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ABSTRACT. The purpose of this paper is to give positive answers to questions concerning Cirié type quasi-
contractions in rectangular b-metric spaces proposed in George et al. (J. Nonlinear Sci. Appl. 8 (2015),

1005-1013).

1. INTRODUCTION AND PRELIMINARIES

In [1], George et al. introduced the concept of rectangular b-metric spaces as a generalization of metric
space, rectangular metric space and b-metric space (see also [2,3]). Since then many fixed point theorems

for various contractions were established in rectangular b-metric spaces (see [4-12]).

Definition 1.1. ( [1]) Let X be a nonempty set and the mapping d : X x X — [0,00) satisfies:

(1) d(z,y) =0 if and only if x = y;

(2) d(z,y) = d(y,z) for all z,y € X;

(3) there exists a real number s > 1 such that d(x,y) < s[d(z,u) + d(u,v) + d(v,y)] for all z,y € X and
all distinct points u,v € X\{z,y}.

Then d is called a rectangular b-metric on X and (X,d) is called a rectangular b-metric space (in short

RbOM S ) with coefficient s.
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Definition 1.2. ( [1]) Let (X,d) be a RbMS, {x,} be a sequence in X and x € X. Then

(1) The sequence {x,} is said to be convergent in (X,d) and converges to x, if for every e > 0 there exists
ng € NT such that d(x,,,z) < € for all n > ng and this fact is represented by lim, oo T = T 0 T, — T as
n — 00.

(2) The sequence {x,} is said to be Cauchy sequence in (X,d) if for every e > O there exists ng € NT
such that d(zy,, Tpyp) < € for alln > ng and p > 0.

(8) (X,d) is said to be a complete ROM S if every Cauchy sequence in X converges to some x € X.

In the setting of RbM S, limit of a convergent sequence is not necessarily unique and also every convergent
sequence is not necessarily a Cauchy sequence. For details, we can see [1]. However, we have that the following

result.

Lemma 1.1. ( [3]) Let (X,d) be a RbMS with s > 1, and let {z,} be a Cauchy sequence in X such that

Xy # Ty whenever n # m. Then {x,} can converge to at most one point.
George et al. [1] raised the following problems.
Problem 1.1. ( [1]) In [1, Theorem 2.1], can we extent the range of A to the case 1 <X <17

Problem 1.2. ( [1]) Prove analogue of Chatterjea contraction, Reich contraction, Cirié contraction and

Hardy-Rogers contraction in RbMS.

In [6], Mitrovi¢ has given a positive answer to Problem 1.1. In [7], Mitrovié et al. obtained an analogue of
Reich’s contraction principle in RbMS and thus give a partial solution to Problem 1.2. For further results,
the reader can refer to [13,14].

In this paper, we proved a common fixed point theorem for Ciri¢ type quasi-contractions in RbMS. It is
well known that Ciri¢ contraction is more general than other contractions in Problem 1.2. Thus, we give a

complete solution to the above Problem 1.2.
2. MAIN RESULTS
The following lemma is crucial in this paper.

Lemma 2.1. Let (X,d) be a ROMS with coefficient s > 1 and f,g : X — X be two self maps such that
f(X) € g(X). Assume that there exists X € [0, 1) such that

d(fz, fy) < Amax{d(gz, gy),d(gz, fz),d(gy, fy),d(gy, fz),d(gx, fy)}. (2.1)

Taking xg € X, we construct a sequence {yn} by Yn = fTn = 9Tni1. If Yo # Yny1 for alln € NT| then
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(1) For m € 0OUNT and p € NT, there exists 1 < k(p) < p such that
5(O(Ym,m +p)) = d(Ym, Ym+k(p))»

where O(Ym, M + p) = {Ym, Ym+1,"** s Ymip}, 0(A) = sup, ye 4 d(z,9).
(2) Yn # ym whenever n # m.
(3) 6(O(y0a n)) < 1_88)\ [d<y07 yl) + d(yla y2)]
(4) 5(O(y03 OO)) < ﬁ[d(y()a yl) + d(yla y2)]7 where O(yOa OO) = {yOa Yt s Yny - }

(5) {yn} is a Cauchy sequence.

