contraction mapping. If T or F is continuous, then T has a unique fixed point $x^* \in X$ and for every $x \in X$ the sequence $\{T^nx\}$ converges to x^* .

We use \mathfrak{F}_G to denote the set of all functions $F:(0,+\infty)\to\mathbb{R}$ which satisfy conditions (F1) and (F3') and Ψ to denote the set of all functions $\psi:\mathbb{R}_+\to\mathbb{R}_+$ such that ψ is continuous and $\psi(t)=0$ if and only if t=0 (see [6]).

Definition 1.8. [6] Let (X, d) be a b-metric space. A self-mapping $T : X \to X$ is said to be a generalized F-Suzuki-contraction if there exists $F \in \mathfrak{F}_G$ such that, for all $x, y \in X$ with $x \neq y$,

$$\frac{1}{2s}d(x,Tx) < d(x,y) \Rightarrow F\left(s^5d(Tx,Ty)\right) \le F\left(M_T(x,y)\right) - \psi\left(M_T(x,y)\right),$$

in which $\psi \in \Psi$ and

$$\begin{split} M_T(x,y) &= \max \Big\{ d(x,y), d(T^2x,y), \frac{d(Tx,y) + d(x,Ty)}{2s}, \frac{d(T^2x,x) + d(T^2x,Ty)}{2s}, \\ d(T^2x,Ty) + d(T^2x,Tx), d(T^2x,Ty) + d(Tx,x), d(Tx,y) + d(y,Ty) \Big\}. \end{split}$$

Theorem 1.2. [6] Let (X,d) be a complete b-metric space and $T: X \to X$ be a generalized F-Suzuki-contraction. Then T has a unique fixed point $x^* \in X$ and for every $x \in X$ the sequence $\{T^n x\}$ converges to x^* .

2. Main results

In this section, we first introduce the concept of dislocated S_b -metric space and then we demonstrate some fixed point results for generalized F-contractions and generalized F-Suzuki-contractions in such spaces. Our results are remarkable for two reasons: first dislocated S_b - metric is more general, second the contractivity condition involves auxiliary functions form a wider class.

Definition 2.1. Let X be a nonempty set and $b \ge 1$ be a given real number. A mapping $S_b : X^3 \to \mathbb{R}_+$ is a dislocated S_b -metric if, for all $x, y, z, a \in X$, the following conditions are satisfied:

$$(dS_b1)$$
 $S_b(x, y, z) = 0$ implies $x = y = z$,

$$(dS_b2)$$
 $S_b(x,y,z) \le b(S_b(x,x,a) + S_b(y,y,a) + S_b(z,z,a)).$

A dislocated S_b -metric space is a pair (X, S_b) such that X is a nonempty set and S_b is a dislocated S_b -metric on X. In the case that b = 1, S_b is denoted by S and it is called dislocated S-metric, and the pair (X, S) is called dislocated S-metric space.

Definition 2.2. Let (X, S_b) be a dislocated S_b -metric space, $\{x_n\}$ be any sequence in X and $x \in X$. Then:

(i) The sequence $\{x_n\}$ is said to be a Cauchy sequence in (X, S_b) if, for each $\varepsilon > 0$, there exists $n_0 \in \mathbb{N}$ such that $S_b(x_n, x_n, x_m) < \varepsilon$ for each $m, n \geq n_0$.

- (ii) The sequence $\{x_n\}$ is said to be convergent to x if, for each $\varepsilon > 0$, there exists a positive integer n_0 such that $S_b(x, x, x_n) < \varepsilon$ for all $n \ge n_0$ and we denote it by $\lim_{n \to \infty} x_n = x$.
- (iii) (X, S_b) is said to be complete if every Cauchy sequence is convergent.

The following example shows that a dislocated S_b -metric need not be a dislocated S-metric.

Example 2.1. Let $X = \mathbb{R}_+$, then the mapping $S_b : X^3 \to \mathbb{R}_+$ defined by

 $S_b(x, y, z) = x + y + 4z$ is a complete dislocated S_b -metric on X with b = 2. However, it is not a dislocated S-metric space. Indeed, we have

$$4 = S_b(0,0,1) \nleq 2S_b(0,0,0) + S_b(1,1,0) = 2.$$

Definition 2.3. Suppose that (X, S_b) is a dislocated S_b -metric space. A mapping $T: X \to X$ is said to be a generalized F-contraction on (X, S_b) if there exist $F \in \mathfrak{F}$ and $\tau > 0$ such that for all $x, y \in X$,

$$S_b(Tx, Tx, Ty) > 0 \Rightarrow \tau + F(b^2 S_b(Tx, Tx, Ty)) \le F(N(x, y)), \tag{2.1}$$

where

$$N(x,y) = \max \left\{ S_b(x,x,y), S_b(Tx,Tx,Ty), \frac{S_b(y,y,Tx)}{10b^8}, \frac{S_b(x,x,Ty)}{10b^9}, \frac{S_b(y,y,T^2x)}{10b^4} \right\}.$$

Our first main result is the following.

Theorem 2.1. Let (X, S_b) be a complete dislocated S_b -metric space and $T: X \to X$ be a generalized F-contraction mapping satisfying the following condition:

$$\max \left\{ \frac{S_b(y, y, Ty)}{5b^7} + \frac{S_b(Tx, Tx, Ty)}{10b^7}, \frac{S_b(x, x, Ty)}{10b^9}, \frac{S_b(y, y, T^2x)}{10b^4} \right\} \le S_b(Tx, Tx, Ty)$$

for all $x, y \in X$.

Then T has a unique fixed point $v \in X$.

Proof. Let x_0 be an arbitrary point in X and let $\{x_n\}$ be the Picard sequence of T based on x_0 , that is, $x_{n+1} = Tx_n$ for $n = 0, 1, 2, \ldots$ If there exists $n_0 \in \mathbb{N}$ such that $S_b(x_{n_0}, x_{n_0}, x_{n_{0+1}}) = 0$, then x_{n_0} is a fixed point of T and the existence part of the proof is finished. On the contrary case, assume that $S_b(x_n, x_n, x_{n+1}) > 0$ for all $n \in \mathbb{N} \cup \{0\}$. Applying the contractivity condition (2.1), we get

$$F(b^2 S_b(Tx_{n-1}, Tx_{n-1}, Tx_n)) \le F(N(x_{n-1}, x_n)) - \tau.$$
(2.2)

