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ABSTRACT. We study the existence and uniqueness of solutions for a nonlinear system of coupled fractional
differential equations equipped with nonlocal coupled integro-multistrip-multipoint boundary conditions.
Our results are new in the sense that the given boundary conditions connect the values of the known
functions over the given domain with the ones described on different sub-segments and different nonlocal
positions within the given domain. We make use of Banach contraction mapping principle, Leray-Schauder
alternative and Krasnoselskii fixed point theorem to prove the desired results for the problem at hand. An

example illustrating the existence and uniqueness result is also presented.

1. INTRODUCTION

Fractional calculus is found to be more practical and effective than the classical calculus in the mathe-
matical modeling of several real world phenomena. The topic of fractional differential equations has evolved
as an important and significant area of investigation in view of its numerous applications in viscoelasticity,
electroanalytical chemistry, and many physical problems [1]- [4]. In recent years, many works have been

devoted to the study of the mathematical aspects of fractional order differential equations. Many advanced
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and efficient methods have been applied to develop the existence theory for fractional differential equations.
One of the powerful tools for developing the existence crireria for solutions to such equations is based on the
fixed point theory. Many authors applied fixed point theorems to establish the existence theory for nonlinear
fractional differential equations; for example, see [5]- [13] and the references cited therein.

On the other hand, the coupled systems of nonlinear fractional differential equations also received con-
siderable attention. Such systems appear in various disciplines of applied nature, for instance, see [14,15].
The tools of the fixed point theory also played a key role in developing the existence theory for the coupled
systems of fractional differential equations [18]- [20].

In [21], the authors investigated a coupled system of nonlinear fractional differential equations:

cD¥x(t) = f(t,z(t),y(t), DVy(t)), t €[0,T], I1<a <2, 0<y<1,
cDBy(t) = g(t,z(t), D°x(t),y(t)), t €[0,T), 1< B <2, 0<d<1,

equipped with coupled nonlocal and integral boundary conditions of the form:
T
20) =h(o), [ yls)ds = ma(n).
0
T
y0) = 6@), [ alo)ds = pay(e). m € O.T),
0

where ¢D? denote the Caputo fractional derivatives of order i, i = «, 3,7,6, f,g: [0,T] x Rx R x R — R,
h,¢ : C([0,T],R) = R are given continuous functions, and p, 1o are real constants.
In [22], the existence of solutions for the following boundary value problem of coupled system of nonlinear

fractional differential equations was discussed:
‘Dix(t) = f(t,x(t),y(t)," D7'y(t), 1<q<2, 0<o1 <1, te[0,1],

DPy(t) = g(t,x(t), D?x(t),y(t)), 1<p<2, 0<oy <1, te][0,1],

I3 m—2
£(0) = b1 (), 2(1) = s / y(s)ds +bi Y auyn),

& m—2
§0) = ala), o) = aa [ a(s)ds+ba 3 Bl
=1

0<éE<m<ng < - <Npn-2<1, m2>3,
where D’ (j = p,q,01,02) denote the Caputo fractional derivative of order j, f,g : [0,1] x R x R x
R — R, ¢1,¢9 : C([0,1],R) — R are given appropriate functions, a1, a2, b; and by are real constants and
a;, Bi, 1=1,2,...,m — 2, are positive real constants.

In this paper, we are concerned with existence of solutions for a nonlinear system of coupled fractional

differential equations:

Dox(t) = f(t,z(t),y(t)), n—1<o<n, n>3, teJ:=]0,1], (1)
D%z(t) = g(t,z(t),y(t)), m—1<d<m, m>3, teJ:=]0,1], .
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subject to integro-multistrip-multipoint boundary conditions:
2(1)(0)=0,7=0,1,2,...,n—2,
1 p i d
| atorts =5 [ us)ds D5 o), i > 0.3 >0
0 i=2 M1 =1
! (1.2)

1 p 0, A
[ vt =35 [ atods+ Y5 a0, B> 055 >0,
0 i=2 i1 j=1

where D, D? are the standard Riemann-Liouville fractional derivatives of order o and ¢ respectively, f, g :

J xR xR — R are continuous functions and 0 < 71 < 12 < ...

0<tbh <b<...<0, <1 <@<...<(<1withp,qu, A €N.

