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Abstract. In this paper, we consider the following equation

ut − div
(
|∇u|p(x)−2∇u

)
+ ω |u|m(x)−2 ut = b |u|r(x)−2 u.

We prove a finite time blowup result for the solutions in the case ω = 0 and exponential growth in the

case ω > 0, with the negative initial energy in the both case.

1. Introduction

We consider the following boundary problem:
ut − div

(
|∇u|p(x)−2∇u

)
+ ω |u|m(x)−2

ut = b |u|r(x)−2
u in Ω× (0, T ) ,

u (x, t) = 0, x ∈ ∂Ω, t ≥ 0,

u (x, 0) = u0 (x) in Ω.

(1.1)

where Ω is a bounded domain in Rn, n ≥ 1 with smooth boundary ∂Ω and b > 0, ω ≥ 0 are constants, p (.) ,

m (x) and r (.) are given measurable functions on Ω satisfying

2 ≤ m1 ≤ m (x) ≤ m2 < p1 ≤ p (x) ≤ p2 < r1 ≤ r (x) ≤ r2 ≤ p∗ (x) . (1.2)
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p1 : = ess
x∈Ω

inf(p (x)), p2 := ess
x∈Ω

sup(p (x)),

r1 : = ess
x∈Ω

inf(r (x)), r2 := ess
x∈Ω

sup(r (x)),

m1 : = ess
x∈Ω

inf(m (x)), m2 := ess
x∈Ω

sup(m (x)),

and

p∗ (x) =


np(x)

esssup
x∈Ω

(n−p(x)) if p2 < n

+∞ if p2 ≥ n
.

We also assume that p (.) , m (.) and r (.) satisfy the log-Hölder continuity condition:

|q (x)− q (y)| ≤ − A

log |x− y|
, for a.e. x, y ∈ Ω, with |x− y| < δ, (1.3)

A > 0, 0 < δ < 1.

Equation (1.1) can be viewed as a generalization of the evolutional p-Laplacian equation

ut − div
(
|∇u|p−2∇u

)
+ ω |u|m−2

ut = b |u|r−2
u,

with the constant exponent of nonlinearity p, m, r ∈ (2, ∞) , which appears in various physical contexts.

In particular, this equation arises from the mathematical description of the reaction-diffusion/ diffusion,

heat transfer, population dynamics processus, and so on (see [11]) and references therein). Recently in [1],

in the case ω = 0, Agaki proved an existence and blow up result for the initial datum u0 ∈ Lr(). Ôtani

[17] studied the existence and the asymptotic behavior of solutions of (1.1) and overcome the difficulties

caused by the use of nonmonotone perturbation theory. The quasilinear case, with p 6= 2, requires a strong

restriction on the growth of the forcing term |u|r−2u, which is caused by the loss of the elliptic estimate for

the p−Laplacian operator defined by ∆pu = div(|∇u|p−2∇u) (see [2]).

Alaoui et al [12] considered the following nonlinear heat equation
ut − div

(
|∇u|p(x)−2∇u

)
= |u|r(x)−2

u+ f, in Ω× (0, T ) ,

u (x, t) = 0, x ∈ ∂Ω× (0, T ) ,

u (x, 0) = u0 (x) in Ω.

(1.4)

Where Ω is a bounded domain in Rn with smooth boundary ∂Ω. Under suitable conditions on r and p

and for f = 0, they showed that any solution with nontrivial initial datum blows up in finite time. In the

absence of the diffusion term in equation (1.1) when p (x) = p and r (x) = r proved the existence and plow

up results have been established by many authors (See [1− 3, 9, 14, 17]).
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We should also point out that Polat [18] established a blow-up result for the solution with vanishing initial

energy of the following initial boundary value problem

ut − uxx + |u|m−2
ut = |u|p−2

u. (1.5)

Where m and p are real constants.

In recent years, mush attention has been paid to the study of mathematical models of electro-theological

fluids. This models inclode hyperbolic, parapolic or elliptic equations which are nonlinear with respect to

the gradient of the thought solution with variable exponents of nonlinearity, (see [4, 5, 10, 15]).

Our objective in this paper is to study: In the section 3, the blow up of the solutions of the problem (1.1)

in the case ω = 0, in the section 4, exponential growth of solution when ω > 0.

2. Preliminaries

We present in this section some Lemmas about the Lebesque and sobolev space with variables conponents

(See [6− 8, 12, 13]). Let p : Ω→ [1, +∞] be a measurable function, where Ω is adomain of Rn.

We define the Lebesque space with a variale exponent p (.) by

Lp(.) (Ω) :=
{
v : Ω→ R : measurable in Ω, Ap(.) (λv) < +∞, for some λ > 0

}
,

where Ap(.) (v) =
∫
Ω

|v (x)|p(x)
dx.

The set Lp(.) (Ω) equipped with the norm ( Luxemburg’s norm)

‖v‖p(.) := inf

λ > 0 :

∫
Ω

∣∣∣∣v (x)

λ

∣∣∣∣p(x)

dx ≤ 1

 ,

Lp(.) (Ω) is a Banach space [13].