Using the definition of N(x,y) and the property (dS_b2) , we obtain that

$$\max \left\{ S_{b}(x_{n-1}, x_{n-1}, x_{n}), S_{b}(x_{n}, x_{n}, x_{n+1}) \right\} \leq N(x_{n-1}, x_{n})$$

$$= \max \left\{ S_{b}(x_{n-1}, x_{n-1}, x_{n}), S_{b}(x_{n}, x_{n}, Tx_{n}), \frac{S_{b}(x_{n}, x_{n}, Tx_{n-1})}{10b^{8}}, \frac{S_{b}(x_{n-1}, x_{n-1}, Tx_{n})}{10b^{9}}, \frac{S_{b}(x_{n}, x_{n}, Tx_{n})}{10b^{4}} \right\}$$

$$\leq \max \left\{ S_{b}(x_{n-1}, x_{n-1}, x_{n}), S_{b}(x_{n}, x_{n}, Tx_{n}), \frac{3S_{b}(x_{n}, x_{n}, x_{n+1})}{10b^{7}}, \frac{S_{b}(x_{n-1}, x_{n-1}, Tx_{n})}{10b^{9}}, \frac{S_{b}(x_{n}, x_{n}, Tx_{n})}{10b^{4}} \right\}$$

$$= \max \left\{ S_{b}(x_{n-1}, x_{n-1}, x_{n}), S_{b}(x_{n}, x_{n}, x_{n+1}) \right\}.$$
(2.3)

Then $N(x_{n-1}, x_n) = \max\{S_b(x_{n-1}, x_{n-1}, x_n), S_b(x_n, x_n, x_{n+1})\}$ and so (2.2), becomes

$$F(b^2S_b(Tx_{n-1}, Tx_{n-1}, Tx_n)) \le F(\max\{S_b(x_{n-1}, x_{n-1}, x_n), S_b(x_n, x_n, x_{n+1})\}) - \tau.$$

If we assume that

$$\max \left\{ S_b(x_{n-1}, x_{n-1}, x_n), S_b(Tx_{n-1}, Tx_{n-1}, Tx_n) \right\} = S_b(Tx_{n-1}, Tx_{n-1}, Tx_n)$$

for some n, then we have

$$F(b^2 S_b(Tx_{n-1}, Tx_{n-1}, Tx_n)) \le F(S_b(Tx_{n-1}, Tx_{n-1}, Tx_n)) - \tau$$

 $< F(S_b(Tx_{n-1}, Tx_{n-1}, Tx_n)).$

Using condition (F1) we conclude that $S_b(x_n, x_n, x_{n+1}) < S_b(x_n, x_n, x_{n+1})$, which is a contradiction. Therefore, for each $n \in \mathbb{N}$ we have

$$\max \left\{ S_b(x_{n-1}, x_{n-1}, x_n), S_b(x_n, x_n, x_{n+1}) \right\} = S_b(x_{n-1}, x_{n-1}, x_n).$$

Applying again (2.2) and condition (F1), we deduce that

$$S_b(x_n, x_n, x_{n+1}) < S_b(x_{n-1}, x_{n-1}, x_n)$$

for each n. Thus $\{S_b(x_n, x_n, x_{n+1})\}$ is a nonnegative decreasing sequence of real numbers. Then there exists $A \ge 0$ such that

$$\lim_{n \to +\infty} S_b(x_n, x_n, x_{n+1}) = \inf_{n \in \mathbb{N}} S_b(x_n, x_n, x_{n+1}) = A.$$

We claim that A = 0. To support the claim, let it be untrue and A > 0. Then, for any $\varepsilon > 0$, it is possible to find a positive integer m so that

$$S_b(x_m, x_m, Tx_m) < A + \varepsilon.$$

So, from (F1), we get

$$F(S_b(x_m, x_m, Tx_m)) < F(A + \varepsilon). \tag{2.4}$$

It follows from (2.1) that

$$\tau + F(b^2 S_b(Tx_m, Tx_m, T^2 x_m)) \le F(N(x_m, Tx_m)). \tag{2.5}$$

By a similar argument as (2.3), it yields that

$$N(x_m, Tx_m) = \max \{ S_b(x_m, x_m, Tx_m), S_b(Tx_m, Tx_m, T^2x_m) \}.$$

Hence (2.5), becomes

$$F(b^{2}S_{b}(Tx_{m}, Tx_{m}, T^{2}x_{m})) \le F(\max\{S_{b}(x_{m}, x_{m}, Tx_{m}), S_{b}(Tx_{m}, Tx_{m}, T^{2}x_{m})\}) - \tau.$$
(2.6)

Now if, $\max\{S_b(x_m, x_m, Tx_m), S_b(Tx_m, Tx_m, T^2x_m)\} = S_b(Tx_m, Tx_m, T^2x_m)$ for some m, then (2.6) gives us a contradiction. Thus, we infer that

$$\max \{S_b(x_m, x_m, Tx_m), S_b(Tx_m, Tx_m, T^2x_m)\} = S_b(x_m, x_m, Tx_m),$$

and therefore, we have

$$F(b^2S_b(Tx_m, Tx_m, T^2x_m)) \le F(S_b(x_m, x_m, Tx_m)) - \tau.$$

It implies that

$$F(b^{2}S_{b}(T^{2}x_{m}, T^{2}x_{m}, T^{3}x_{m})) \leq F(S_{b}(Tx_{m}, Tx_{m}, T^{2}x_{m})) - \tau$$

$$\leq F(b^{2}S_{b}(Tx_{m}, Tx_{m}, T^{2}x_{m})) - \tau$$

$$\leq F(S_{b}(x_{m}, x_{m}, Tx_{m})) - 2\tau.$$

Continuing the above process and taking (2.4) into account, we deduce that

$$F(b^{2}S_{b}(T^{n}x_{m}, T^{n}x_{m}, T^{n+1}x_{m})) \leq F(S_{b}(T^{n-1}x_{m}, T^{n-1}x_{m}, T^{n}x_{m})) - \tau$$

$$\leq F(b^{2}S_{b}(T^{n-1}x_{m}, T^{n-1}x_{m}, T^{n}x_{m})) - \tau$$

$$\leq F(S_{b}(T^{n-2}x_{m}, T^{n-2}x_{m}, T^{n-1}x_{m})) - 2\tau$$

$$\vdots$$

$$\leq F(S_{b}(x_{m}, x_{m}, Tx_{m})) - n\tau$$

$$< F(A + \varepsilon) - n\tau,$$

and by passing to the limit as $n \to +\infty$ we obtain

$$\lim_{n \to +\infty} F\left(b^2 S_b(T^n x_m, T^n x_m, T^{n+1} x_m)\right) = -\infty.$$

This fact together with the condition (F2) implies that

$$\lim_{n \to +\infty} S_b(T^n x_m, T^n x_m, T^{n+1} x_m) = 0.$$

Thus $S_b(T^n x_m, T^n x_m, T^{n+1} x_m) < A$ for n sufficiently large, which is a contradiction with the definition of A. Then,

$$\lim_{n \to +\infty} S_b(x_n, x_n, x_{n+1}) = 0. \tag{2.7}$$

Next, we intend to show that the sequence $\{x_n\}$ is a Cauchy sequence in X. Arguing by contradiction, we assume that there exist $\varepsilon > 0$, and subsequences $\{x_{q(n)}\}$ and $\{x_{p(n)}\}$ of $\{x_n\}$ with n < q(n) < p(n) such that

$$S_b(x_{q(n)}, x_{q(n)}, x_{p(n)}) \ge \varepsilon \tag{2.8}$$

for each $n \in \mathbb{N}$. Further, corresponding to q(n), we can choose p(n) in such a way that it is the smallest integer with q(n) < p(n) satisfying the above inequality, then

$$S_b(x_{q(n)}, x_{q(n)}, x_{p(n)-1}) < \varepsilon \tag{2.9}$$

for all $n \in \mathbb{N}$.