< < p1r < p2 < ...

< pg < 1,

The rest of the paper is organized as follows. In Section 2, we recall some basic definitions of fractional

calculus and present an auxiliary lemma, which plays a pivotal role in obtaining the main results presented

in Section 3. We also discuss an example for illustration of the existence-uniqueness result.

2. PRELIMINARIES

First of all, we recall some basic definitions of fractional calculus [2].

Definition 2.1. The fractional integral of order r with the lower limit zero for a function f is defined as

I"f(t) = 1)/0 (tf(s) ds, t>0,

I(r

provided the right hand-side is point-wise defined on [0,00), where I'(-) is the gamma function, which is

defined by D(r) = [;~ ¢"te~tdt.

Definition 2.2. The Riemann-Liouville fractional derivative of order r > 0, n—1 < r <n, n € N, is

defined as

D510 = iy () [ = o s1as,

where the function [ has absolutely continuous derivatives upto order (n — 1).

The following lemma is of great importance in the proof of our main results.

Lemma 2.1. Let h,k € C(J,R) and
1
Q=— —AAs #0,
o

where

1 p q
Moo= o > B =ul )+ v
i=2 =1



Int. J. Anal. Appl. 17 (6) (2019) 943

n
Ay = %Zﬁz 1(67 — 67 +Z%Ulo

Then the solution of the linear fractional differential system

Doxz(t)=h(t), n—1<o<n, teJ:=]0,1],
Doy(t) = k(t), m—1<¢p<m, teJ:=[0,1],

supplemented with the boundary conditions (1.2) is equivalent to the system of integral equations
1 to~ 1

z(t) = m/Ot(t—s)f’*lh() { Z@Z /nl/ (s — 7)° ' k(s)drds
+ivjl,(1¢)/opj(pj—s)¢ Ue(s)ds — //t—s” (s dsdt) (2.2)

+A1 Zﬁz / / (s — )7 'h(r)drds

+27§ﬁ/0 j(cj )7 h(s)ds — F(lqﬁ)/ol/ot(t—s)wk(s)dsdt)}

and
y(t) = ﬁ/ot(t—s)‘b_lk(s) { Zﬁl - / / (s — 7)7h(s)drds
+_§Ajv;r(1(7)/ogj(<j—s)”-lh(s)ds—F(l(ﬁ)/o /Ot(t—s)“’_lh(s)dsdt) (2.3)

+A2<i§::25¢_1r(1¢)/7:"1/03(8T)¢_1k(7_)d7_ds

—s—évjr(l(b) /OPJ' (pj — 8)° "k(s)ds — % /01 /Ot(t B 5)"_1h(s)dsdt> }

Proof. As argued in [2], the general solution of the equations Dxz(t) = h(t), n — 1 < 0 < n and D%y(t) =

k(t), m —1 < ¢ < m, can be written as

1 t
x(t) = byt"  F bt 2 4 bt 7/ (t —8)7 " h(s)ds, (2.4)
I'(o) Jo
1 t
y(t) = dit® P Fdot? 2 o b At / (t —5)° " 1k(s)ds, (2.5)
() Jo
where b;,7 = 1,2,...,n, and d;,j7 = 1,...,m are arbitrary constants. Using the conditions z(? )(0) =
0,7=01,2,....,n—2 and y(7)(0) =0, j = 0,1,2,...,m — 2, we find that by = by = --- = b, = 0 and
dy =dy=...=dy =0. Thus (2.4) and (2.5) become
o—1 1 ! o—1
() =bit? 7+ —— | (t—9)7 "g(s)ds, (2.6)
I'(o) Jo

y(t) = dit®1 + L/0 (t —5)°1g(s)ds. (2.7)
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Using the conditions fo s)ds =>%_, Bi1 fm (s)ds +>25_1 vy(p;) and
fo s)ds = 1 f0 s)ds + Z] L V52(C) in (2.6) and (2.7), we get

1 i
~bi—Midy = Zﬁl T / / s — 1) k(r)drds
PJ
+Z’yjr / i —8)0 7 k(s S——/ / )7 h(s)dsdt,
1
7A2b1+$d1 = ZB’ 1F /0 1/ U 1h )deS
CJ
+Z%r / i —5)7 h(s ds——/ / (t — 8)? 'k(s)dsdt.

