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ABSTRACT. In this paper, we consider the following equation
up — div (IVMII”(””)‘2 Vu) tw |u™ME) =2y = b ") 2,

We prove a finite time blowup result for the solutions in the case w = 0 and exponential growth in the

case w > 0, with the negative initial energy in the both case.

1. INTRODUCTION
We consider the following boundary problem:

up — div (|Vu|p(m)_2 Vu) Fwlu/™ 2y, = bu @20 inQx(0,7T),
u(z,t)=0, € 9Q, t>0, (1.1)
u(z,0) =up(x) in Q.

where 2 is a bounded domain in R, n > 1 with smooth boundary 9 and b > 0, w > 0 are constants, p(.),

m (x) and r (.) are given measurable functions on Q satisfying

2<my <m(z) <mo <p1 <p(x) <pa<ri <r(z) <1 < pu(z). (1.2)
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pr i =ess  f(p(z)), pri=ess  sup(p(2)),
ry o o= essxeglnf(r (z)), ro:= essxeﬂsup(r (x)),
my = essxeﬂmf(m (), mg:= essxeﬂsup(m (2)),
and
np(z)

if po <n

esssup (n—p(z))
xeQ

P« () =
400 ifps >n

We also assume that p(.), m (.) and 7 (.) satisfy the log-Hélder continuity condition:

A

<———— forae. z, y €, with |z —y| <9, (1.3)
log |z — y|
A>0,0<d<1.

Equation (1.1) can be viewed as a generalization of the evolutional p-Laplacian equation
. p—2 m—2 r—2
uy — div (\Vu\ Vu) + w |ul ug =blu| " u,

with the constant exponent of nonlinearity p, m, r € (2, oo), which appears in various physical contexts.
In particular, this equation arises from the mathematical description of the reaction-diffusion/ diffusion,
heat transfer, population dynamics processus, and so on (see [11]) and references therein). Recently in [1],
in the case w = 0, Agaki proved an existence and blow up result for the initial datum ug € L"(). Otani
[17] studied the existence and the asymptotic behavior of solutions of (1.1) and overcome the difficulties
caused by the use of nonmonotone perturbation theory. The quasilinear case, with p # 2, requires a strong
restriction on the growth of the forcing term |u|"~2u, which is caused by the loss of the elliptic estimate for
the p—Laplacian operator defined by A,u = div(|Vu|P~2Vu) (see [2]).

Alaoui et al [12] considered the following nonlinear heat equation

up — div (|W|p(z),2 vu) =@ 2ut f, inQx(0,T),
w(z,t) =0, e 90 x (0,T), (1.4)
u(x,0) =up(x) in Q.

Where 2 is a bounded domain in R™ with smooth boundary 92. Under suitable conditions on 7 and p
and for f = 0, they showed that any solution with nontrivial initial datum blows up in finite time. In the
absence of the diffusion term in equation (1.1) when p (z) = p and r () = r proved the existence and plow

up results have been established by many authors (See [1 — 3, 9, 14,17]).
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We should also point out that Polat [18] established a blow-up result for the solution with vanishing initial

energy of the following initial boundary value problem
Uy — g + |u|™ P up = |uP . (1.5)

Where m and p are real constants.

In recent years, mush attention has been paid to the study of mathematical models of electro-theological
fluids. This models inclode hyperbolic, parapolic or elliptic equations which are nonlinear with respect to
the gradient of the thought solution with variable exponents of nonlinearity, (see [4, 5, 10, 15]).

Our objective in this paper is to study: In the section 3, the blow up of the solutions of the problem (1.1)

in the case w = 0, in the section 4, exponential growth of solution when w > 0.

2. PRELIMINARIES

We present in this section some Lemmas about the Lebesque and sobolev space with variables conponents
(See [6 — 8, 12, 13]). Let p: Q@ — [1, + oo] be a measurable function, where € is adomain of R”™.

We define the Lebesque space with a variale exponent p (.) by
PO (Q) := {v:Q— R: measurable in Q, A, (Av) < +oo, for some A >0},

where A,y (v) = [ |v ()" da.
)
The set LP) (Q) equipped with the norm ( Luxemburg’s norm)

p(z)

v (@) der <1

A

lell,, = inf )\>O:/
Q

LP0) (Q) is a Banach space [13].

We next, define the variable-exponent Sobolev space W1P() (Q) as follows:
wirt) (Q) = {v € LPY) (Q) such that Vv exists and |Vo| € LPL) (Q)} .