In the light of (2.8) and the condition (2.1), we conclude that

$$F(b^2 S_b(Tx_{q(n)-1}, Tx_{q(n)-1}, Tx_{p(n)-1})) \le F(N(x_{q(n)-1}, x_{p(n)-1})) - \tau.$$
(2.10)

By our hypothesis and in view of $(dS_b 2)$, we get

$$\begin{split} \max \left\{ S_b(x_{q(n)-1}, x_{q(n)-1}, x_{p(n)-1}), S_b(Tx_{q(n)-1}, Tx_{q(n)-1}, Tx_{p(n)-1}) \right\} \\ & \leq N(x_{q(n)-1}, x_{p(n)-1}) \\ & = \max \left\{ S_b(x_{q(n)-1}, x_{q(n)-1}, x_{p(n)-1}), S_b(Tx_{q(n)-1}, Tx_{q(n)-1}, Tx_{p(n)-1}), \\ & \frac{S_b(x_{p(n)-1}, x_{p(n)-1}, Tx_{q(n)-1})}{10b^8}, \frac{S_b(x_{q(n)-1}, x_{q(n)-1}, Tx_{p(n)-1})}{10b^9}, \\ & \frac{S_b(x_{p(n)-1}, x_{p(n)-1}, Tx_{q(n)})}{10b^4} \right\} \\ & \leq \max \left\{ S_b(x_{q(n)-1}, x_{q(n)-1}, x_{p(n)-1}), S_b(Tx_{q(n)-1}, Tx_{q(n)-1}, Tx_{p(n)-1}), \\ & \frac{S_b(x_{p(n)-1}, x_{p(n)-1}, Tx_{p(n)-1})}{5b^7} + \frac{S_b(Tx_{q(n)-1}, Tx_{q(n)-1}, Tx_{p(n)-1})}{10b^7}, \\ & \frac{S_b(x_{q(n)-1}, x_{q(n)-1}, Tx_{p(n)-1})}{10b^9}, \frac{S_b(x_{p(n)-1}, x_{p(n)-1}, Tx_{q(n)})}{10b^4} \right\} \\ & \leq \max \left\{ S_b(x_{q(n)-1}, x_{q(n)-1}, x_{p(n)-1}), S_b(Tx_{q(n)-1}, Tx_{q(n)-1}, Tx_{p(n)-1}) \right\}. \end{split}$$

It enforces that

$$N(x_{q(n)-1},x_{p(n)-1}) = \max \big\{ S_b(x_{q(n)-1},x_{q(n)-1},x_{p(n)-1}), S_b(Tx_{q(n)-1},Tx_{q(n)-1},Tx_{p(n)-1}) \big\}.$$

Suppose that the maximum on the right-hand side is equal to $S_b(Tx_{q(n)-1}, Tx_{q(n)-1}, Tx_{p(n)-1})$ for some n, then from relation (2.10) together with the condition (F1) we get

$$S_b(Tx_{q(n)-1}, Tx_{q(n)-1}, Tx_{p(n)-1}) < S_b(Tx_{q(n)-1}, Tx_{q(n)-1}, Tx_{p(n)-1})$$

which is a contradiction. Thus, we find that

$$\max \left\{ x_{q(n)-1}, x_{q(n)-1}, x_{p(n)-1}), S_b(x_{q(n)}, x_{q(n)}, x_{p(n)}) \right\} = S_b(x_{q(n)-1}, x_{q(n)-1}, x_{p(n)-1})$$

for all n. Accordingly, (2.10) becomes

$$F(b^2 S_b(Tx_{q(n)-1}, Tx_{q(n)-1}, Tx_{p(n)-1})) \le F(S_b(x_{q(n)-1}, x_{q(n)-1}, x_{p(n)-1})) - \tau$$
(2.11)

and so using (F1) we get

$$S_b(x_{q(n)}, x_{q(n)}, x_{p(n)}) < S_b(x_{q(n)-1}, x_{q(n)-1}, x_{p(n)-1}).$$
(2.12)

Regarding to (2.8), (2.12) and employing (dS_b2) we observe that

$$\begin{array}{lll} \varepsilon & \leq & S_b(x_{q(n)},x_{q(n)},x_{p(n)}) \\ \\ & < & S_b(x_{q(n)-1},x_{q(n)-1},x_{p(n)-1}) \\ \\ & \leq & 2bS_b(x_{q(n)-1},x_{q(n)-1},x_{q(n)}) + bS_b(x_{p(n)-1},x_{p(n)-1},x_{q(n)}) \\ \\ & \leq & 2bS_b(x_{q(n)-1},x_{q(n)-1},x_{q(n)}) + 2b^2S_b(x_{p(n)-1},x_{p(n)-1},x_{p(n)-1}) \\ \\ & + b^2S_b(x_{q(n)},x_{q(n)},x_{p(n)-1}) \\ \\ & \leq & 2bS_b(x_{q(n)-1},x_{q(n)-1},x_{q(n)}) + 6b^3S_b(x_{p(n)-1},x_{p(n)-1},x_{p(n)}) \\ \\ & + b^2S_b(x_{q(n)},x_{q(n)},x_{p(n)-1}). \end{array}$$

Combining this result with (2.7) and (2.9) we get

$$\varepsilon \leq \limsup_{n \to +\infty} S_b(x_{q(n)}, x_{q(n)}, x_{p(n)}) \leq \limsup_{n \to +\infty} S_b(x_{q(n)-1}, x_{q(n)-1}, x_{p(n)-1}) \leq b^2 \varepsilon. \tag{2.13}$$

In view of (2.13) and (2.11) and applying the conditions (F1) and (F3'), we have

$$\begin{split} F(b^2\varepsilon) & \leq & F\left(b^2\limsup_{n\to+\infty} S_b(x_{q((n)},x_{q(n)},x_{p(n)})\right) \\ & \leq & F\left(\limsup_{n\to+\infty} S_b(x_{q(n)-1},x_{q(n)-1},x_{p(n)-1})\right) - \tau \\ & \leq & F(b^2\varepsilon) - \tau. \end{split}$$

It is a contradiction with $\tau > 0$, and therefore it follows that $\{x_n\}$ is a Cauchy sequence in X. By completeness of (X, S_b) , $\{x_n\}$ converges to some point $v \in X$. Then, for each $\varepsilon > 0$, there exists $N_1 \in \mathbb{N}$ such that

$$S_b(v, v, x_n) < \varepsilon, \tag{2.14}$$

for all $n \geq N_1$. We are going to show that v is a fixed point of T. For this aim, we consider two following cases:

