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ABSTRACT. In this paper, we establish multilinear BMO estimates for commutators of multilinear frac-
tional maximal and integral operators both on product generalized Morrey spaces and product generalized
vanishing Morrey spaces, respectively. Similar results are still valid for commutators of multilinear maximal

and singular integral operators.

1. INTRODUCTION AND MAIN RESULTS

The classical Morrey spaces Ly » have been introduced by Morrey in [21] to study the local behavior
of solutions of second order elliptic partial differential equations(PDEs). In recent years there has been an
explosion of interest in the study of the boundedness of operators on Morrey-type spaces. It has been obtained
that many properties of solutions to PDEs are concerned with the boundedness of some operators on Morrey-
type spaces. Morrey spaces can complement the boundedness properties of operators that Lebesgue spaces
can not handle. Morrey spaces which we have been handling are called classical Morrey spaces(see [21]).
But, classical Morrey spaces are not totally enough to describe the boundedness properties. To this end, we
need to generalize parameters p and ¢, among others p, but this issue will exceed the scope of the article,

so we pass this part. Though we do not consider the direct applications of Morrey spaces to PDEs, Morrey
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spaces can be applied to PDEs. Applications to the second order elliptic partial differential equations can
be found in [10] and [26].

We will say that a function f € L, x = Ly » (R™) if

1/p

sup rA / If (y)|? dy < 0. (1.1)
x€ER™ r>0 Blor)

Here, 1 < p < 0o and 0 < A < n and the quantity of (1.1) is the (p, A)-Morrey norm, denoted by ||fHLp7A. In
recent years, more and more researches focus on function spaces based on Morrey spaces to fill in some gaps
in the theory of Morrey type spaces (see, for example, [11-14,16,18,23,25,29]). Moreover, these spaces are
useful in harmonic analysis and PDEs. But, this topic exceeds the scope of this paper. Thus, we omit the
details here. On the other hand, the study of the operators of harmonic analysis in vanishing Morrey space,
in fact has been almost not touched. A version of the classical Morrey space Ly, x(R™) where it is possible to
approximate by ”nice” functions is the so called vanishing Morrey space V L, »(R™) has been introduced by
Vitanza in [27] and has been applied there to obtain a regularity result for elliptic PDEs. This is a subspace

of functions in L »(R™), which satisfies the condition

1/p
tiy sup ¢ [ |F@)Pdy| =0,
T‘—>0weRn

o<t<r B(Zl),t)

where 1 < p < oo and 0 < A < n for brevity, so that

. _a

VLpA(R") =< f e L, \(R"): lim sup ¢~ » ||f||Lp(B(x,t)) =0
r—0 TER™
o<t<r

For the properties and applications of vanishing Morrey spaces, see also [1].
After studying Morrey spaces in detail, researchers have passed to the concept of generalized Morrey
spaces. Firstly, motivated by the work of [21], Mizuhara [19] introduced generalized Morrey spaces M .

Then, the generalized Morrey spaces M), , with normalized norm is defined as follows:

Definition 1.1. (generalized Morrey space) Let o(x,r) be a positive measurable function on R™ x (0, 00).

If 0 < p < 00, then the generalized Morrey space My, , = My, ,(R™) is defined by

m _ _1
{feLif%R):wnMp,ﬁ sup  p(e,r)"|Bla,r)| p||f||Lp(B<x,r>)<oo}.

z€eR™ ,r>0

Obviously, the above definition recover the definition of L, x(R™) if we choose ¢(x,r) = r¥7 that is

LPJ\ (Rn) - Mp,sa (Rn) | A

.
pla.r)=r" 7
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Everywhere in the sequel we assume that e H%E,fwo o(z,7) > 0 which makes the above spaces non-trivial,
since the spaces of bounded functions are contained in these spaces. We point out that ¢(x, ) is a measurable
nonnegative function and no monotonicity type condition is imposed on these spaces.

In [12], [16], [18], [19] and [25], the boundedness of the maximal operator and Calderén-Zygmund operator

on the generalized Morrey spaces M, , has been obtained, respectively.

For brevity, in the sequel we use the notations

_1
|B(z,7)|" > ||f||Lp(B(x,r))

M, o (fr2,7) = ,
e ) o(z,r)
and
B(a,n)| "7 |1 £
w ooy 1B, WL, (B(x,r)
m,, (fiz,r) = .

e(z,r)
In this paper, extending the definition of vanishing Morrey spaces [27], we introduce generalized vanishing

Morrey spaces VM, ,(R"™) with normalized norm in the following form.

Definition 1.2. (generalized vanishing Morrey space) The generalized vanishing Morrey space V M, ,(R™)
is defined by

{f € M, ,(R"): }im sup M, o, (fi2,7) = O} .

—0 TER™
Everywhere in the sequel we assume that

1
lim ———— =0, (1.2)
r=0 inf o(x,7)

and

1
sup ————
0<r<oo ;EHI[{TL @(mv T)

00, (1.3)
which make the spaces VM, ,(R™) non-trivial, because bounded functions with compact support belong to
this space. The spaces VM, ,(R™) are Banach spaces with respect to the norm
1fllvar, , = flla,, = sup Dy, (fra,7).
xzeR™,r>0
The spaces VM), ,(R™) are also closed subspaces of the Banach spaces M, ,(R"), which may be shown by

standard means.