This is a Banach space with respect to the norm [[v]ly1.00) () = [vlls0) + VOl -

Furthmore, we set W'?() (Q) to be the closure of C§° (Q) in the space Wol’p(') (©). Let us note that the
space W1P(L) (Q) has a differenet definition in the case of variable exponents.

However, under condition (1.3), both definitions are equivalent [13]. The space Wt () (Q), dual of

Wol’p(‘) (), is defined in the same way as the classical Sobolev spaces, where Wl.) + p%(_) =1

Lemma 2.1. (Poincaré’s inequality) Let @ C R™ be a bounded domain and suppose that p (.) satisfies (1.3),
then

[Vlloey < lVollyey, for allv e WoPO ().
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Where ¢ > 0 is a constant which depends on p1, p2, and 2 only. In particular, |Vv||,, define an equivalent

norm on Wol’p(') Q).

Lemma 2.2. Ifp(.)eC (ﬁ) and q: Q= [1, +00) is a measurable function such that

esssuzlzsz$2p(z)) prZ <n
TEQ

€ess insf2 (s () — q () > 0 with p, (x) =
e 400 if p2 >n.

Then the embedding Wol’p(') (Q) — L) (Q) is continuous and compact.

Lemma 2.3. ( Holder’s Inequality) Suppose that p, q, s > 1 are measurable functions defined on Q such

that

1 1 1
W @ qw) forae. y el

s
Ifu € L") (Q) and v € LIV (Q), then uv € L) (), with

lluvllg(y < 2 flullpy 1ollg -
Lemma 2.4. If p a measurable function on Q satisfying (1.2), then we have

min {||u|\§b , ||u||§§,)} < Ap() (u) < max {IIuHZz,) ; ||u||§§,>} ;

for any u € LP) (Q).

3. BLow up

In this section, we prove that the solution of equation (1.1) blow up in finite time when w = 0. we recall

that (1.1), becomes

up — div (|Vu|]”(m)72 Vu) =blu/" D%y inQx(0,T),
u(z,t)=0, z€ 9Q, t>0, (3.1)
u(z,0) =up(x) in Q.

We start with a local existence result for the problem (1.1), which is a direct result of the existence

theorem by Agaki and Otani [2].

Proposition 3.1. For all ug € Wol’p(')(Q), there exists a number Ty € (0,T] such that the problem (1.1) has

a solution u on [0, Ty satisfying:
u € Cy([0,To); Wo P ()) N ([0, o), L™ () N W20, To; L))
We define the energy functional associaeted of the problem (1.1)

E() = /L VP dxfb/i " da. (3.2)
Q Q

p(z) 7 (z)
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Theorem 3.1. Let the assumptions of proposition 1, be satisfied and assume that
E(0) <0. (3.3)
Then the solution of the problem (3.1), blow up in finite time.

Now, we let

H(t):=-E(t), (3.4)
and
1
L(t) == [u’dz (3.5)
|

To prove our result, we first establesh some Lemmas.

Lemma 3.1. Assume that (1.2) and (1.3), hold and E (0) < 0. Then

bp
Ap(_) (Vu) < 77’12 AT(.) (u) R (3.6)
and
T
fH@%@LO@y (3.7)

Proof. We multiply the first equation of (3.1) by u; and integratying over the domain 2, we get

d 1 1
“ v P(T)d —b/ r(m)d — 2
G i v e = [ @ de | < <.
Q Q
then
E' () = = [luill; <0. (3.8)
Integrating (3.8) over (0, t), we obtain
E(t)<FE(0)<O0. (3.9)

By (3.2) and (3.9), we have

p(z) r(z)
Q

1 1
/— (V"™ da < b/— u|" ™) da,
o)

so that

—

1 b

/—WW®M</—MMWm
P2 r

Q Q

On the other hand, we have

—

1 1
H [ p(x) / r(x)
(t) ép ) [Vul dx—|—bQ @ || dx

1

e
Q

ul™® dg. 3.10
|ul

IN
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Then, by (3.10), (3.4) and (3.9), we obtain

b
Ar(.) (u) .