Case 1. If $S_b(Tv, Tv, Tx_n) = 0$ for some $n \ge N_1$, then from (dS_b2) we find that

$$S_b(Tv, Tv, v) \le 2bS_b(Tv, Tv, Tx_n) + bS_b(v, v, Tx_n) \le b\varepsilon.$$

Case 2. If $S_b(Tv, Tv, Tx_n) > 0$ for all $n \ge N_1$, then using (2.1), we get

$$F(b^2 S_b(Tv, Tv, Tx_n)) \le F(N(v, x_n)) - \tau. \tag{2.15}$$

From our assumptions, and using (dS_b2) , it follows that

$$\max \{S_b(v, v, x_n), S_b(Tv, Tv, Tx_n)\}$$

$$\leq N(v, x_n)$$

$$= \max \left\{ S_b(v, v, x_n), S_b(Tv, Tv, Tx_n), \frac{S_b(x_n, x_n, Tv)}{10b^8}, \frac{S_b(v, v, Tx_n)}{10b^9}, \frac{S_b(x_n, x_n, T^2v)}{10b^4} \right\}$$

$$\leq \max \left\{ S_b(v, v, x_n), S_b(Tv, Tv, Tx_n), \frac{S_b(x_n, x_n, Tx_n)}{5b^7} + \frac{S_b(Tv, Tv, Tx_n)}{10b^7}, \frac{S_b(v, v, Tx_n)}{10b^9}, \frac{S_b(x_n, x_n, T^2v)}{10b^4} \right\}$$

$$= \max \left\{ S_b(v, v, x_n), S_b(Tv, Tv, Tx_n) \right\}.$$

It enforces that $N(v, x_n) = \max\{S_b(v, v, x_n), S_b(Tv, Tv, Tx_n)\}$. Now, if we assume that the maximum on the right-hand side of this equality is equal to $S_b(Tv, Tv, Tx_n)$, then by replacing it in (2.15), we obtain $S_b(Tv, Tv, Tx_n) < S_b(Tv, Tv, Tx_n)$ which is a contradiction. Consequently, for each $n \in \mathbb{N}$ we have

$$\max \left\{ S_b(v, v, x_n), S_b(Tv, Tv, Tx_n) \right\} = S_b(v, v, x_n).$$

Hence, (2.15) turns into

$$F(b^2S_b(Tv, Tv, Tx_n)) \le F(S_b(v, v, x_n)) - \tau$$

 $< F(S_b(v, v, x_n)).$

Employing the condition (F1), we get

$$S_b(Tv, Tv, Tx_n) < S_b(v, v, x_n). \tag{2.16}$$

From (dS_b2) , (2.16) and (2.14), we deduce that

$$S_b(Tv, Tv, v) \le 2bS_b(Tv, Tv, Tx_{N_1}) + bS_b(v, v, Tx_{N_1}) < 3b\varepsilon.$$

From the arbitrariness of ε in each case, it follows that $S_b(Tv, Tv, v) = 0$ which implies that Tv = v. Hence, v is a fixed point of T.

Finally, we show that T has at most one fixed point. Indeed, if $v_1, v_2 \in X$ are two fixed points of T, such that $v_1 \neq v_2$, then we obtain

$$F(b^2 S_b(Tv_1, Tv_1, Tv_2)) \le F(N(v_1, v_2)) - \tau, \tag{2.17}$$

From our hypothesis and by using (dS_b2) , it follows that

$$\begin{split} S_b(v_1,v_1,v_2) & \leq & N(v_1,v_2) \\ & \leq & \max \left\{ S_b(v_1,v_1,v_2), S_b(Tv_1,Tv_1,Tv_2), \frac{S_b(v_2,v_2,Tv_2)}{5b^7} + \frac{S_b(Tv_1,Tv_1,Tv_2)}{10b^7}, \\ & \frac{S_b(v_1,v_1,Tv_2)}{10b^9}, \frac{S_b(Tv_2,Tv_2,T^2v_1)}{10b^4} \right\} \\ & = & \max \left\{ S_b(v_1,v_1,v_2), S_b(Tv_1,Tv_1,Tv_2) \right\} \\ & = & S_b(v_1,v_1,v_2). \end{split}$$

Then (2.17) becomes

$$F(b^2S_b(v_1, v_1, v_2)) \le F(S_b(v_1, v_1, v_2)) - \tau.$$

It gives us a contradiction. Therefore, $v_1 = v_2$ and the fixed point is unique.

Now we illustrate our result contained in Theorem 2.1 with help of two examples.

Example 2.2. Let (X, S_b) be as in Example 2.1 and let $\tau > 0$ be an arbitrary fixed number. Define the mapping $T: X \to X$ by $T(x) = e^{-\tau} \frac{x}{8}$ and take $F(\alpha) = \ln \alpha + \alpha$ ($\alpha > 0$). It is easily verified that $N(x, y) = S_b(x, x, y) = 2x + 4y$. Assume that x or y is nonzero, then $S_b(Tx, Tx, Ty) > 0$ and we have

$$\tau + F(b^{2}S_{b}(Tx, Tx, Ty)) = \tau + \ln(e^{-\tau}(x+2y)) + e^{-\tau}(x+2y)$$

$$= \ln(x+2y) + e^{-\tau}(x+2y)$$

$$\leq \ln(2x+4y) + 2x + 4y$$

$$= F(S_{b}(x, x, y))$$

$$= F(N(x, y)).$$

Hence, T is a generalized F-contraction. On the other hand, if we assume that $0 < \tau \le 0.0250587314$, then the following estimate holds:

$$\begin{split} \max \left\{ \frac{S_b(y,y,Ty)}{5b^7} + \frac{S_b(Tx,Tx,Ty)}{10b^7}, \frac{S_b(x,x,Ty)}{10b^9}, \frac{S_b(y,y,T^2x)}{10b^4} \right\} \\ &= \max \left\{ \frac{2y + e^{-\tau}\frac{y}{2}}{5 \times 2^7} + \frac{e^{-\tau}(\frac{x}{4} + \frac{y}{2})}{10 \times 2^7}, \frac{2x + e^{-\tau}\frac{y}{2}}{10 \times 2^9}, \frac{2y + e^{-2\tau}\frac{x}{16}}{10 \times 2^4} \right\} \\ &\leq e^{-\tau}(\frac{x}{4} + \frac{y}{2}) = S_b(Tx,Tx,Ty). \end{split}$$

Thus all conditions of Theorem 2.1 hold and 0 is a unique fixed point of T.