Solving the above system for b; and d;, we find that

b = ( Z/&H /m / (s — 1)~ Tk(r)drds
MNi—1
+;vjr(1@/opj<pj—s>¢ wioyis — s [ [0 tntsyasan
+A1[z#:51(_1r(10)/:i /OS(ST)"lh(T)deS
+Z%F /CJ = )7 (s ds——//t—ku s)dsdt] ),

and

d = ( ZBZ o) /QIAS(S—T)Ulh(T)deS
A

+ZW;F(10)/OQ(Q—S)“—% Jds — 5 // (t — )P k( )dsdt}

j=1
/ / s — 1) k(1)drds
i

+A2 Zﬂz 17
+§qujr(1@/opj<pj—s>¢ wisyis — oo [ [ s nasa]).

j=1
Inserting the above values of b; and d; in (2.6) and (2.7) leads to the solutions (2.2) and (2.3). The converse

follows by direct computation. The proof is completed. O

3. MAIN RESULTS

Let us introduce the space X = {x(t)|z(¢t) € C([0,1],R)} endowed with the norm ||z| = sup{|z(¢)|,t €
[0,1]}. Obviously (X, | - ) is a Banach space. Then the product space (X x X, ||(z,y)||) is also a Banach

space equipped with norm ||(z,y)|| = ||| + ||y||-
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In view of Lemma 2.1, we define an operator T : X x X — X x X by

o) ( Ty (2, y)(t) ) |

To(, y)(t)
where
Tl(fﬂ,y)(t) = %0’)/0 (tfs)cilf(s,m(s),y(s))ds
tU { ZBZ 'T(¢) / / s=7)""'g 2y(s))drds
+;’¥jm/() (s — 5)° g(s,2(s), y(s))ds
L/ /(t—S)dflf(syw(sxy(s))dsdt)
+A1 Zﬂ“ /9 /5*77 7,2(7),y(7))drds
L (s a(s). w(s))ds
F(¢)/O /O(t )7 g(s,2(s),y(s))d dt)},
and
TQ(Ivy)(t) - ﬁ\/o (t_s)(i?*lg(s’m(s),y(s))ds
t¢ 1

{ Zﬂ SEy / /s—T“ 7, 2(r), y(r))drds

+Z%F(O 6= 07 snts)wtsnas

//t—s¢ Yo(s, z( (5))dsdt)

+As Zﬂ g /n 1/ 5—7) 7, 2(7),y(7))drds

+;”F<¢)/O (pi = 5)" (s, 2(s), y(s))ds

%U) /01 /Ot(t —5)7  f(s, m(s)w(s))dsdt) }

For the sake of computational convenience, we define

1 171 6o+t — g7t}
@ = I‘(a+1)+|Q|[¢I‘( Ty A 1'(2‘5 ST
A
+Z|ry;|1"0]+1 )}’

o+1 d+1 q ¢

@ = g3 (D,@ e q;”;me ) + Ml )




Int. J. Anal. Appl. 17 (6) (2019) 946

90+1_ a+1 1

1 171 1 ¢+1_nfﬁ+1

% = W*@bmmﬂ(ilﬂz A
+Z|% ¢+1)] (3.6)

In the first result, we prove the existence and uniqueness of solutions for the system (1.1)-(1.2) via Banach

contraction mapping principle.

Theorem 3.1. Assume that:

(H1): f,9:[0,1] x R xR — R are continuous functions and there exist positive constants {1 and o

such that for allt € [0,1] and z;,y; € R, i = 1,2, we have
‘f(t7$17z2) - f(t7y17y2)| < el("rl - y1| + |’I’2 - y2|)a

lg(t, w1, 22) — g(t, y1,y2)| < Lalzy — 1| + |22 — Y2|)-
If
(Q1+ Q3)l + (Q2 + Qa)la < 1,

where Q;,1=1,2,3,4 are given by (5.3)-(5.6), then the system (1.1)-(1.2) has a unique solution on [0, 1].