0<HO)<H(()<—
1

O

Lemma 3.2. [16] Assume that (1.2), (1.3) hold and E (0) < 0. Then the solution of (3.1), satisfies for some
c>0,

Ary (u) 2 cllully, - (3.11)
Proof of theorem 1. We have

L't = /uutdx

Q

- /u (div (\vuv’(m)*? Vu) Fhluf 2y ) dw
Q

= —Ap(_) (VU) + bAT(_) (u) . (3.12)
Combining of (3.12), (3.11) and (3.6) , leads to
’ D2 1
L (t)>cb (1 - lJwll, - (3.13)
1

Now, we estimate L2 (¢), by the embedding of L™ (Q) < L2 (Q), we get

T1
1 ]- E r
r# @< (G) " < el (3.14)

By combining (3.14) and (3.13), we obtain

L'(t)>¢L7 (t). (3.15)
A direct integration of (3.15), then yields
L7 (1) > %
L'=% (0) — &t
Therefore, L blow up in a time t* < — —. O
L2 ~Y(0)

4. EXPONENTIAL GROWTH

In this section, we prove that the solution of equation (1.1) exponential growth when w > 0.
Lemma 4.1. Suppose that (1.2) holds and E (0) < 0. Then,

[l o < e lully + @) (41)
Q
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Proof.
/\u|m(m) dx = / \u|m(I) dx+/\u|m(x) dx,
Q Q_ Q4
where
Qr={ze€eQ/ |Ju(z, t)|>1} and Q_ ={z € Q / |u(z, t)] <1}.
So, we get

mi

u™" P dr < ¢ u|™ dx + u|™ dx
|ul < |ul
Q Q_ Q+

< e (flull ) -

Exploiting the algebric inequality

1
z”§(2+1)§(1+)(z+a),v,z>0, 0<v<1, a>0,
a

we have
m iy 1 .
fullf < e (Julli) ™ §c<1+H(O)> (Illly; + H (0)
< c(llulllt + H (1)) .
Similarly,
ull?* < e (flul) ™ <c<1+H(O)> (Illly; + H (0)
< c(luly +H®)
This gives

/|u|m<””> dr < ¢ (|lul]”t + H (1)) .
Q
O

Theorem 4.1. Let the assumptions of proposition 1, be satisfied and assume that (3.3) holds. Then the

solution of the problem (1.1), grows exponentially.

Proof. By the same procedure of the proof the Lemma 5, we get

E () = uill— o [ 1" <0, (42)
Q

then, we have

H (t) = |u? + w/ u|™ ™72 4 2dx > 0. (4.3)
Q
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We define
G({t)=H(t)+eL(t). (4.4)

for € small to be chosen later.

The time derivative of (4.4), we obtain

G {t)=H (t)+ e/uutdm‘.
Q
By using (1.1), we get
G t)=H (t)- €Apy (Vu) 4 ebA, )y (u) — ew/ Ju| ™72 puda. (4.5)
Q

To estimate the last term in the right hand side of (4.5), by using the following Young’s Inequality

XY <6Xx?+67'v2, X, Y>0,6>0.

_ m(z)—2 () —2
/|u|m(x) * wpudz /|u| g ful” ? ude
Q )

IN

5/ \u|m(x)_2 ufder(S_l/ \u|m<x) dz.
Q Q
We conclude

G ) > (1765)/|u|m(m)_2ufdx+ luell3 — €Ay (V)
Q

+ebAr(y (u) — ew571/ |u|m(x) dx. (4.6)
Q

Then

G > (1—65)/|u|m(x)_2ufdx—|— Hutug—ewa—l/mw(“) dx
Q Q

e (1 — ) H (t) + ebpAyy (u) + € <(1 —p) ]% - 1) Ay (V)

where p is a constant such that 0 < p <1 — 22,

T1

Also, by using (3.6) , we obtain

G ) > (1—65)/|u|m<f>*2u$dx+ e |12 —ewé_l/\u|m(x) dz
Q Q

+e(l—p)rmH(t) +e (bu +1—p— fi) Apcy (u). (4.7
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Then, by Lemma 7 and (3.11), (4.7) becomes

G@t) > (1—¢) /|u\m<’”> Pufde + ugl; — ec w8t (|fulll + H (t))

—l—e(l—,u)rlH(t)—Fec(bu—Fl—u—) [Jull; . (4.8)
So that

Gt > (1- 65)/|u|m($>*2u§dx+ luel3 + € (1 = )y — ¢ w8Y) H (t)

+e (c (bu +1—p— pz) —c w(51> [[ull7r - (4.9)
1
So, we chosen ¢ large sufficient and € small enough for that we can find A1, Ay > 0, such that

G (t) 2 MH (t) + Az ullyy = Ky (H (t) + [|ull;;) , (4.10)

and

Similarly in (4.7), we have
lully < e (H (8) + [lul}) - (4.11)
On the other hand, by (4.11) , we get
G(t) < Ko (H )+ [lul;!) . (4.12)

Combining with (4.12) and (4.10) , we arrive at

G (t) >nG(t). (4.13)
Finally, a simple integration of (4.13) gives
G(t)>G(0)e™, Vt>0. (4.14)
Thus completes the proof. O
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