Example 2.3. Let $X = \mathbb{R}$, and $S_b : X^3 \to \mathbb{R}_+$ be a mapping defined by $S_b(x,y,z) = \frac{x^2}{2} + \frac{y^2}{2} + 2z^2$. Then (X,S_b) is a complete dislocated S_b -metric with b=2. Define the mapping $T: X \to X$ by $T(x) = \frac{x}{3}$ and take $F(\alpha) = \ln \alpha$ ($\alpha > 0$). It is easily checked that $N(x,y) = S_b(x,x,y) = x^2 + 2y^2$. Assume that x or y is nonzero, then $S_b(Tx, Tx, Ty) > 0$ and we have

$$\tau + F(b^2 S_b(Tx, Tx, Ty)) \le F(N(x, y)) \Leftrightarrow \ln(\frac{9}{4}) \ge \tau.$$

Also, we observe that

$$\max \left\{ \frac{S_b(y, y, Ty)}{5b^7} + \frac{S_b(Tx, Tx, Ty)}{10b^7}, \frac{S_b(x, x, Ty)}{10b^9}, \frac{S_b(y, y, T^2x)}{10b^4} \right\}$$

$$= \max \left\{ \frac{48y^2 + 2x^2}{23040}, \frac{18x^2 + 4y^2}{92160}, \frac{162y^2 + 4x^2}{25920} \right\}$$

$$\leq \frac{10240x^2 + 20480y^2}{92160}$$

$$= S_b(Tx, Tx, Ty)$$

for all $x, y \in X$. Now, if we assume that $0 < \tau \le \ln(\frac{9}{4})$, then all the conditions of Theorem 2.1 hold and 0 is a unique fixed point of T.

Now, we describe the concept of generalized F-Suzuki-contraction in the framework of dislocated S_b -metric spaces.

Definition 2.4. Let (X, S_b) be a dislocated S_b -metric space. A mapping $T: X \to X$ is said to be a generalized F-Suzuki-contraction if there exists $F \in \mathfrak{F}$ such that for all $x, y \in X$

$$\frac{1}{2h}S_b(x, x, Tx) < S_b(x, x, y) \Rightarrow F\left(2b^3S_b(Tx, Tx, Ty)\right) \le F\left(M_T(x, y)\right) - \psi\left(M_T(x, y)\right),\tag{2.18}$$

where $\psi \in \Psi$ and

$$M_T(x,y) = \max \left\{ S_b(x,x,y), \frac{S_b(y,y,Ty)}{10}, \frac{S_b(x,x,Tx)}{10}, S_b(Tx,Tx,Ty), \frac{S_b(y,y,Tx)}{18b}, \frac{S_b(Tx,Tx,T^2x)}{2} \right\}.$$

Our second main result is the following.

Theorem 2.2. Let (X, S_b) be a complete dislocated S_b -metric space and $T: X \to X$ be a generalized F-Suzuki-contraction satisfying the following condition:

$$\max\Big\{\frac{S_b(y,y,Ty)}{10}, \frac{S_b(x,x,Tx)}{10}, \frac{S_b(y,y,Ty)}{9} + \frac{S_b(Tx,Tx,Ty)}{18}, \frac{S_b(Tx,Tx,T^2x)}{2}\Big\} \leq S_b(Tx,Tx,Ty)$$

for all x, y in X. Then T has a unique fixed point in X.

Proof. Let x_0 be arbitrary. Define $x_n = Tx_{n-1}$ for each $n \in \mathbb{N}$. If there exists $n \in \mathbb{N}$ such that $S_b(x_n, x_n, Tx_n) = 0$, then $x_n = Tx_n$ and x_n becomes a fixed point of T, which completes the proof. Therefore, we assume that $S_b(x_n, x_n, Tx_n) > 0$ for all $n \in \mathbb{N}$. Taking into account (2.18), we deduce

$$F(2b^{3}S_{b}(Tx_{n}, Tx_{n}, Tx_{n+1})) \le F(M_{T}(x_{n}, x_{n+1})) - \psi(M_{T}(x_{n}, x_{n+1})). \tag{2.19}$$

Using (dS_b2) we get

$$\begin{split} \max \Big\{ S_b(x_n, x_n, x_{n+1}), S_b(x_{n+1}, x_{n+1}, Tx_{n+1}) \Big\} \\ & \leq & M_T(x_n, x_{n+1}) \\ & \leq & \max \Big\{ S_b(x_n, x_n, x_{n+1}), \frac{S_b(x_{n+1}, x_{n+1}, Tx_{n+1})}{10}, \frac{S_b(x_n, x_n, Tx_n)}{10}, \\ & S_b(Tx_n, Tx_n, Tx_{n+1}), \frac{S_b(Tx_n, Tx_n, Tx_{n+1})}{2}, \frac{S_b(x_{n+1}, x_{n+1}, x_{n+2})}{6} \Big\} \end{split}$$

 $= \max \left\{ S_b(x_n, x_n, x_{n+1}), S_b(x_{n+1}, x_{n+1}, x_{n+2}) \right\}$

and combining it with the relation (2.19) we derive

$$F(2b^{3}S_{b}(Tx_{n}, Tx_{n}, Tx_{n+1})) \leq F(\max\{S_{b}(x_{n}, x_{n}, x_{n+1}), S_{b}(x_{n+1}, x_{n+1}, x_{n+2}\})$$

$$-\psi(\max\{S_{b}(x_{n}, x_{n}, x_{n+1}), S_{b}(x_{n+1}, x_{n+1}, x_{n+2}\}). \tag{2.20}$$

If $\max\{S_b(x_n,x_n,x_{n+1}),S_b(x_{n+1},x_{n+1},x_{n+2})\}=S_b(x_{n+1},x_{n+1},x_{n+2})$, then (2.20) becomes

$$F(2b^3S_b(Tx_n, Tx_n, Tx_{n+1})) \le F(S_b(x_{n+1}, x_{n+1}, x_{n+2})) - \psi(S(x_{n+1}, x_{n+1}, x_{n+2})).$$

By the property of ψ and using condition (F1), we obtain

$$2b^3S_b(Tx_n, Tx_n, Tx_{n+1}) < S_b(Tx_n, Tx_n, Tx_{n+1}),$$

which is a contradiction. Hence $\max \{S_b(x_n, x_n, x_{n+1}), S_b(x_{n+1}, x_{n+1}, x_{n+2})\} = S_b(x_n, x_n, x_{n+1})$, then (2.20) becomes

$$F(2b^{3}S_{b}(Tx_{n}, Tx_{n}, Tx_{n+1})) \le F(S_{b}(x_{n}, x_{n}, x_{n+1})) - \psi(S(x_{n}, x_{n}, x_{n+1})). \tag{2.21}$$

This together with condition (F1) implies that $S_b(Tx_n, Tx_n, Tx_{n+1}) < S_b(x_n, x_n, x_{n+1})$ for each $n \in \mathbb{N}$. Then $\{S_b(x_n, x_n, x_{n+1})\}$ is a nonnegative decreasing sequence of real numbers. Therefore, there exists $A \geq 0$ such that $\lim_{n \to +\infty} S_b(x_n, x_n, x_{n+1}) = A$.

Letting $n \to +\infty$ in (2.21) and using (F3') and continuity of ψ , we get

$$F(2b^3A) < F(A) - \psi(A).$$

It gives us $\psi(A) = 0$. By property of ψ we deduce that A = 0. Consequently, we have

$$\lim_{n \to +\infty} S_b(x_n, x_n, x_{n+1}) = 0. (2.22)$$

Next, we prove that $\{x_n\}$ is a Cauchy sequence in X. If it is not true, then there exist $\varepsilon > 0$ and increasing sequences of natural numbers $\{p(n)\}$ and $\{q(n)\}$ such that

$$n < q(n) < p(n),$$

$$S_b(x_{q(n)}, x_{q(n)}, x_{p(n)}) \ge \varepsilon,$$

$$S_b(x_{q(n)}, x_{q(n)}, x_{p(n)-1}) < \varepsilon \tag{2.23}$$

for all $n \in \mathbb{N}$.