Proof. Define sup,¢(g 1) f(t,0,0) = Ny < oo and SUP;eo,1] 9(t,0,0) = N3 < oo and r > 0 such that

(Q1 4 Q3)N1 + (Q2 + Q4) N2
1= (Q1+Q@3)l1 — (Qa+ Qu)la

We show that T B, C B,, where B, = {(z,y) € X x X : ||(z,9)| < r}.

r>

By the assumption (Hy), for (u,v) € By, t € [0,1], we have

[f (&), y@)] < [f({E (@), y(t) — £(£,0,0)] +|f(2,0,0)]

Gz + ly®)]) + N

IN

IN

L(l|lz)l + lyll) + Ny < e + Ny,

and
lg(t,z(t),y()| < La([|x|| + [lyl]) + Na < Lor + Na,

which lead to

(2, )] < = [ (t=35)7" (lr + N)ds

Jrﬁ ;(lzwl 1| /m 1/ “L(lyr 4+ Ny)drds
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JFZ |'Yj|%¢) /Opj (pj — 5)¢71(£27‘ + No)ds

Jri/ / )7 €1T+N1)dsdt)
+|A4| (Zwl 1| / / s — 1) H(lyr + Ny)drds

-2 Cj- o=L(t1r + Np)d
+j§_jl|vj|w/o (G — 8)7(tar + Ny )ds

_|_F(1¢)/01/0t(t— s)¢—1(£2r+N2)dsdt>}

= (Qilr + Q2l2)r + Q1 N1 + Q2Na.
Hence
[T (z, )| < (Qilr + Qaba)r + Q1 N1 + Q2Na.
In a similar manner, one can find that

|To(z, v)|| < (Qsl1 4+ Qula)r + Q3Ni + Q4No.

Consequently, we have

IT (2, )|l < (@1 + Q)b + (@2 + Qu)lo]r + (@1 + Q3) N1 + (Q2 + Q4) N2 <.

Now, for (z2,y2), (z1,y1) € X x X, and for any ¢ € [0, 1], we get

T (w2, y2)(t) — Th(z1,91)(1)]

1 t
e / (t = )7 (w2 — 2] + g2 — v )ds

Q|{ (Z'ﬁl 1‘ / / 8—7— ‘b 1€2(||l’2_£U1||—|—||y2_y1||)d7_d8

1 Pj
i|= L _ o)1 . _

IN

1 1 t
oy | = = )+ e = st

+\A1(Z|@ = / /— L4, (22 — 2l + llg2 — w1 ) drds

1 (Y o
*Z'%'m)/o (G = )7 (2 = 2l + gz — il
j=1

1o »
+%/0 /O(t_5)¢ £2<||$2_331|+||yz—yl||)dsdt)}

< (Qib + Q262)(J|lza — x|l + ly2 — wall)s
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which implies that

Ty (x2,y2) — Th(z1,51)|| < (@1l + Q2l2)(||x2 — 21| + [Jy2 — w1 )- (3.7)

Similarly, we obtain

T (22, y2) () — Ta(z1, y1)|| < (Qsly + Qulz)(||xe — 21| + [ly2 — y1ll)- (3.8)

Thus it follows from (3.7) and (3.8) that

1T (z2,y2) — T(x1,y1)|| < [(Q1 + Q3)¢1 + (Q2 + Qu)l2](lr2 — 21| + [ly2 — v1l])-

Since (Q1 + Q3)l1 + (Q2 + Q4)l2 < 1, therefore, T' is a contraction. So, by Banach fixed point theorem, the
operator T has a unique fixed point, which corresponds to a unique solution of problem (1.1)-(1.2). This

completes the proof. O

In the following theorem, we prove the existence of solutions for the system (1.1)-(1.2) by means of

Leray-Schauder alternative.

Lemma 3.1. (Leray-Schauder alternative) ( [23] p. 4.) Let F : E — E be a completely continuous
operator (i.e., a map that restricted to any bounded set in E is compact). Let E(F) = {x € E : ¢z =
AF(z) for some 0 < XA < 1}. Then either the set E(F) is unbounded, or F has at least one fized point.