Proof. (1) Let m € {0,1,2,---,} and p € NT. Using (2.1), for any 7,5 € N* with m < i < j < m + p, we
have that

d(yi,y;) = d(fxi, fzj)

Amax{d(gz;, gr;), d(gzs, fri), d(gzs, fx;), d(gzs, fxy),d(gxy, fri)}

IN

= dmax{d(yi—1,Yj-1), d(Yi-1,Yi), d(yj—1,Y;), d(Yi-1,Y5), d(y;-1,y:) }

IN

A (O(Ym»m + p))

< 6(OYm,m +p)).
This implies that
max{d(y;,y;) 1 i,j € NT and m < i < j <m+p} < 6(O(ym,m + p)).

Since §(O(Ym,m + p)) = max{d(y;,y;) : i,7 € Nt andm < i < j < m + p}, there exists k(p) with
1 < k(p) < p such that

5(O(Ym,m +p)) = (Y, Ym+k(p))- (2.2)

(2) Suppose that y, = Y4, for some n,p € N*. Then, by (2.1) we obtain that

5(O(yn,n +p)) A(Yns Yn+k(p))
= d(yn+pa yn+k(p))
= d(fanrpv fxn—l-k(p))

< A max{d(ga:n+p, g'rnJrk(p))v d(gxn-i-;n f‘rn-l-p)v d(gxn+k(p)7 f'rn+k(p))7

d(gxn-i-k(p), fxn-O-p)v d(gxn+pa fxn+k'(p))}
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= A ma‘X{d(yn—i—p—h yn+k(p)—1)7 d(yn+p—17 yn-H?)a d(yn+k(p)—17 yn-l-k:(p))v

d(yn+k(p)—17 yner)a d(yn+p—17 yn+k(p))}

< A(O(Yn,n +p)),

which implies 6(O(yn,n + p)) = 0. However, this is impossible because §(O(yn,n + p)) > d(yn,Ynt1) > 0.

Therefore, y,, # ym Wwhenever n # m.

(3) Let n € N*. Then, using (2.1) and (2.2), we get that

<

This implies that

5(O(yo, n))

d(Yo, Yk(n))

sld(yo, y1) + d(y1, y2) + d(y2, Yr(n))]

sld(yo, y1) + d(y1, y2)] + sd(fxa, frrm))

S[d(y07 yl) + d(yh y2)] + s\ max{d(g$27 gxk(n))7 d(gl‘g, f.'I}2>7 d(gxk(n)7 ka(n)>7

d(gz2, frrm)), d(gTremy, fr2)}

s[d(yo, y1) + d(y1, y2)] + sAmax{d(y1, yk(n)—l)a d(y1,y2), d(yk(n)—h yk(n))v

A1, Yr(n))> AYr(n)-1,Y2)) }

s[d(yo, y1) + d(y1,y2)] + sA6(O(yo,n)).

5(O(yo,n)) <

(o, 1) + dlyn, )] (23)

—_

(4) Note that lim,, o 6(O(yo,n)) = 6(O(yo, >0)). Thus, from (2.3) we see that

5(O(yo, 00)) <

(5) For any n,p € N,

d(ynv yn-‘rp)

IN

IN

IN

IN

IN

s
— S\

[d(yo,y1) + d(y1, y2)].

—_

A (O(Yn—1,n+p))

)\25(0(:[/”,27 n+ p))

A"5(O(yo, n + p))

A"3(O(yo, 00))

s
1—sA

n .

[d(yo,y1) + d(y1, y2] — 0(n — o0).

Therefore, {y,} is a Cauchy sequence in X. O
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Theorem 2.1. Let (X,d) be a ROMS s> 1 and f,g : X — X be two self maps such that f(X) C g(X),

one of these two subsets of X being complete. If there exists A € [0, %) such that

d(fz, fy) < X max{d(gz, gy),d(gz, fz),d(gy, fy),d(gz, fy),d(gy, fx)}, (2.4)

forall z,y € X, then f and g have a point of coincidence in X. Moreover, if f and g are weakly compatible

(i.e., they commute at their coincidence points), then they have a unique common fized point.