Furthermore, we have the following embeddings:

VMp C My, I fllag, . < [l fllvag, -

On the other hand, it is well known that, for the purpose of researching non-smoothness partial differ-
ential equation, mathematicians pay more attention to the singular integrals. Moreover, the fractional

type operators and their weighted boundedness theory play important roles in harmonic analysis and



Int. J. Anal. Appl. 17 (4) (2019) 599

other fields, and the multilinear operators arise in numerous situations involving product-like operations,
see [2,3,5-8,14,17,20, 24] for instance.
First of all, we recall some basic properties and notations used in this paper.

" 2)1/2 and

Let R™ be the n-dimensional Euclidean space of points « = (z1, ..., z,) with norm |z| = (3}, 23
corresponding m-fold product spaces (m € N) be (R™)™ = R" x --- x R™. Let B = B(z,r) denotes open ball
centered at x of radius r for x € R™ and r > 0 and B¢(z, ) its complement. Also |B(z,r)| is the Lebesgue
measure of the ball B(z,r) and |B(z, r)| = v,r™, where v, = |B(0,1)|. We also denote by I = (y1, ..., Ym),
dy =dyi ...dym, and by ? the m-tuple (f1, ..., fmm), m, n the nonnegative integers with n > 2, m > 1.
Let ? € Lif’lc (R™) x -+ x L]lpoj (R™). Then multi-sublinear fractional maximal operator ME™ is defined

by

t>0

M (1) (@) = sup| B ()] Hﬁ / F @)l 47, 0<a<mn.

Bl(z,t)
From definition, if o = 0 then M{™ is the multi-sublinear maximal operator M (™ and also; in the case of
m=1, M((Xm) is the classical fractional maximal operator M.

The theory of multilinear Calderén-Zygmund singular integral operators, originated from the works of
Coifman and Meyer’s [4], plays an important role in harmonic analysis. Its study has been attracting a lot of
attention in the last few decades. A systematic analysis of many basic properties of such multilinear singular
integral operators can be found in the articles by Coifman-Meyer [4], Grafakos-Torres [7-9], Chen et al. [2],
Fu et al. [5].

Let T7(™) (m € N) be a multilinear operator initially defined on the m-fold product of Schwartz spaces

and taking values into the space of tempered distributions,
7 : §(R") x --- x S (R") — S (R").

Following [7], recall that the m(multi)-linear Calderén-Zygmund operator T(m) (m € N) for test vector
7 = (flv s af’m) is defined by

7™ (7) (z) = / K (2,91, Ym) {Hfz (yi)} dyy - dym, x ¢ (\suppfi,
m i=1 i=1
(R™)
where K is an m-Calderéon-Zygmund kernel which is a locally integrable function defined off the diagonal

m—+1

Yo=1y1 ="+ =ym on (R") satisfying the following size estimate:

C

(x_ylw"am_ym

|K(m7yla"'7ym)| S |

)|mnv

for some C > 0 and some smoothness estimates, see [7-9] for details.
The result of Grafakos and Torres [7,9] shows that the multilinear Calderén-Zygmund operator is bounded

on the product of Lebesgue spaces.
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Theorem 1.1. [7,9] Let T0m) (m € N) be an m-linear Calderdn-Zygmund operator. Then, for any numbers
1<p1,...;Dm,p < o0 with % = p%"_' . ~—|—pi, T(M) can be extended to a bounded operator from L, x---xL,

into Ly, and bounded from Ly X -+ x Ly into L1 .

On the other hand, the multilinear fractional type operators are natural generalization of linear ones.
Their earliest version was originated on the work of Grafakos [6] in 1992, in which he studied the multilinear

maximal function and multilinear fractional integral defined by

1 m
Mém) (7) (z) = sup — / I_Ifz (x — 0;y)| dy,
t>0 T i1
lyl<r
and
Iém) / | |n o Hfz - zy dy,
where 0; (i = 1,...,m) are fixed distinct are nonzero real numbers and 0 < o < n. We note that, if we simply

take m = 1 and 6; = 1, then M, and I, are just the operators studied by Muckenhoupt and Wheeden in [22].

In this paper we deal with another kind of multilinear operator which was defined by Kenig and Stein [17]

for ? = (f1,-.-, fm), which is called multilinear fractional integral operator as follows
1 m

Igrn) (7) (;(,') = / o Hfl (yz) d?
(R ym |(x_y17~",m_ym)| i=1

whose kernel is

|7mn+oc

|K(x7ylv-"7ym)|:|(w_y17"'7x_yM) ) 0<a<mnv

m
where f1,..., fm : R"™ — R are measurable and |[(x —y1,..., 2 —ym)| =/ D |z fyl-|2.
\/ i=1

They [17] proved that 5m (m € N) is of strong type (Lp, X Ly, X --- x L, . L) and weak type
(Lp, X Lp, X -+ X Ly, Lqoo). fwetakem =1, 5 (m € N) is the classical fractional integral operator I,.
Moreover, their main result (Theorem 1 in [17]) is the multi-version of well-known Hardy-Littlewood-Sobolev
inequality. Later, weighted inequalities for the multilinear fractional integral operators have been established
by Moen [20] and Chen-Xue [3], respectively. Yu and Tao [29] have also obtained the boundedness of the
operators L(ym), T and M ™) (m € N) on the product generalized Morrey spaces, respectively.

Now, we will give some properties related to the space of functions of Bounded Mean Oscillation, BM O,
which play a great role in the proofs of our main results, introduced by John and Nirenberg [15] in 1961.
This space has become extremely important in various areas of analysis including harmonic analysis, PDEs
and function theory. BM O-spaces are also of interest since, in the scale of Lebesgue spaces, they may be
considered and appropriate substitute for L.,. Appropriate in the sense that are spaces preserved by a wide
class of important operators such as the Hardy-Littlewood maximal function, the Hilbert transform and

which can be used as an end point in interpolating L, spaces.
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Let us recall the definition of the space of BMO(R™).