Theorem 3.2. Assume that:
(H3): f,g:10,1] x R x R = R are continuous functions and there exist real constants k;,~y; > 0, (i =

0,1,2) and ko > 0,79 > 0 such that Vz; € R (i = 1,2),

|f(t, 1, 22)| < ko + iz | + k2|2,

l9(t, 21, 22)] < Yo + Y1]21] + Y2|w2].
If
(Q1+Q3)k1 + (Q2 + Qa)y1 <1 and (Q1 + Q3)k2 + (Q2 + Qu)y2 < 1,

where M; (i =1,2,3,4) are given by (3.3)-(3.6), then there exists at least one solution to the system (1.1)-
(1.2) on [0,1].

Proof. First we show that the operator T : X x X — X x X is completely continuous. By continuity of
functions f and g, it is easy to show that the operator T is continuous.

Let © C X x X be bounded. Then there exist positive constants L; and Lo such that

|f(t’$(t)7y(t))| < L17 \g(t,x(t),y(t))| < LQ’ V(x,y) € Q.
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Then, for any (x,y) € 0, we have

I o1 1
@/O(t—s) Ld5+|Q|{ (Z\ﬂz 1| T(6)

IA

/ /s—T¢ Lodrds

+ z: |7j|ﬁ /opj (pj — 5) ' Lads + %g) /0 /ot(t - sy_lleSdt)

+\A1(Z|/a’z e / / s — 1)\ Lydrds

+Z|%|7/ i—s)°" 1L1d8+7/ / (t—s)?~ 1L2d$dt)}

< @Q1Ly +Q2Lo,

which implies that

Ty (z,y)|| < Q1L1 + Q2Lo.

In a similar manner, we can get

|To(x, y)|| < Q3L1 + QuLo.

Thus, it follows from the above inequalities that the operator T  is uniformly bounded, since ||T'(x,y)|| <

(Q1+ Q3)L1 + (Q2 + Q4)Ls.

Next, we show that T is equicontinuous. Let t1,ts € [0,1] with ¢; < 5. Then we have

Ty (2(t2), y(t2)) — Ta(2(ts), y(t))|
1

IN

|t¢7 1 to 1| 1 s
LT {Lbr( +2)+|A1(Z|ﬁz = (o +2)

d+1 o+1 q

+[5 (sz T + 3 il

2
I(c+1)

IN

[2(t2 — £1)7 + [t5 — #7]]

[tg—t — 197 1
R {[qﬁF( +2)+|A1(Z|52 A V)

d>+1 P+1 q

MZ'@ T + 3 il

Analogously, we can obtain

[To(z(t2), y(t2)) — To(z(t1), y(t1))]

Ll{m)/o (2 = )77 = (12— )" s + =

(o)

o’+1 90+

)HF(

90+1 _ 90+

)—H 1\ I(

1

)]

1

o+2

1

o)

1

¢ +2

[ 52(752 - s>"—1ds}

1

>]L2}

1

)}Lg}.



Int. J. Anal. Appl. 17 (6) (2019) 950

Ly ) ¢
< W[Q(b—tl) + |ta — t71]
|t¢ 1 —t¢ 1 90+1 o'+1 1
+7| [ (Z'Bz e +Z|% )+| 2|7( +2)]L1

1 ¢+1 ¢+

+Em+'“'(z‘ﬂl Ty +Z'% ¢+1)]L}'

From the preceding inequalities, we deduce that the operator T'(z, y) is equicontinuous, and thus the operator
T(x,y) is completely continuous.

Finally, it will be verified that the set £ = {(z,y) € X x X|(z,y) = A\T(x,y),0 < XA < 1} is bounded. Let
(z,y) € &, with (z,y) = AT(x,y). For any ¢ € [0, 1], we have

w(t) = ATi(z,y)(t),  y(t) = ATa(z, y)(1)-

Then

lz(t)] < Qi(ko + kilx| + kaly|) + Q2(v0 + v1lz] + 72ly])

= Qiko+ Q270 + (Quk1 + Qam)|z| + (Q1k2 + Q272) |yl

and

()| < Qs(ko + kulz| + kaly|) + Qa(vo + Mzl + v2[yl)
= Qsko + Quyo + (Q3k1 + Qum1)|z| + (Qak2 + Quy2)|yl-
Hence we have
2]l < Qiko + Q270 + (Qik1 + Qav1) ||zl + (Q1k2 + Q272)[|y]|
and
[yl < Qsko + Qavo + (Qzk1 + Qum1) ||z + (Qaka + Qay2)llyll,

which imply that

lzll +llyl] < (@14 Q3)ko+ (Q2+ Qa)vo + [(Q1 + Q3)k1 + (Q2 + Qa)1]| ||
+H(Q1 + Q3)ka + (Q2 + Qa)y2)]llyl|-