Proof. Let g be an arbitrary point of X. Choose z; € X such that fzg = gr;. Now, we can construct a

sequence {y,} defined by
Yn = fTn = gTnt1, forn=0,1,2,... (2.5)

If yr = yry1 for some k € NT, then frii1 = yry1 = yr = gTre1 and f and g have a point of coincidence.
Suppose, further, that y,, # y,41 for all n € NT. By Lemma 2.1, we can obtain {y,} is a Cauchy sequence
in X. Suppose, e.g., that the subspace g(X) is complete (the proof when f(X) is complete is similar). Then

{yn} tends to some w € g(X), where w = gu for some u € X. Suppose that fu # gu. Then

d(f“) yn) = d(fu, fxn)

Amax{d(gu, gz,), d(gu, fu), d(gzn, frn), d(gu, frn), d(gz,, fu)}

IN

= Amax{d(gu, yn—1), d(gu, fu), d(yn—1,yn), d(gu, yn), d(yn-1, fu)}.
Note that d(gu,yn—-1) = 0, d(Yn-1,yn) — 0 and d(gu,yn) — 0 as n — oo. Then, for sufficiently large
n € NT,
max{d(gu, yn—1), d(gu, fu), d(Yn-1,Yn), d(gu, yn), d(yn-1, fu)}
= max{d(gu, fu),d(yn—_1, fu)}
and
d(fu,yn) < Amax{d(gu, fu),d(yn_1, fu)}. (2.6)

Denote M (x,,,u) = max{d(gu, fu),d(y,—1, fu)} for n € N*. Then we can consider the following cases.
Case 1. If there exists a subsequence {M (x,, ,u)} of {M(x,,u)} such that M(x,,,u) = d(gu, fu), then
d(fu,yn,) < Ad(gu, fu). Note that d(yn,yn-1) — 0, d(yn, gu) — 0 and

1
S4(fu, gu) < d(fu, yn,) + Yy, Yri-1) + d(Yni—1, gu)- (2.7)

Thus, taking upper limit as k — oo in (2.7), we obtain that

L fu, gu) < limsupd(fu, yn,) < M(gu, fu).
S

k—o0

This implies that d(gu, fu) < sAd(fu, gu), which is a contradiction with s\ < 1 and fu # gu.
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Case 2. If there exists N € N such that M(z,,u) = d(yn—1, fu) for all n > N, then (2.6) implies that

d(fu> yn) S )\d(ynflv fu) S )\Zd(ynf% fu) S T S )\n_Nd(yNa fu)

ns 1
)\()\—N

d(yn, fu)) = 0(n — o0),

that is d(fu, yn) — 0 as n — oo. Since d(gu,y,) — 0 as n — 0o, by Lemma 1.1 we have that fu = gu. This
is a contradiction.

Thus, we prove that fu = gu = w, that is u is a point of coincidence of f and g.

If f,g are weakly compatible, then, by fu = gu = w, we obtain that fw = fgu = gfu = gw, and hence

that w is a point of coincidence of f and g. Let us prove that w = fw = gw. Using (2.1), we get that
dw, fw) = d(fu, fw)
< Amax{d(gu, gw), d(gu, fu), d(gw, fw), d(gu, fw), d(gw, fu)}
= M(w, fw).
Since A < 1, we have that d(w, fw) = 0, which implies that w = fw = gw. Therefore, w is a common fixed
point of f and g.

Let us prove that the common fixed point of f and g is unique. Suppose that w; and wy are two common

points of f and g, that is w; = fw; = gw; and ws = fws = gws. Using (2.1), we get that

d(wi,ws) = d(fwr, fws)

IN

A max{d(gwh gw2)a d(gwla fwl)a d(gw2a fw2)7 d(gwlv f(UQ), d(gw27 fwl)}

= )\d(wl,ng).

Since A < 1, we have that d(wj,ws) = 0, that is w1 = ws. Thus, the common fixed point of f and g is

unique. O

Taking g = Ix (identity mapping of X) in Theorem 2.1 we obtain the following.

Corollary 2.1. (C’iric’ type contraction) Let (X,d) be a ROMS with coefficient s > 1 and f : X — X be a

mapping. Assume that there exists A € [0, %)

d(fx, fy) < Amax{d(z,y),d(z, fr),d(y, fy),d(z, fy),d(y, fr)}

forall x,y € X. Then f has a unique fixed point.

From Corollary 2.1, the following corollaries immediately follow.
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Corollary 2.2. (Chatterjea type contraction) Let (X,d) be a RbM S with coefficient s > 1 and f: X — X

be a mapping. Assume that there exists k € [0, %) such that

A(fr, fy) < (e, Fy) +dly, fo))

for all x,y € X. Then f has a unique fixed point.