Definition 1.3. [12,16] The space BMO(R™) of functions of bounded mean oscillation consists of locally

summable functions with finite semi-norm

1
b|l« = ||b = su —_— / b(y) — bpie.m|dy < oo, 1.4
6]« = [[bll Baro S |B(x’r)‘3( | (Y) = bBarldy (1.4)

where bp(, ) is the mean value of the function b on the ball B(x,r). The fact that precisely the mean value
bB(z,r) figures in (1.4) is inessential and one gets an equivalent seminorm if bp (s is replaced by an arbitrary
constant c :
1
||« ~ sup inf ——— b — c| dy.
H ||* r>I(;CEC |B(33,’I“)‘ / | (y) | Yy
B(z,r)

Each bounded function b € BMO. Moreover, BMO contains unbounded functions, in fact loglx| belongs to
BMO but is not bounded, so Lo(R™) C BMO(R™).

In 1961 John and Nirenberg [15] established the following deep property of functions from BMO.

Theorem 1.2. [15] If b € BMO(R™) and B (x,r) is a ball, then

|{:c € B(x,7r) : [b(x) = bpz,rm| > £}| < |B(x,r)|exp (Cﬁ)”*) , £€>0,

where C' depends only on the dimension n.
By Theorem 1.2, we can get the following results.

Corollary 1.1. [12,16] Let b€ BMO(R™). Then, for any g > 1,

T =

1
bll« = su _— / b(y) — bz |Pd 1.5
H || wE]R",IZ>O |B('T7T)|B( )| (y) B(x, )l Y ( )

18 valid.

Corollary 1.2. [12,16] Let b € BMO(R™). Then there is a constant C' > 0 such that
t
VB (2 — bBG| < ClIbll (1 +In r) for 0 < 2r <t, (1.6)
and for any q > 1, it is easy to see that

n t
b= ®)5l 5 < CrE bl (117 ) (17)

where C' is independent of b, x, r and t.

Now inspired by Definition 1.3, we can give the definition of multilinear BMO (= B9M9O). Indeed in this

paper we will consider a multilinear version (= multilinear BMO or BIMO) of the BMO.
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Definition 1.4. We say that T = (b1,...,bm) € BMO if

. S|
bH = su 7/ b; (y;) — (b; xrdi<OO,
where
0)nen = o | b
v/ B(z,r) — |B(z,r)] i\Yi)QY;-
B(z,r)

Remark 1.1. Notice that (BMO)™ is contained in BMO and we have

m

%

[7] g < 01
1=

SO

(BMO)™ C BMO

1s valid.

We now make some conventions. Throughout this paper, we use the symbol A < B to denote that there
exists a positive consant C' such that A < CB. If A < B and B < A, we then write A & B and say that

A and B are equivalent. For a fixed p € [1,00), p’ denotes the dual or conjugate exponent of p, namely,

p = % and we use the convention 1’ = co and oo’ = 1.

m

m
) ith L — 1 1 _ 1 _  a 1 _ 1 _1_«
Remark 1.2. Let 0 < a < mn and1<pz<oowzthp— o w T b T mn q_ZQi =5 % and
i=1

i=1
? = (b1,...,bm) € (BMO)™ fori=1,...,m. Then, from Corollary 1.2, it is easy to see that

t
HHb b5z, (s <CI[1|er ai [1bll, <1+lnr), (1.8)

and

3

Hnb 0l om < TT (10 = 0)aslly, oy + 1005 = 0)a5ll1, o)
=1
< I3

=1

1
4

bill. (1 +n i) . (1.9)

On the other hand, Xu [28] has established the boundedness of the commutators generated by m-linear

Calderon-Zygmund singular integrals and RBM O functions with nonhomogeneity on the product of Lebesgue

space. Inspired by [2,3,7,9,24, 28], commutators T%m) generated by m-linear Calderén-Zygmund operators

%
T and bounded mean oscillation functions b = (by, ..., b,,) is given by

m

T%m) / K x yl,...,ym [H )}fl(yl) 73
(®ny™

=1
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where K (x,y1,...,Ym) is a m-linear Calderén-Zygmund kernel, b; € (BMO)i (R™) for ¢ = 1,...,m. Note
that Ty is the special case of Tib,m) with taking m = 1. Similarly, let b; (i =1,...,m) be a locally in-
tegrable functions on R™, then the commutators generated by m-linear fractional integral operators and

7 = (b1,...,by) is given by

5 (Nw= [ @, l—ym>|’”"‘a

ST

(R)™ ‘

[bi () — bi (y3)) fi (ys) | A,

=

Il
-

where 0 < o < mn, and f; (i =1,...,m) are suitable functions.
The commutators of a class of multi-sublinear maximal operators corresponding to Tib)m) and [ (m_l} (m € N)
«,

above are, respectively, defined by

M () (@) = sup [[ﬁ [ @) = b1 o) | 47

B(z,t)
and

m

M (7)) (@) = sup B (z,0)|* H‘Bmt /[\bi(x) b )] Ifs ol | 47, 0< a < mn.

@, t>0
B(z,t)

The following result is known.