Owing to (2.22), there exists $N_1 \in \mathbb{N}$ such that

$$S_b(x_{q(n)}, x_{q(n)}, Tx_{q(n)}) < \varepsilon \tag{2.24}$$

for all $n \geq N_1$. Hence, from (2.23) and (2.24) it follows that

$$\frac{1}{2b}S_b(x_{q(n)}, x_{q(n)}, Tx_{q(n)}) < \frac{1}{2b}\varepsilon < S_b(x_{q(n)}, x_{q(n)}, x_{p(n)})$$

for all $n \geq N_1$. By using (2.18) we obtain

$$F(2b^{3}S_{b}(Tx_{q(n)}, Tx_{q(n)}, Tx_{p(n)})) \le F(M_{T}(x_{q(n)}, x_{p(n)})) - \psi(M_{T}(x_{q(n)}, x_{p(n)})). \tag{2.25}$$

From our assumptions and regarding (dS_b2) , we get

$$\max \left\{ S_b(x_{q(n)}, x_{q(n)}, x_{p(n)}), S_b(Tx_{q(n)}, Tx_{q(n)}, Tx_{p(n)}) \right\}$$

$$\leq M_T(x_{q(n)}, x_{p(n)})$$

$$\leq \max \left\{ S_b(x_{q(n)}, x_{q(n)}, x_{p(n)}), \frac{S_b(x_{p(n)}, x_{p(n)}, x_{p(n)+1})}{10}, S_b(Tx_{q(n)}, Tx_{q(n)}, Tx_{p(n)}) \right.$$

$$\frac{S_b(x_{q(n)}, x_{q(n)}, x_{q(n)+1})}{10}, \frac{S_b(x_{q(n)+1}, x_{q(n)+1}, x_{q(n)+2})}{2},$$

$$\frac{S_b(x_{p(n)}, x_{p(n)}, x_{p(n)+1})}{9} + \frac{S_b(x_{q(n)+1}, x_{q(n)+1}, x_{p(n)+1})}{18} \right\}$$

$$\leq \max \left\{ S_b(x_{q(n)}, x_{q(n)}, x_{p(n)}), S_b(x_{q(n)+1}, x_{q(n)+1}, x_{p(n)+1}) \right\}.$$

Then (2.25) becomes

 $F\left(2b^3S_b(Tx_{q(n)},Tx_{q(n)},Tx_{p(n)})\right)$

$$\leq F\left(\max\left\{S_b(x_{q(n)}, x_{q(n)}, x_{p(n)}), S_b(x_{q(n)+1}, x_{q(n)+1}, x_{p(n)+1})\right\}\right) - \psi\left(\max\left\{S_b(x_{q(n)}, x_{q(n)}, x_{p(n)}), S_b(x_{q(n)+1}, x_{q(n)+1}, x_{p(n)+1})\right\}\right).$$

 $\text{If } \max \left\{ S_b(x_{q(n)}, x_{q(n)}, x_{p(n)}), S_b(x_{q(n)+1}, x_{q(n)+1}, x_{p(n)+1}) \right\} = S_b(x_{q(n)+1}, x_{q(n)+1}, x_{p(n)+1}) \text{ for some } n, \text{ then we have } x_{p(n)+1}, x_{p(n)+1}, x_{p(n)+1}, x_{p(n)+1}) \text{ for some } n, \text{ then we have } x_{p(n)+1}, x_{p(n)+1}, x_{p(n)+1}, x_{p(n)+1}, x_{p(n)+1}, x_{p(n)+1}) \text{ for some } n, \text{ then we have } x_{p(n)+1}, x_{p(n)+1}, x_{p(n)+1}, x_{p(n)+1}, x_{p(n)+1}, x_{p(n)+1}, x_{p(n)+1}, x_{p(n)+1}, x_{p(n)+1}) \text{ for some } n, \text{ then we have } x_{p(n)+1}, x_{p(n)+$

$$F(2b^{3}S_{b}(Tx_{q(n)}, Tx_{q(n)}, Tx_{p(n)})) \leq F(S_{b}(x_{q(n)+1}, x_{q(n)+1}, x_{p(n)+1}))$$

$$- \psi(S_{b}(x_{q(n)+1}, x_{q(n)+1}, x_{p(n)+1})).$$

Obviously, $S_b(x_{q(n)+1}, x_{q(n)+1}, x_{p(n)+1}) > 0$ and by the property of ψ and (F1), we get

$$S_b(Tx_{q(n)}, Tx_{q(n)}, Tx_{p(n)}) < S_b(x_{q(n)+1}, x_{q(n)+1}, x_{p(n)+1}),$$

which is a contradiction. Duo to this fact, we find that

$$\max \left\{ S_b(x_{q(n)}, x_{q(n)}, x_{p(n)}), S_b(x_{q(n)+1}, x_{q(n)+1}, x_{p(n)+1}) \right\} = S_b(x_{q(n)}, x_{q(n)}, x_{p(n)})$$

for all n. Therefore

$$F(2b^{3}S_{b}(Tx_{q(n)}, Tx_{q(n)}, Tx_{p(n)})) \le F(S_{b}(x_{q(n)}, x_{q(n)}, x_{p(n)})) - \psi(S_{b}(x_{q(n)}, x_{q(n)}, x_{p(n)})), \tag{2.26}$$

and by (F1), it follows that

$$S_b(x_{q(n)+1}, x_{q(n)+1}, x_{p(n)+1}) < S_b(x_{q(n)}, x_{q(n)}, x_{p(n)}).$$

In view of (2.23) and (dS_b2) , we infer that

$$\varepsilon \leq S_b(x_{q(n)}, x_{q(n)}, x_{p(n)}) \leq 2bS_b(x_{q(n)}, x_{q(n)}, x_{p(n)-1}) + bS_b(x_{p(n)}, x_{p(n)}, x_{p(n)-1})$$

$$\leq 2bS_b(x_{q(n)}, x_{q(n)}, x_{p(n)-1}) + 2b^2S_b(x_{p(n)}, x_{p(n)}, x_{p(n)}) + b^2S_b(x_{p(n)-1}, x_{p(n)-1}, x_{p(n)})$$

$$\leq 2bS_b(x_{q(n)}, x_{q(n)}, x_{p(n)-1}) + 6b^3S_b(x_{p(n)}, x_{p(n)}, x_{p(n)}, x_{p(n)+1})$$

$$+b^2S_b(x_{p(n)-1}, x_{p(n)-1}, x_{p(n)}).$$

Taking the limit as $n \to +\infty$ in the above inequality and regarding (2.22) and (2.23), we deduce that

$$\varepsilon \le \lim_{n \to +\infty} S_b(x_{q(n)}, x_{q(n)}, x_{p(n)}) \le 2b\varepsilon. \tag{2.27}$$