Consequently,

(Q1 4 Q3)ko + (Q2 + Q)0
[(z,y)|| < A 7

where My = min{l — [(Q1 + Q3)k1 + (Q2 + Q1)71],1 — [(Q1 + Q3)k2 + (Q2 + Q4)72)]}, which proves that £

is bounded. Thus, by Lemma 3.1, the operator T has at least one fixed point. Hence the system (1.1)-(1.2)

has at least one solution. The proof is complete. O

Our last result is based on Krasnoselskii fixed point theorem [24].
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Lemma 3.2. (Krasnoselskii) Let M be a closed, bounded, convex and nonempty subset of a Banach space
X. Let A, B be operators mapping M to X such that

(a) Ax + By € M where z,y € M;

(b) A is compact and continuous;

(¢) B is a contraction mapping.

Then there exists z € M such that z = Az + Bz.

Theorem 3.3. Assume that f,g : [0,1] Xx R — R are continuous functions satisfying assumption (Hy) in
Theorem 3.1. In addition we suppose that there exist two positive constants Ly, Lo such that for all t € [0,1]
and z;,y; € Rii=1,2,

|f(t,z1,22)] < Ly and |g(t, z1,22)| < La. (3.9)

If

b by
Te+1) T(p+1) ’
then the problem (1.1)-(1.2) has at least one solution on [0, 1].

Proof. In order to verify the hypotheses of Lemma 3.2, we decompose the operator T into four operators
T11,T12,T51 and To o on Bs = {(z,y) € X x Y : ||(z,y)]| < ¢} as follows:
ta‘ 1

Tia(z,y)(t) = { ZB@ 155 /m 1/ s — 1) g(s,x(s),y(s))drds

+;’er(1¢) /OPJ (p; — 8)*Lg(s, x(s), y(s))ds

i [ =9 ) y(s))dsdt)
+A4 ZBZ e /_1/ s — 1) f(r,z(7),y(7))drds

+Z%F / (& — )7 (s, 5(s), y(s))ds

//75—sd’1 (s,z(s), (s))dsdt)}7

Tio(z,y)(t) = 7) ; (t—S)" (s 2(s),y(s))ds,

and

ot

Toa(e,y)(t) = {i Zﬁl 1%/ / (s — )7~ f(r, 2(r), y(r))drds

+;7§ﬁ / (¢ = )7 f (s, 2(s), y(s))ds

%ﬂ /01 /Ot(t — s)¢—1g(8,$(5), y(s))dsdt)
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+As Zﬁz F g /n 1/ (s — 1) g(r, x(r),y(r))drds

+;7j1“(1¢) /Opj (pi — ) g(s,x(s),y(s))ds

_ﬁ /01 /Ot(t — )7 f(s,z(s), y(s))dsdt) },

Toa(z,y)(t) = ﬁ / (t — 5)° " g(s, 2(s), y(s))ds.

Notice that T (z,y)(t) = Ti1(2,y)(t) + Ti2(z,y)(t) and Ta(z,y)(t) = T2 (z,y)(t) + Ta2(2,y)(t) on Bs
and that the ball Bs is a closed, bounded and convex subset of the Banach space X x X. Let us select
§ > max{Q1L1 + Q2L2,Q3L1 + Q4L>} and show that TBs C Bj for verifying condition (a) of Lemma 3.2.

Setting x = (x1,22),y = (y1,y2) € By, and using condition (3.9), we obtain
Ty, (2, ) (8) + Th2(z, y) (1)

F(la)/ot(t—s)” 1L1ds+|Q|{1(Z@ 1| e )/n /Os(s—r)¢—1L2des

Mi—1
i 1 Pj B 1 -
+;|%|F(¢)/O (p; —5)? 1L2ds+F(U)/O /O(t_s) 1L1d5dt)
A (ZlﬁZ 1| / / (s —7)° *Lidrds

+j§jl|v§|r(1®/oj<gjs)HleHF(l@/Ol/Ot(ts)d,lLstdt)}

= @Q1L1+Q2Ly <6.