Lemma 1.1. [24] (Strong bounds ofI(m)) Let0<a; <n, 1 <p1,...,pm < 00, % = Zi, a = Zai and

1 % — . Then there is C > 0 independent of? and b such that

5 (), ey =TT Wik o

Using the idea in the proof of Lemma 3.2 in [13], we can obtain the following Corollary 1.3:

Corollary 1.3. (Strong bounds of M(m%) Under the assumptions of Lemma 1.1, the operator M(m_l} 18
bounded from L, (R™) x --- L, (R"™) to Ly(R™). Moreover, we have

s

m
P05 ) = I 50 e

Proof. Set

o xXr) = 1 1 (0% mn.
% (1)) (=) /(m—y1, r—— [Hnb() b I | T 0<a<

(R)™ =

—
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It is easy to see that Lemma 1.1 holds for I(m) On the other hand, for any ¢ > 0, we have

7(1

<m> 1
V(D) (@) s [H wllIf: (wa)l | 47
(Bat)™ |(x—y1,...,:l:—ym =1
> / [1211 [1b: () = b; (wa)l] i (s ]d?

B(z,t)

Taking supremum over ¢ > 0 in the above inequality, we get

M (F) @) < CAT) (F) (@) Cuo= [BO.DI™ (L.10)

av

As a simple corollary of Lemma 1.1 and Corollary 1.3, we can obtain the following result.

Corollary 1.4. (Strong bounds ofTib)m) and M(_b>m)) Letl <pi,...,pm <00 and 0 < p < 0o with % = Zi.

i=1
ﬁ
Then there is C > 0 independent of? and b such that
(m) 7
HT_b) <?) HLP(R") = Ci[[l”bin* Hfi”Lm(R"') ’
(m)
|47 (), ey < cﬂ||b il 1 fill,, e -
The purpose of this paper is to consider the mapping properties on M, ,, X ---x M, ., and VM, ,, X

- X VMp,. 0. for the commutators of multilinear fractional maximal and integral operators, respectively.
Similar results still hold for commutators of multilinear maximal and singular integral operators. Commu-
tators of multilinear fractional maximal and integral operators on product generalized Morrey spaces have
not also been studied so far and this paper seems to be the first in this direction. Now, let us state the main
results of this paper.

m

Theorem 1.3. Let 0 < a <mn and 1 < p; < = with % = %,
i=1
m m %
% =3 i + > % — 2 and b € (BMO)™ (R") fori=1,...,m. Let functions ¢, ¢; : R"x (0,00) = (0,00)
i=1"" =1
(i=1,...,m) and (¢1,...,0m, ) satisfies the condition

oo essinf H(pi(a:, ot

p\™ t<r<oe L
/ <1 +1In ) =
T (
nl 1z
q
t

dt < Cp(x,r), (1.11)

T

where C' does not depend on x € R™ and r > 0.
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Then, I(m_l} and M(mé (m € N) are bounded operators from product space My, o, X -+ X My, o to My .
Moreover, we have

i <[[7] s

1% (e 217 e 140,... H”b ille 1l (112)

T Tca TN WIS (X

H ¥, il H|| e il . (1.13)

Corollary 1.5. Let 1 < p; < 0o and 0 < p < oo with 1 Z L and b e (BMO)™ (R™) fori=1,...,m.

Let functions @, @; : R™x (0,00) = (0,00) (1 =1,...,

essinf

m) and (@1,...

H(,leT

, ©m, ) satisfies the condition

s t m t<r<oo
/ <1 +ln)
r

r

tp+1

where C' does not depend on x € R™ and r > 0.
Then, T%m

Moreover, we have

<

~

7

) and M%m) (m € N) are bounded operators from product space My, ,, X

dt < Cy(x,r),

X My, o, 0 Mp .

1fillas,, ., S Hllb e 1 fillar,, ., -

i=1

(m) < <
|52 ()], S0P e 10 Hnb e llfillsg ., -
Our another main result is the following.
) mn 47 1 1
Theorem 1.4. Let 0 < a<mn and 1 < p; < P with 5= Zm’
i=1
m m _>
% =5 i +> % — 2 and b € (BMO)™ (R") fori=1,...,m. Let functions ¢, p; : R"x (0,00) — (0, 00)
i=1"" =1
(i=1,...,m) and (p1,...,Pm,p) satisfies conditions (1.2)-(1.8) and
tﬂ
/O+m) H%xt——ﬁ%——ﬁg%w%m (1.14)
' (; Z;)H
t i=1
where Cy does not depend on x € R™ and r > 0,
Ini
im ——— = (1.15)
r—0 f
=0 I ()
and
i
:/ 1+1In|t)™ sup Hcpl T t)—— —dt < 0 (1.16)
6 IGR’H

for every § > 0.
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Then, I(im_b)> and M‘im% (m € N) are bounded operators from product space VMp, o X - x VM, o, to

VMg,,. Moreover, we have

fm@)HVMW S| Millvas,.. J Ile il I fillyag,, o (1.17)
M b < b; |« . 1.18
EDCCH] FVEY 1 . o) | (Lo (118)

Corollary 1.6. Let1 < p; < oo and 0 < p < 00 wzth Z and € (BMO)™ (R™) fori=1,...,m
Let functions ¢, ; : R™"x (0,00) — (0,00) (i =1,..., ) and (cpl, ooy Pm, ) satisfies conditions (1.2)-(1.3)

and

t\" 15 tv
/ (1 +1In r> g(pi@’t)t%ﬁdt < Cop (z,71),

r

where Cy does not depend on x € R™ and r > 0,

I ln% 0
im —-—— =
0 inf
r— xlenR" p(z,r)
and
oo m tﬂ
p
s /(1 +In|t))™ sup H@i(x,t)THdt < oo
5 eCR™ te

for every § > 0.
Then, Tib)m) and M%n) (m € N) are bounded operators from product space VMp, o X -+ x VM, ., to

VM,,,. Moreover, we have

(m) < —>H , <TTibil 117,

1757 (), = o Wi, i|:|1||bzu* il -
(m) < _>H < | I

HM_b) (?)HVMND ~ H BMO ”fZ”VMP @i el Hf’HVMP e

=1
The article is organized as follows. A key lemma is given and proved in Section 2. Section 3 will be

devoted to the proofs of the theorems (Theorems 1.3 and 1.4) stated above.