Corollary 2.3. (Reich type contraction) Let (X,d) be a ROM S with coefficient s > 1 and f: X — X be a

mapping. Assume that there exist A\, pu,d € [0,1) with A+ p+48 < % such that
d(fz, fy) < Ad(z,y) + pd(z, fr) + 6d(y, fy),

for all x,y € X. Then f has a unique fixed point.

Corollary 2.4. (Hardy-Rogers type contraction) Let (X,d) be a ROM S with coefficient s > 1 and f : X — X

be a mapping. Assume that there exist o;; € [0,1)(i = 1,2,3,4,5) with oy + as +ag + as+ a5 < % such that
d(fz, fy) < ond(x,y) + azd(z, fr) + asd(y, fy) + aud(z, fy) + asd(y, fz),
for all x,y € X. Then f has a unique fixed point.
Remark 2.1. From Corollary 2.1-Corollary 2.4, we see that Problem 1.2 has been fully answered.
Finally, we give an example to illustrate our main result.

Example 2.1. Let X = A B, where A= {1,3,%,5} and B ={0,2}. Define d: X x X — [0, +00) such

that d(z,y) = d(y,z) for all z,y € X and

0, T =1y;

d(x,y) = %7 x,y € B;
%’ xEA\{l}’QEB;
2, z=1, y€B.

Let f: X — X be a map defined by

1, x € B;
fl@) =9 2, zeA\{i}

1 1

3 .T—g

and g be an identity mapping on X. Then the following hold:

4.

(a) (X,d) is a complete rectangular b-metric space with coefficient s = 3;
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b) (X, d) is neither a metric space nor a rectangular metric space;
( ; i g pace;
(c) All conditions in Theorem 2.1 are satisfied with A\ = %

(d) f and g have a unique common fived point x = 3.

Proof. First, let us prove (a). Clearly, conditions (1) and (2) of Definition 1.1 hold. To see (3), for all

x,y € X and all distinct points u,v € X \ {z,y}, we consider the following three cases.

Case 1. Ifxz,y€ Aorx,y € B, we only need to consider the case of x,y € B with u,v € A\ {1}. In this
case, d(u,v) > d($,%) = §. So we have

do) =5 =3 (F+5+3) < 3w + dtuo) + o)l

Case 2. Ifz € A\ {1} and y € B, then d(z,y) = 3. Let us consider the following three cases.
o If v € B{J{1}, then

d(z,y) = Z <d(v,y) < d(z,u) + d(u,v) + d(v,y).

o If u € B, then

d(z,y) = % =d(z,u) <d(z,u) + d(u,v) + d(v,y).

o Ifu,v € Aand v # 1, then

d(z,y) = Z =d(v,y) <d(z,u) + d(u,v) + d(v,y).

Case 3. Ifz =1 and y € B, then we consider the following two cases.

e Ifuc Borve B, then d(z,u) =2 or d(v,y) = *2. So we have

d(z,y) =2 < d(z,u) + d(v,y) < d(x,u) + d(u,v) + d(v,y).

e If u,v € A, then v # 1. It follows that d(z,u) + d(u,v) > d(1,%) + d(%,%) = 3. So we have

do) =2 =3 (F+7) < )+ dlwo) + do. )L

Additionally, in this case, we can also check that (b) holds.
Hence, from the above three cases, we prove that (X, d) is a rectangular b-metric space with coefficient
s = 3. Since X is a finite set, we know that (g(X),d) = (X, d) is complete.

Now we prove (c). It is sufficient to prove that (2.4) holds with A = . Since d(z,y) = d(y, z), we consider

the following three cases.

Case 1. If z,y € B. In this case, d(fz, fy) = 0. So (2.4) holds.
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Case 2. Ifz € Bandy € A, then fr =1, d(gz, fx) =2 and fy € A. In this case, we have

1 1
Ly) =1 < dlgr. fo)

d(fz, fy) <d( 3
<5 max{d(g, gv), (g, f2), dlgy, Fv), gz, fo). d(fz,g9)}.

[\

Case 3. If z,y € A, it is clear that d(fz, fy) = 3d(gz, gy) for all z,y € A\ {3}, which follows that (2.4)

holds. So we assume that z = é. In this case, we have

a1
2V 7852 8
1
<5 max{d(gz, gy), d(gz, fz), d(gy, fy), d(gz, fy), d(fz, gy)}-
From the above three cases, we show that (c) holds. Obviously, f and g have a unique common fixed
1

point fr =gr=x= 3. |
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