We next, define the variable-exponent Sobolev space W 1,p(.) (Ω) as follows:

W 1,p(.) (Ω) :=
{
v ∈ Lp(.) (Ω) such that ∇v exists and |∇v| ∈ Lp(.) (Ω)

}
.

This is a Banach space with respect to the norm ‖v‖W 1,p(.)(Ω) = ‖v‖p(.) + ‖∇v‖p(.) .

Furthmore, we set W 1,p(.) (Ω) to be the closure of C∞0 (Ω) in the space W
1,p(.)
0 (Ω). Let us note that the

space W 1,p(.) (Ω) has a differenet definition in the case of variable exponents.

However, under condition (1.3) , both definitions are equivalent [13] . The space W−1,p
′
(.) (Ω) , dual of

W
1,p(.)
0 (Ω) , is defined in the same way as the classical Sobolev spaces, where 1

p(.) + 1
p′ (.)

= 1.

Lemma 2.1. (Poincaré’s inequality) Let Ω ⊂ Rn be a bounded domain and suppose that p (.) satisfies (1.3) ,

then

‖v‖p(.) ≤ c ‖∇v‖p(.) , for all v ∈W 1,p(.)
0 (Ω) .
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Where c > 0 is a constant which depends on p1, p2, and Ω only. In particular, ‖∇v‖p(.) define an equivalent

norm on W
1,p(.)
0 (Ω) .

Lemma 2.2. If p (.) ∈ C
(
Ω
)

and q : Ω→ [1, +∞) is a measurable function such that

ess inf
x∈Ω

(p∗ (x)− q (x)) > 0 with p∗ (x) =


np(x)

esssup
x∈Ω

(n−p(x)) if p2 < n

+∞ if p2 ≥ n.

Then the embedding W
1,p(.)
0 (Ω) ↪→ Lq(.) (Ω) is continuous and compact.

Lemma 2.3. ( Hölder’s Inequality) Suppose that p, q, s ≥ 1 are measurable functions defined on Ω such

that

1

s (y)
=

1

p (y)
+

1

q (y)
, for a.e. y ∈ Ω.

If u ∈ Lp(.) (Ω) and v ∈ Lq(.) (Ω) , then uv ∈ Ls(.) (Ω) , with

‖uv‖s(.) ≤ 2 ‖u‖p(.) ‖v‖q(.) .

Lemma 2.4. If p a measurable function on Ω satisfying (1.2) , then we have

min
{
‖u‖p1

p(.) , ‖u‖
p2

p(.)

}
≤ Ap(.) (u) ≤ max

{
‖u‖p1

p(.) , ‖u‖
p2

p(.)

}
,

for any u ∈ Lp(.) (Ω) .

3. Blow up

In this section, we prove that the solution of equation (1.1) blow up in finite time when ω = 0. we recall

that (1.1), becomes 
ut − div

(
|∇u|p(x)−2∇u

)
= b |u|r(x)−2

u in Ω× (0, T ) ,

u (x, t) = 0, x ∈ ∂Ω, t ≥ 0,

u (x, 0) = u0 (x) in Ω.

(3.1)

We start with a local existence result for the problem (1.1), which is a direct result of the existence

theorem by Agaki and Ôtani [2].

Proposition 3.1. For all u0 ∈W 1,p(.)
0 (Ω), there exists a number T0 ∈ (0, T ] such that the problem (1.1) has

a solution u on [0, T0] satisfying:

u ∈ Cw([0, T0]; W
1,p(.)
0 (Ω)) ∩ C([0, T0], Lr(.)(Ω)) ∩W 1,2(0, T0; L2(Ω)).

We define the energy functional associaeted of the problem (1.1)

E (t) =

∫
Ω

1

p (x)
|∇u|p(x)

dx− b
∫
Ω

1

r (x)
|u|r(x)

dx. (3.2)
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Theorem 3.1. Let the assumptions of proposition 1, be satisfied and assume that

E (0) < 0. (3.3)

Then the solution of the problem (3.1) , blow up in finite time.

Now, we let

H (t) := −E (t) , (3.4)

and

L (t) =
1

2

∫
Ω

u2dx. (3.5)

To prove our result, we first establesh some Lemmas.

Lemma 3.1. Assume that (1.2) and (1.3) , hold and E (0) < 0. Then

Ap(.) (∇u) <
bp2

r1
Ar(.) (u) , (3.6)

and

r1

b
H (0) < Ar(.) (u) . (3.7)

Proof. We multiply the first equation of (3.1) by ut and integratying over the domain Ω, we get

d

dt

∫
Ω

1

p (x)
|∇u|p(x)

dx− b
∫
Ω

1

r (x)
|u|r(x)

dx

 = −‖ut‖22 ,

then

E
′
(t) = −‖ut‖22 ≤ 0. (3.8)

Integrating (3.8) over (0, t) , we obtain

E (t) ≤ E (0) < 0. (3.9)

By (3.2) and (3.9) , we have

∫
Ω

1

p (x)
|∇u|p(x)

dx < b

∫
Ω

1

r (x)
|u|r(x)

dx,

so that ∫
Ω

1

p2
|∇u|p(x)

dx <

∫
Ω

b

r1
|u|r(x)

dx.