2. A KEy LEMMA

In order to prove the main results (Theorems 1.3 and 1.4), we need the following lemma.

n mn o oar 1 1 1 _ <"1, 1 _a
Lemma 2.1. Let 2o € R", 0 < a <mn and 1 < p; < 2% wzthgfzﬁ, 7= Zp—thzafg and
i=1 v
%
b € (BMO)™(R") fori=1,...,m. Then the inequality
1 (7)1 <TIwders [ (142 an || —
"7 Ly(Bor)) S | [IIDills illL,, (B0, (
i=1
t

(2.1)

2r
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holds for any ball B(zo,7) and for all 7 € Lloc (R™) x -+ x Lloc (R™).

Proof. In order to simplify the proof, we consider only the situation when m = 2. Actually, a similar
procedure works for all m € N. Thus, without loss of generality, it is sufficient to show that the conclusion
holds for 1%, (7) =19, (1. f).

We just consider the case p; > 1 for i = 1,2. For any g € R", set B = B (z, r) for the ball centered at
xo and of radius 7 and 2B = B (0, 2r). Indeed, we also decompose f; as f; (i) = fi (yi) X2 + fi (¥:) X (2B)°
for i =1,2. And, we write f1 = f{ + f{° and fo = f§ + f5°, where ) = fixep, f7° = fix@2p)e, fori=1,2.

Thus, we have

£¢22b1 b2) (fl ’ f2 )‘

((12251,1,2 (flan)'

a (b1 b2) (flva)’

Lq(B(wo,m)) Lq(B(zo,7))

Lq(B(zo,r)

12, o (5 15°)

(2)1,17[;2 (fl 7f2)‘

Lq(B(wo,m)) Lq(B(wo,7))

=+ Fy+ F3+ Fy.

Firstly, we use the boundedness of I((fgbl ba) from L,, x L,, into L, (sec Lemma 1.1) to estimate F}, and

we obtain

2
— 7@ 0 £0 , 4
Al R OTRY T W | (L P
2 (]
n dt
50 | (CINT P e
=1 2r

dt

2 0 2
S HHbiH*r? /H 1fill ., (B(o.t)) =
i=1 5 =1 ¢

2 oo
< I | . q
Ni_l”b"*“/@““ ) II”L”LMB% LG ()

2r

Secondly, for Fy = we decompose it into four parts as follows:

Py (19, 15°)|

Ly(B(zo,r))

Fa 5 |01 = (b1} )] (b2 — (b} ) 1 (£, £5)

Lq(B(xo,7))

||l = o1} ) 22 [, (02 — {b} ) £5°]

Lq(B(zo,r))

|12 = {2k D (01 = (o1} ) 70, 55

Lq(B(o,7))

+ HIS) [(bl —{bi}g) f?v (b — {b2}p) fé)o] H

Lq(B(o,7))

= Fyy + Foo + Fog + Foy.
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Let 1 < pi,ps < 22, such that 1 = L +

3e
il
|
‘)—‘
+
|
o
=
o,
=
Il
==
+

Then, using Holder’s

S
Sl

1 4 1
P1 p2’

inequality and by (1.8) we have

P = [|(61 = (01) ) (b2 = (b)) 182 (17, £57)|

Lq(B(wo,7))

< 11— (51) ) (b — (b2) ) 18 (49, 5°)|

Lg(B(z0,7))

S ||b1 - (bl)B”Lq (B(zq,r)) HbZ - (b2)BHLq (B(z0,r))

- dt
<ot [ (1+m? ) anan (o) T

2r

Vi dt
STI o508 [ (10 2) TT L e s

2r

2 oo
< QoG s) [ (1wt HllfzuL isoin ")
=1

2r

dt
_H||b ||*rq/<1+ln ) anan e e e

)Y

where in the second inequality we have used the following fact:

It is clear that |(zo — y1, To — y2)[*" "% > |zo — y2|*"~®. By Hélder’s inequality, we have

I(g (f1 f°° //l !f{] (y1)|\f§O (Z/2>|_ dyydys

(z =y, —yo)" "
R’VIR'VL

S/Ifl (y1)l dy / 20— O |f2;y|22)71_ady2
0— Y2
2B

(2B)°

oo

< [inwlan [ 10w [ e
2B

(2B)° |zo—y2|

1_i 1— L dt
Sl 2m 12B] / 1£2llz,, (oo 1B (@0, O 7 S

T dt
,S/H”fi”Lm(B(xo,t)) Rty
2r i=1

1_ 1 1 . .
where s= T Thus, the inequality

(19,55

<t T s
La(B(zo,r)) o) et

2r i=1

is valid.
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On the other hand, for the estimates used in Fso, F3, we have to prove the below inequality:

2) [0 (3 N i AR dt
Lf1 (02 () = (b2) ) f5°] (96)’ S ||b2||*/ l+In_ 1_[1 1fill ., (B(xo.t)) m (2.2)
2r 1= pP1 P2