On the other hand, we have

$$\varepsilon \leq S_b(x_{q(n)}, x_{q(n)}, x_{p(n)}) \leq 2bS_b(x_{q(n)}, x_{q(n)}, x_{q(n)+1}) + bS_b(x_{p(n)}, x_{p(n)}, x_{q(n)+1})$$

$$\leq 2bS_b(x_{q(n)}, x_{q(n)}, x_{q(n)+1}) + 2b^2S_b(x_{p(n)}, x_{p(n)}, x_{p(n)+1})$$

$$+b^2S_b(x_{q(n)+1}, x_{q(n)+1}, x_{p(n)+1}).$$

Taking the limit supremum as $n \to +\infty$ in the above inequality. By using (2.22) we obtain

$$\frac{\varepsilon}{b^2} \le \limsup_{n \to +\infty} S_b(x_{q(n)+1}, x_{q(n)+1}, x_{p(n)+1}). \tag{2.28}$$

Taking the limit supremum as $n \to +\infty$ on each side of (2.26) and using conditions (2.27) and (2.28) together with (F1) and (F3'), we deduce that

$$F(2b\varepsilon) = F(2b^{3} \frac{\varepsilon}{b^{2}}) \leq F\left(2b^{3} \limsup_{n \to +\infty} S_{b}(x_{q(n)+1}, S_{b}(x_{q(n)+1}, x_{p(n)+1}))\right)$$

$$\leq F\left(\limsup_{n \to +\infty} S_{b}(x_{q(n)}, S_{b}(x_{q(n)}, x_{p(n)})\right)$$

$$-\psi\left(\liminf_{n \to +\infty} S_{b}(x_{q(n)}, S_{b}(x_{q(n)}, x_{p(n)})\right)$$

$$\leq F(2b\varepsilon) - \psi(\varepsilon).$$

It enforces that $\psi(\varepsilon) = 0$, which leads to a contradiction. Therefore $\{x_n\}$ is a Cauchy sequence in X. Since X is a complete dislocated S_b -metric space, it follows that there exists $v \in X$ in which for each $\varepsilon > 0$, there exists $N_2 \in \mathbb{N}$ such that

$$S_b(v, v, x_n) < \varepsilon \tag{2.29}$$

for all $n > N_2$. Now, we prove that v is a fixed point of T. To this end, we show that $S_b(Tv, Tv, v) = 0$. We consider the following cases:

Case 1. If $S_b(v, v, x_n) = 0$ for sufficiently large n, then $v = x_n$. Thus, for sufficiently large n, we can write

$$S_b(Tv, Tv, v) = S_b(Tx_n, Tx_n, v) \le 2bS_b(x_{n+1}, x_{n+1}, x_{n+2}) + bS_b(v, v, x_{n+2}).$$

Letting $n \to +\infty$ in the above inequality. From (2.22) and (2.29) we get $S_b(Tv, Tv, v) = 0$. Thus Tv = v and v is a fixed point of T.

Case 2. If there exists $n \ge N_2$ such that $S_b(v, v, x_n) > 0$ and $S_b(Tv, Tv, Tx_n) = 0$, then from $(dS_b 2)$ we have

$$S_b(Tv, Tv, v) \le 2bS_b(Tv, Tv, Tx_n) + bS_b(v, v, x_{n+1}) \le b\varepsilon,$$

which implies that Tv = v by virtue of the arbitrariness of ε .

Case 3. If $S_b(v, v, x_n) > 0$ and $S_b(Tv, Tv, Tv, Tx_n) > 0$ for all $n \ge N_2$, then using (2.18) we obtain

$$F(2b^3S_b(Tv, Tv, Tx_n)) \le F(M_T(v, x_n)) - \psi(M_T(v, x_n)). \tag{2.30}$$

Thus, by using the hypothesis and taking into account (dS_b2) , it yields $\max \{S_b(v, v, x_n), S_b(Tv, Tv, Tx_n)\}$

$$\leq M_T(v, x_n)$$

$$\leq \max \left\{ S_b(v, v, x_n), S_b(Tv, Tv, Tx_n), \frac{S_b(x_n, x_n, Tx_n)}{10} \right.$$

$$\left. \frac{S_b(v, v, Tv)}{10}, \frac{S_b(x_n, x_n, Tx_n)}{9} + \frac{S_b(Tv, Tv, Tx_n)}{18}, \frac{S_b(Tv, Tv, T^2v)}{2} \right\}$$

$$\leq \max \left\{ S_b(v, v, x_n), S_b(Tv, Tv, Tx_n) \right\}.$$

Then (2.30) becomes

$$F(2b^{3}S_{b}(Tv, Tv, Tx_{n})) \leq F(\max\{S_{b}(v, v, x_{n}), S_{b}(Tv, Tv, Tx_{n})\})$$
$$- \psi(\max\{S_{b}(v, v, x_{n}), S_{b}(Tv, Tv, Tx_{n})\}).$$

If $\max\{S_b(v,v,x_n),S_b(Tv,Tv,Tx_n)\}=S_b(Tv,Tv,Tx_n)$, then we have

$$F(2b^3S_h(Tv,Tv,Tx_n)) < F(S_h(Tv,Tv,Tx_n)) - \psi(S_h(Tv,Tv,Tx_n)).$$

From this it follows that $2b^3S_b(Tv, Tv, Tx_n) < S_b(Tv, Tv, Tx_n)$, which is a contradiction. Therefore,

$$\max \left\{ S_b(v, v, x_n), S_b(Tv, Tv, Tx_n) \right\} = S_b(v, v, x_n)$$

and (2.30) becomes

$$F(2b^{3}S_{b}(Tv, Tv, Tx_{n})) \leq F(S_{b}(v, v, x_{n})) - \psi(S_{b}(v, v, x_{n}))$$

$$< F(S_{b}(v, v, x_{n})).$$

Thus, from (F1) we get

$$S_b(Tv, Tv, Tx_n) < S_b(v, v, x_n). \tag{2.31}$$

Applying (2.29), (2.31) and (dS_b2) we get

$$S_b(Tv, Tv, v) \le 2bS_b(Tv, Tv, Tx_n) + bS_b(v, v, x_{n+1}) < 3b\varepsilon$$

for sufficiently large n. It enforces that Tv = v by virtue of the arbitrariness of ε . Then v is a fixed point of T.