IN

Likewise, we can find that
T2,1(2,9)(t) + T2,2(2,9) ()| < QsLy + QL < 6.

Clearly the above two inequalities lead to the fact that T7(z,y) + T2(Z, §) € Bs.
Now we establish that the operator (172,75 2) is a contraction satisfying condition (c) of Lemma 3.2. For

(z1,11), (x2,y2) € Bs, we have

T 2(w1,y1)(t) — T ,2(w2, y2) (1)]

= ﬁ/o (t—s)7 7 f(s,21(5),y1(5)) — f(s,22(5),y2(s))|ds
= 1“(€+1)(||x1 — il + 22 = v2l), e

and

|T22(w1,y1)(t) — T2,2(72, y2)(1)]
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= ﬁ/@ (t—5)¢_1|g(8,$1(s)7y1(5)> —g(s71‘2(8),y2(8))|d8
< gy el + s el 5.12)

It follows from (3.11) and (3.12) that

(T2, To2) (@1, y1) — (T2, T2,2) (@2, y2)||
/1 2
<
= [F(J+1) T+t

] (1 =yl + |22 — y2l1),

which is a contraction by (3.10). Therefore, the condition (c) of Lemma 3.2 is satisfied.
Next we will show that the operator (T3 1,75,1) satisfies the condition (b) of Lemma 3.2. By applying the
continuity of the functions f, g on [0, 1] x R x R, we can conclude that the operator (71,1,7% 1) is continuous.

For each (x,y) € Bs, we have

Ty, (2, 9)(1)]

= |Q|{ (éwil /77 / s —71)? ' Lodrds
+;%|F(1¢>)/Opj(pj_S)¢_1L2d8+1“(1(1)/01/()t(t—5)0_1L1d5dt)
A (ZWl 1| / / (s —71)°~ YLydrds
+Z\%I7/ - 5)° 1L1ds+7/ / (t— 5)o 1L2d8dt)}

- P,

and

To,1 (2, y)(t)]

< M S [ [

=

A o1 ¢ o 1 1 .
+jz_:1’yj11(a)/0 (G —s) 1L1d8+m/0 /O(t_s)¢ 1L2dsdt>
P 1 i s B
+A2(;Bi—ll—\(¢) /m_l /o (s — 7—)45 Lodrds

+jz;’7jl_‘(1¢)/0pi(pjS)¢1L2d5+r(10)/01/0t(tS)U1L1d5dt>}

= QY
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which lead to the fact that
1(T1,1,T21) (2, )| < P* 4+ Q.

Thus the set (T7.1,7%,1)Bs is uniformly bounded. In the next step, we will show that the set (T%,1,7%,1)Bs

is equicontinuous. For t1,ty € [0, 1] with ¢; < t2 and for any (x,y) € Bs, we obtain

T3 (z,y)(t2) — Th1 (2, y)(t)]
00+1 60+1

= IQlto |{[¢r(al+2>+' 1'<Z'5Z 1'(7+51)}L1

77;15+1_77;Z5+11 q 1
{ (Z|Bv 1‘ ¢+2 +Z"Y] ¢+1 >+A1F(¢)+2)}L2}

|tg to 1| 1 90+1_90+1
< A -
= T ) L;sr( Ty Tl 1<Z|51 o7 s))m
¢+1 ¢+1 q
771 7?71 1 1
AN|=———|L2 ;.
+[5 (sz e R )+\ Ii553) }
Analogously, we can obtain
T2 (2,y)(t2) — T2 1(50 y)(t)]
- [ o o :

1 77<z>+1 _ 77¢+1
+[0F(¢+2) A 2'(2‘& 1 reTy +Z|” ¢+1 HL }
Thus |(Th,1,T21)(x,y)(t2) — (T1,1,T2,1)(z,y)(t1)| tends to zero as t; — to independent of (x,y) € Bs.
Therefore the set (7h,1,T21)Bs is equicontinuous. Thus it follows by the Arzeld-Ascoli theorem that the
operator (T4 ,1,T%.1) is compact on B;. By the conclusion of Lemma 3.2, we deduce that the problem (1.1)-