To estimate Fbs, the following inequality

19 [0, (52 ()~ (b)) 1 / Aty [ PR,

(2B)° b2

is satisfied. It’s obvious that

[ 1500l S Uil omy 281 (2.3
2B

and using Holder’s inequality and by (1.6) and (1.7) we have

b2 (y2) — (b2) gl | f2 (?J2)|dy2

|zg — y2|2n_a

(2B)°

o0

dt
/‘b2(y2)_(b2)B(m0,r) | f2 (y2)] / a7t | @2

(2B)° |zo—y2|

< / Hb2 (y2) = (2) B(ao.0)

2r

Jr/’(bQ)B(wo,t) - (b2)B(xU,r)
2r

1— pi-l,-qi dt
woty 12112, (B0 | B (20, ) (3 Z)W

Ly (B(

1— L dt
1f2ll 2, (B(zo.)) |B (o, )" 72 ol

< T t\? 1 1_<L+L) dt
<l [ (1410 0) 1B o, 015 1ol (o 1B o ) (4 5) o C
27

7 t a1 dt
el [ (14102 1B G001l s 1B a0 e
2r

oo

2
t dt

Sl [ (100 0) 1ol o e (2.4
S t P2

Hence, by (2.3) and (2.4), it follows that:

10,62 () = (b2) ) f5°] (@)

oo

2
- ¢ dt
SN0l 11l (2) 12B] /<1+lnr> ”f?”L,,Q(B(xo,t))m
S t P2

7 £\ 2 13[ dt
<oal. [ (mn) T P p— a—
J r) i ri (Blzo, tn(ﬁJri)Jrlfa

P2
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This completes the proof of inequality (2.2). Thus, let 1 < 7 < oo, such that % = q% + % Then, using
Holder’s inequality and from (2.2) and (1.7), we get
oz = H[(bl — {01} p)] I [f{)a (b2 = {b2} ) fé)o] HL (B(zo,r))
S 1oy = (b1) G AL, (b2 = (b2) ) f57] )
2
< TTeills 1B (o, )5
i=1
r dt
/ (1 +In - ) H HszL (B z0,t)) n(ﬁ+%)+l—o¢
2r
Tt [ (1emt) anan P — —
i1 P (- ()

2r

Similarly, F>3 has the same estimate above, here we omit the details, thus the inequality

Fos = H[(b2 — {ba} )] IO [(br — {1} ) f?,fé’"]\

Lq(B(zo,7))

2 00
a dt
< . T
N}:[l||bz*rq/<1+ln ) H||fz||L,,L<B (e o

q

2r

is valid.

Now we turn to estimate Fy4. Similar to (2.2), we have to prove the following estimate for Fay:

d
1) (b = (b)) £2. (b2 = (b2) ) £5° <H\|b I / (mn) Hufznwsm,t» (l(lil>)+,

q

(2.5)

Firstly, the following inequality

ba (y2) — (b2) gl | f2 (y
19 (b1~ 02)5) 52, 02 = (b)) 5] / ) = ()l 1y () [ PRy,
(2B)° 0— Y2
is valid.
It’s obvious that from Hélder’s inequality and (1.7)
/Ibl (1) = (b1) gl 1f1 ()l dys S Noall 1B (2o, )70 11l (o) - (2.6)

Then, by (2.4) and (2.6) we have

1
a

. . 2 x N\ 2.2 dt
12101~ 00)5) 5.0~ @0)) 57 @] < T / (14 7) T o gy
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This completes the proof of inequality (2.5). Therefore, by (2.5) we deduce that

Fyy =

(61— (1)) 7 (b2 = (b2) ) 157

Lq(B)

: . [ dt
< ) i
< [Tl [(1+m? ) H|\fz||Lm<Bm,t> peey

q a2

2r

Considering estimates Fyq, Fao, Fo3, Fby together, we get the desired conclusion

dt

o0
Koo U, <Hnb or¥ / (14m? ) Hnmw ) D))

q a2

Fy =

2

Similar to Fb, we can also get the estimates for Fj,

o0
Fy = (1% 0 U D), S [Tibalr [ (14m? ) ananpl(B = ez}
T = 3 ¢\ artay
(zzb1 . (fe°, f5° )‘ (Bl We split Fy in the following way:
Fy S Fy + Fyo + Fyz + Fuy,
where

Fyp = ||(by — (b1) ) (b2 — (b2) ) I (£1°, £5°)

Fiz = |01 = (01) ) 1@ 1%, (b2 = (b2) ) £

Lq(B)
Fus = || (b2 — (02) ) I [(by — (b °<>°°]
a3 = ||(b2 = (b2) g) L7 [(b1 — (b1) ) f1°, f37] )
Fas = |12 01 = (b)) F5% (b2 = () £,
Now, let us estimate Fy1, Fyo, Fu3, Fiq respectively.
For the term Fjyp, let 1 < 7 < oo, such that % = (q% + q%) + %, % = p% + p% — =. Then, by Holder’s
inequality and (1.8), we get
Fu = ||(b1 = (40) ) (b2 = (b2) ) I&) (%, £5°)|
Lq(B)
S o= Oa) gl (o 102 = B2) sl |12 (72,550,
Lo f dt
S HHb l+ |B (o, )| 7 72 7= 1+1n H||fz||L (B(zo.t) 7Z4T

2r

2 o0
n dt
S Ibz-ll*“/(lﬂn ) ||Hfz|\ v (B MR
Il S (I

a2
2r

where in the second inequality we have used the following fact:
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Noting that |(zo — y1, 0 — y2)|*" " > |zo — y1|" 2 |zo — 32"~ 2 and by Holder’s inequality, we get