Next, we show the uniqueness. Indeed, if v_1 , v_2 are two fixed points of T such that $v_1 \neq v_2$, then in view of (2.18) we get

$$F(2b^{3}S_{b}(Tv_{1}, Tv_{1}, Tv_{2})) \leq F(M_{T}(v_{1}, v_{2})) - \psi(M_{T}(v_{1}, v_{2})). \tag{2.32}$$

According to our assumptions and by using (dS_b2) , we find that

$$\begin{split} S_b(v_1,v_1,v_2) & \leq & M_T(v_1,v_2) \\ & \leq & \max \left\{ S_b(v_1,v_1,v_2), S_b(Tv_1,Tv_1,Tv_2), \right. \\ & \left. \frac{S_b(v_2,v_2,Tv_2)}{10}, \frac{S_b(v_1,v_1,Tv_1)}{10}, \frac{S_b(v_2,v_2,Tv_2)}{9} \right. \\ & \left. + \frac{S_b(Tv_1,Tv_1,Tv_2)}{18} \right\} \\ & \leq & \max \left\{ S_b(v_1,v_1,v_2), S_b(Tv_1,Tv_1,Tv_2) \right\} \\ & = & S_b(v_1,v_1,v_2). \end{split}$$

Then (2.32) becomes

$$F(2b^3S_b(v_1,v_1,v_2)) \le F(S_b(v_1,v_1,v_2)) - \psi(S_b(v_1,v_1,v_2)).$$

From this it follows that $2b^3S_b(v_1, v_1, v_2) < S_b(v_1, v_1, v_2)$, which is a contradiction. Then $v_1 = v_2$ and so T has a unique fixed point in X.

Example 2.4. Let $X = \{-1, 0, 1\}$. Define the mapping $S_b : X^3 \to \mathbb{R}_+$ by

$$S_b(x, y, z) = \begin{cases} \frac{3}{2}, & 0 = x = y \neq z = 1 \text{ or } -1 = x = y \neq z = 1\\ \frac{10}{6}, & 1 = x = y \neq z\\ 0, & x = y = z = -1 \text{ or } 1\\ \frac{1}{5}, & otherwise \end{cases}$$

for all $x, y, z \in X$. It is easy to show that (X, S_b) is a complete dislocated S_b -metric space with $b = \frac{3}{2}$. Put $F(\alpha) = \ln \alpha \ (\alpha > 0)$ and $\psi(t) = t \ (t \ge 0)$. Define $T: X \to X$ by

$$T(x) = \begin{cases} 0, & x = 1 \\ -1, & x = -1, 0. \end{cases}$$

Note that $S_b(x,x,y) > 0$ and $S_b(T(x),T(x),T(y)) > 0$ if and only if $x \in \{-1,0\}$, y = 1 or x = 1, $y \in \{-1,0\}$. Also, for each $x,y \in X$ we have $M_T(x,y) = S_b(x,x,y)$ and we find that

$$F\left(2b^3S_b(T(x),T(x),T(y))\right) \leq F\left(S_b(x,x,y)\right) - \psi\left(S_b(x,x,y)\right) \Leftrightarrow \ln\frac{S_b(x,x,y)}{2b^3S_b(T(x),T(x),T(y))} \geq S_b(x,x,y).$$

Now, we consider two cases:

Case 2.1. Case 1. Let $x \in \{-1, 0\}$ and y = 1, then

$$S_b(x, x, y) = \frac{3}{2},$$

$$S_b(T(x), T(x), T(y)) = S_b(-1, -1, 0) = \frac{1}{5},$$

$$S_b(0, 0, T(0)) = \frac{1}{5}, S_b(-1, -1, T(-1)) = 0.$$

So, we have

$$\ln \frac{S_b(x,x,y)}{2b^3S_b(T(x),T(x),T(y))} = \ln \frac{\frac{3}{2}}{\frac{54}{40}} = \ln \frac{120}{108} = 3.0377 \ge S_b(x,x,y) = \frac{3}{2}.$$

Case 2. Let x = 1 and $y \in \{-1, 0\}$, then

$$S_b(x, x, y) = \frac{10}{6},$$

$$S_b(T(x), T(x), T(y)) = \frac{1}{5},$$

$$S_b(x, x, T(x)) = \frac{10}{6}.$$

So, we have

$$\ln \frac{S_b(x,x,y)}{2b^3S_b(T(x),T(x),T(y))} = \ln \frac{\frac{10}{6}}{\frac{54}{40}} = \ln \frac{400}{324} = 3.4369 \ge S_b(x,x,y) = \frac{10}{6}.$$

On the other hand, for all $x, y \in X$ we have

$$\begin{split} \max\Big\{\frac{S_b(y,y,T(y))}{10},\frac{S_b(x,x,T(x))}{10},\frac{S_b(y,y,T(y))}{9} + \frac{S_b(T(x),T(x),T(y))}{18},\frac{S_b(T(x),T(x),T^2(x))}{2}\Big\} \\ \leq \frac{1}{5} = S_b(T(x),T(x),T(y)). \end{split}$$

Hence, T is a generalized F-Suzuki-contraction which satisfies the assumption of Theorem 2.2 and so it has a unique fixed point -1.

References

- [1] I. A. Bakhtin, The contraction mapping principle in almost metric spaces, Funct. Anal. Unianowsk Gos. Ped. Inst. 30 (1989), 26–37.
- [2] S. Czerwik, Contraction mappings in b-metric spaces, Acta Math. Inform. Univ. Ostra. 1 (1993), 5–11.
- [3] N.V. Dung and V.L. Hang, A fixed point theorem for generalized F-contractions on complete metric spaces, Vietnam J. Math. 43 (2015), 743–753.
- [4] G.N.V. Kishore, K.P.R. Rao, D. Panthi, B. Srinuvasa Rao and S. Satyanaraya, Some applications via fixed point results in partially ordered S_b-metric spaces, Fixed Point Theory Appl. 2017 (2017), 10.
- [5] H. Piri and P. Kumam, Some fixed point theorems concerning F-contraction in complete metric spaces, Fixed Point Theory Appl. 2014 (2014), 210.
- [6] H. Piri and P. Kumam, Fixed point theorems for generalized F-Suzuki-contraction mappings in complete b-metric spaces, Fixed Point Theory Appl. 2016 (2016), 90 .
- [7] N.Y. Özgür and N. TaŞ, Some fixed point theorems on S-metric spaces, Mat. Vesnik 69 (1) (2017), 39-52.
- [8] N.Y. Özgür, N. TaŞ and U. Celik, New fixed point-circle results on S-metric spaces, Bull. Math. Anal. Appl. 9 (2) (2017), 10–23.
- [9] Y. Rohená, T. Došenović and S. Radenović, A note on the paper "A Fixed point Theorems in S_b -Metric Spaces", Filomal 31 (11) (2017), 3335–3346.

- [10] Sh. Sedghi, A. Gholidahne, T. Došenovic, J. Esfahani and S. Radenovic, Common fixed point of four maps in S_b -metric spaces, J. Linear Topol. Alg. 5 (2) (2016), 93–104.
- [11] Sh. Sedghi, N. Shobe and A. Aliouche, A generalization of fixed point theorem in S-metric spaces, Mat. Vesn. 64 (2012), 258–266.
- [12] D. Wardowski, Fixed points of a new type of contractive mappings in complete metric spaces, Fixed Point Theory Appl. 2012 (2012), 94.
- [13] D. Wardowski and N.V. Dung, Fixed points of F-weak contractions on complete metric spaces, Demonstr. Math. 47 (1) (2014), 146–155.