(1.2) has at least one solution on [0,1]. This completes the proof. g

Example 3.1. Consider the following system of fractional boundary value problems

c 1 |z ()] 1 1
D3/2 () 4(t+2)21+|x()‘+1+3381n y()+t27_'_1,t6[0,1],
¢ y5/2 1 ly()] 1
D2y(t) = 307 ! in(27x(t ))+m+§a t€0,1],
1 5 [1/6 1/5 3 1 1 (3.13)
/0 x(s)ds = 2// (s)ds+4/l/6 y(s)ds + §y(i> —|—2y(§),
1 1/2 2/3
/0 y(s)ds:2/1/3 x(s)ds—|—4/1/2 z(s )ds—l—x(S) —i—§ (;)

Here o0 = 3/2a¢) = 3/27ﬂ1 = 5/2762 = 47771 = 1/7,772 = 1/63773 = 1/5771 = 3/2a72 = 2;/’1 = 1/47/)2 =
1/3,81 = 2,85 = 4,944 = 1,44 = 1/2,0, = 1/3,0, = 1/2,05 = 2/3, Cl = 1/3,( = 2/3, f(t,z,y) =

1 1 1
i +1+—sin’y, and g(t, z,y) = BTsin(Qms)—i— i

—_— —————+=. With th dat find
4(t—|—2)21—|—|x| 39 - 16(1 + [y |)—|— 1 e given data, we fin
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that Q; ~ 1.618712, Qs ~ 0.096199, Q3 ~ 1.276613, Q4 ~ 0.199029. Note that |f(t, z1,22) — f(t,y1,y2)

Q

1 1 1 1
1611~ 22l gelyi—vel gt 21, 22) —g(t y1, 92)| < Jplor—a2l+ el —p2l, and (Q1+Qs) 6 +(Q2+Qu)
0.217861 < 1. Thus all the conditions of Theorem 3.1 are satisfied and consequently, its conclusion applies

to the problem (3.13).

4. CONCLUSIONS

In this paper we introduced and solved a new boundary value problem consisting of nonlinear coupled
fractional differential equations and nonlocal coupled integro-multistrip-multipoint boundary conditions.
Assuming different conditions on the nonlinear functions involved in the given problem, we have presented
the criteria ensuring the existence of solutions for the problem at hand by applying Banach contraction
mapping principle, Leray-Schauder alternative and Krasnoselskii fixed point theorem. The obtained results
are of quite general nature and lead to several interesting special cases (new results) by fixing the values of
the parameters involved in the problem appropriately. For example, if we take all 5,1 = 0,i =2,...,p in

the results of this paper, we obtain the ones associated with the boundary conditions of the form:
- 1 q N
£ =0, [ aeds =Y vlp) T=012 -2
0 =

- 1 H 0;
(3) _ _ E : /
y (0) - 07 /0 y(S)dS - — /82—1 \/91

A
z(s)ds + Z’y; z(¢5), ‘/7'\: 0,1,2,...,m— 2.
j=1

—1

Letting all 8/_; = 0,7 = 2,...,p, our results correspond to the ones with the boundary conditions:

_ 1 P ni a R
2L )(0) =0, / x(s)dszZﬁFl/ y(s)ds—i—Z’yj y(pj), 1=0,1,2,...,n— 2
0 i=2 Ni—1 j=1

ﬁf%mzou/y@ﬂsz}jﬁx@mj:oﬂﬂpunnfz
0 =1

Incaseall 8;_1=0,i=2,...,pand 8/_; =0,i=2,...,pu, the results of this paper lead to the ones for the

integro-multipoint boundary conditions:
SO =0, [ aeds =Y vle)s v 0 =0, [ u(s)ds =] a(cy)
0 = 0 =

where 7 =10,1,2,...,n—2and j =0,1,2,...,m — 2.
Fixing all 4; = 0,5 = 1,...,q and fy; = 0,7 = 1,..., X in the results of this paper, we get the ones

associated with coupled integro-multistrip conditions of the form:

MNi—1

- 1 p U N
:E(’)(O):0, / x(s)ds:z&,l/ y(s)ds, i=0,1,2,...,n — 2
0 i=2

m

y(7)(0) =0, / y(s)ds:ZﬁLl/ z(s)ds, 7=0,1,2,...,m — 2.
0 i=2

i—1
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