V05 (@)

| (y2) X(B)° \d i
NRHR"L |(.T/'0 —Y1,To — y2)‘2n “
< Lf1 (y)l [f2 (2) dyy dys
~ . n7% B n,,
(2B)C(2B)c |$0 yl‘ ‘xo y2|
co 2
N ZH / %dyi
i=li=h; 1 pgip |To —yi| 2
co 2 Lo
SYTIE) ™ [ ifwldn
Jj=1li=1 %it1p
N Z (2J7‘) H ||fi||Lpi(2j+1B) |2]+1B} Pi
Jj=1 i=1
00 2it+2,. . ot L 2 . -
52 / (2J+17‘) H‘Ifi“Lpi(2j+lB) |29+1B’ Pi (t
j:]2j+lr i=1
2.7+2,,,

-1 dt
H”fz”L (B(zo,t)) |B (2o, )| s ——

j= ]21+171 1

0 2
2—(L+1 dt
S/HHszLP (B(ao.t)) | B (0, 1) (7r+55) prrEs—
2r =1
0 2
dt
S [TL1A s, 0
or =1
Moreover, for p1, pa € [1,00) the inequality
0 2
2) ( goo  poo ‘ rT . —_ 2.7
I, g 57 T 000 5 (27)
o2r =

is valid.

For the terms Fyo, Fy3, similar to the estimates used for (2.2), we have to prove the following inequality:

2 2 d
2) 122, (by — (b)) f5° <Mﬂ Vi ) TT0l, sy — e (28)
=1 ’ tn<* P2



Int. J. Anal. Appl. 17 (4) (2019)

613

Noting that |(zg — y1, T — y2)|2"_a > |z — y1|"_% |rg — yg\"_%, we get

1D 1£7°, (b2 = (b2) ) £5°) ()]

b2 (y2) — (b2) 5| | 1 (
(2o — Y1, 20 — ¥2)|

(y2)X(2B)°|

<

~

R7R"™

/ /|b2 ~ el I 0o, g,
|950*y1

o e
) (2B)° lzo — yal"

dy1dys

2n—a

< i |f1 (y1)l iy b2 (y2) — (b2) gl | f (y2)|dy2

a

= lzo — "2 lzo — ol 2
J=hj+1B\2iB 2i+1B\2/ B

S @) [ inldn [ () - Ga)sl 12 ()] e

i=1 2i+1B 2i+1B
On the other hand, it’s obvious that
. 1— L
[f1 (ol dyr < fillp, i) |27H1B|
2i+1B
and using Holder’s inequality and by (1.6) and (1.7)

/ 1bs () — (02) 51 |2 (42)] dyo

%it1p
. 1— L_}_L
< b2 = (b2)gis1 8l i1y 12l 1, 2541 ) |21 B (%+%)
. 1—-L
+ [(b2) 115 — (b2) 5l ||fz||Lp2 (29+1B) |27*+1B| P2

. 1 27+1p ] (i
< el B (10 2 ) Ul o 2B

+ . R
+ (B2 ]ls (1 w2 ) |25 B || foll,, i1y 27 B| 72

2J+1
< bl (1 fin

r .
) |2j+1B| " ||f2||L (27+1B)
Hence, by (2.9) and (2.10), it follows that:

1D 175, (b2 = (b2) ) £5°) ()]

S [ nldn [ () - Ga)5]12 ()] de

J=1 2i+1B 21

> . —2n+ta« 2j+1 +1
Sleall 3 (20 (1 ““r) 271 B H 1Fills, @im
j=1

(2.9)

(2.10)
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2]+2
n+oa— j+1 14 L 2
< bl Z/ I (R ) PTGl § [T
i=ly;%,, i=1
o 2T
9 » dt
sty [ (1em ) 21 anLnL (@15 T
I=lyiti,
o0 2 2
t g (L 4L dt
Slale [ (142 18 o0 G [T, 500 s
2r i=1
7 dt
Sl [ (14 ) T Poppm——
3 H (BoD) (G ) 1a

This completes the proof of (2.8).

Now we turn to estimate Fyo. Let 1 < 7 < 00, such that % = qi % Then, by Holder’s inequality, (1.7)

and (2.8), we obtain

Fia = (b1 = (b1) ) 18 [£7°, (b — (b2) ) £5°)|

S [CRCY S

Lq(B)

(22, (b2 = (b)) 57

L:(B)
SﬁHbiH*rZ]O(l—&-ln ) HHszLp (B(wo,t)) 75 flt 1 .
i=1 ' (E_(H+02))+1

2r

Similarly, Fy3 has the same estimate above, here we omit the details, thus the inequality

Fia = (b2 = (b2) ) & [(b1 = (b)) £, £5°)|

Lq(B)
2 2 dt
< q
HHb H*T / <1+ln ) 11;[1||fz||Lpl(B To,t )t”(é_(ﬁ"’é))""l

is valid.

Finally, to estimate Fy4, similar to the estimate of (2.8), we have

1) [(by = (b2) ) £ (b2 — (b2) ) £5] ()]

Sy @) / |b1(y1)—(b1)B||f1(y1)\dy1/ b2 (y2) — (b2) g [ f2 (y2)] dy2

J=1 21 21

2 o0 ; 2 2 dt
<ITw. | (mn) 1fille, (8o .
£[1 J ; 21;[1 Ly, (B(zo t))tn( *(ﬁ+L))+1

1
q a2



Int. J. Anal. Appl. 17 (4) (2019) 615

Thus, we have

= 1216 = (b)) 177, (b2 = (b2) ) £

Lq(B)
2 n T t dt
< ||bz-||w/(1+1n) [ P P —— —
i[[l o H Fri(Bleot) (- (F )+

By the estimates of Fy; above, where j = 1,2,3,4, we know that

2 o0
n dt
Ji oo foo ‘ < b;ll« q/<1—|—1 ) |I i . .
o (b1.02) 155 157) Lo(B(zo.)) Ni|=I1H a7 n 1Fillz,, (B0 (l_(i+q{z))+1

q q1 " az
2r

Consequently, combining all the estimates for Fy, Fb, F3, Fy, we complete the proof of Lemma 2.1. [

3. PROOFS OF THE MAIN RESULTS

Now we are ready to return to the proofs of Theorems 1.3 and 1.4.

3.1. Proof of Theorem 1.3.

Proof. To prove Theorem 1.3, we will use the following relationship between essential supremum and essential

infimum

(essmf f(z ))1 = esssUp —— (3.1)

1
Tel reE f( )

where f is any real-valued nonnegative function and measurable on E (see [30], page 143). Indeed, we
consider (1.12) firstly.

Since ? € My, ., X -+ X My o, by (3.1) and the non-decreasing, with respect to t, of the norm

H”fi”Lpi(B(x,t))a we get

=1

m m
1TIf L, (B 1TI£ L, (3@
1=1 < =1
esssup
n 0<t<T<00 n
; a a
offsﬁzmﬂ%m i er :

HHfi”Lpi(B(%t)) m
< esssup =L SHHfiHMM,W' (3-2)

0<T<00,xER™
[Ttz
i=1
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For 1 < p1,...,pm < 00, since (@1, ..., ¢m, ) satisfies (1.11) and by (3.2), we have

oo

dt
/<1+ln ) H||fz|LpZ(B )T m N
v n(}]—qui)+l
¢

i=1
m
00 A HHfiHLpi(B(wat)) essmf Hgole »
/(1—|—ln ) — dt
' i H% 57T (Z)
¢ i=1
oo essinf H% X, T)T %

m t<r<oo

i t
< T filla, .. / (mnr) it
=1 n(l— _>+1
t

T

m

< CH HfiHMpiW p(z,r). (3.3)

i=1

Then by (2.1) and (3.3), we get

_ _1
()| = s ) Bl
@, Mg, o z€R™ r>0

oV (7) Ly(Br)
< - 7 t dt
NHHbz‘H* sup ¢ (2o, ) 1+1n H||f1||Lp7(B(x0,t))—
i=1 (1 )H
t

z€ER™,r>0
r

m
< TL0edlie il -

i=1
Thus we obtain (1.12).
The conclusion of (1.13) is a direct consequence of (1.10) and (1.12). Indeed, from the process proving
(1.12), it is easy to see that the conclusions of (1.12) also hold for f%n) . Combining this with (1.10), we can
e

immediately obtain (1.13), which completes the proof. O
3.2. Proof of Theorem 1.4.
Proof. Since the inequalities (1.17) and (1.18) hold by Theorem 1.3, we only have to prove the implication

3 (7)
lim sup = 0 implies lim sup il
r—0 zcRrn ﬁ(p - r—0 zcRrn (p(]}, ’I“)
K3

r [T ille,, 8t

i=1

Lq(B(zr))

= 0. (3.4)

To show that

Lq(B(z,r))

(m)
Ioz b (?)
sup

< ¢ for small r,
zER™ @(x7 T)
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we use the estimate (2.1):

13 (7))

a3

m
[Tl o
=1

T — m m
a, b Ly,(B(z,r dt
sup q(B(z;r)) 5 sup ——— 1+1In ) H”fi”Lpi(B(l'yt))7'
TER™ (P(J},’I") zER™ (p(Iﬂ") r i=1 ) (1 Z . ) 1
T L o |t
t i=1
We take r < §g, where &g is small enough and split the integration:
e (7)
ab Ly(B(z,r))
< 0[150 (SU,T)+J50 (l’,?“)], (35)

o(x,r)
where dp > 0 (we may take dyp < 1), and

m
H”blH* ) m om

i t
I == [(14m* ) ey ——
s (@7) o(x,r) / * nr) E”f Iz, o 0 (

t

r

and

m
[0 = m m

i= t dt
Jsy (w,7) = m/ (1 +1n T) H||fi||Lpi(B(zo,t))+,
9 3 i=1 n(;_z{}l)+1

t =1

and r < §y. Now we can choose any fixed dy > 0 such that

m

e [JIfile,, (s

i=1

sup t < do,

< )
reR™ i ZCCO
H@i (.’17, t)
i=1

where C and Cj are constants from (1.14) and (3.5), which is possible since ? EVMpy, o % xXVM, o .

This allows to estimate the first term uniformly in r € (0, do):

H”sz* sup Cl;, (x,r) < E, 0<r<doy
L1 2

by (1.14).

For the second term, writing 1 + In % <1+4|nt¢|+In %, by the choice of r sufficiently small because of the
conditions (1.15) we obtain

lm

sy + Cs, In

r
b. .
(p(fE,T’) };[1” l”*”fZ”VMpi,W ’

where ¢s, is the constant from (1.16) with 6 = J§p and ¢s, is a similar constant with omitted logarithmic

Jso (z,71) <

factor in the integrand. Then, by (1.15) we can choose r small enough such that

9

sup Js, (z,r) <
ESING

N ™

which completes the proof of (3.4).
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For M (m%, we can also use the same method to obtain the desired result, but we omit the details.
«,

Therefore, the proof of Theorem 1.4 is completed. O
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