On the other hand, we have

H (t) = −
∫
Ω

1

p (x)
|∇u|p(x)

dx+ b

∫
Ω

1

r (x)
|u|r(x)

dx

≤ b

∫
Ω

1

r (x)
|u|r(x)

dx. (3.10)
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Then, by (3.10) , (3.4) and (3.9) , we obtain

0 < H (0) < H (t) <
b

r1
Ar(.) (u) .

�

Lemma 3.2. [16] Assume that (1.2), (1.3) hold and E (0) < 0. Then the solution of (3.1) , satisfies for some

c > 0,

Ar(.) (u) ≥ c ‖u‖r1r1 . (3.11)

Proof of theorem 1. We have

L
′
(t) =

∫
Ω

uutdx

=

∫
Ω

u
(

div
(
|∇u|p(x)−2∇u

)
+ b |u|r(x)−2

u
)
dx

= −Ap(.) (∇u) + bAr(.) (u) . (3.12)

Combining of (3.12) , (3.11) and (3.6) , leads to

L
′
(t) ≥ cb

(
1− p2

r1

)
‖u‖r1r1 . (3.13)

Now, we estimate L
r1
2 (t) , by the embedding of Lr1 (Ω) ↪→ L2 (Ω) , we get

L
r1
2 (t) ≤

(
1

2
‖u‖2r1

) r1
2

≤ c ‖u‖r1r1 . (3.14)

By combining (3.14) and (3.13) , we obtain

L
′
(t) ≥ ξL

r1
2 (t) . (3.15)

A direct integration of (3.15) , then yields

L
r1
2 −1 (t) ≥ 1

L1− r1
2 (0)− ξt

.

Therefore, L blow up in a time t∗ ≤ 1

L
r1
2
−1(0)

. �

4. Exponential growth

In this section, we prove that the solution of equation (1.1) exponential growth when ω > 0.

Lemma 4.1. Suppose that (1.2) holds and E (0) < 0. Then,∫
Ω

|u|m(x)
dx ≤ c

(
‖u‖r1r1 +H (t)

)
. (4.1)
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Proof. ∫
Ω

|u|m(x)
dx =

∫
Ω−

|u|m(x)
dx+

∫
Ω+

|u|m(x)
dx,

where

Ω+ = {x ∈ Ω / |u (x, t)| ≥ 1} and Ω− = {x ∈ Ω / |u (x, t)| < 1} .

So, we get

∫
Ω

|u|m(x)
dx ≤ c


∫

Ω−

|u|r1 dx


m1
r1

+

∫
Ω+

|u|r1 dx


m2
r1


≤ c

(
‖u‖m1

r1
+ ‖u‖m2

r1

)
.

Exploiting the algebric inequality

zv ≤ (z + 1) ≤
(

1 +
1

a

)
(z + a) , ∀z > 0, 0 < v ≤ 1, a ≥ 0,

we have

‖u‖m1

r1
≤ c

(
‖u‖r1r1

)m1
r1 ≤ c

(
1 +

1

H (0)

)(
‖u‖r1r1 +H (0)

)
≤ c

(
‖u‖r1r1 +H (t)

)
.

Similarly,

‖u‖m2

r1
≤ c

(
‖u‖r1r1

)m2
r1 ≤ c

(
1 +

1

H (0)

)(
‖u‖r1r1 +H (0)

)
≤ c

(
‖u‖r1r1 +H (t)

)
.

This gives ∫
Ω

|u|m(x)
dx ≤ c

(
‖u‖r1r1 +H (t)

)
.

�

Theorem 4.1. Let the assumptions of proposition 1, be satisfied and assume that (3.3) holds. Then the

solution of the problem (1.1) , grows exponentially.

Proof. By the same procedure of the proof the Lemma 5, we get

E
′
(t) = −‖ut‖22 − ω

∫
Ω

|u|m(x)−2
u2
t ≤ 0, (4.2)

then, we have

H
′
(t) = ‖ut‖22 + ω

∫
Ω

|u|m(x)−2
u2
tdx ≥ 0. (4.3)
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We define

G (t) = H (t) + εL (t) . (4.4)

for ε small to be chosen later.

The time derivative of (4.4) , we obtain

G
′
(t) = H

′
(t) + ε

∫
Ω

uutdx.

By using (1.1) , we get

G
′
(t) = H

′
(t)− εAp(.) (∇u) + εbAr(.) (u)− εω

∫
Ω

|u|m(x)−2
utudx. (4.5)

To estimate the last term in the right hand side of (4.5) , by using the following Young’s Inequality

XY ≤ δX2 + δ−1Y 2, X, Y ≥ 0, δ > 0.

∫
Ω

|u|m(x)−2
utudx =

∫
Ω

|u|
m(x)−2

2 ut |u|
m(x)−2

2 udx

≤ δ

∫
Ω

|u|m(x)−2
u2
tdx+ δ−1

∫
Ω

|u|m(x)
dx.

We conclude

G
′
(t) ≥ (1− εδ)

∫
Ω

|u|m(x)−2
u2
tdx+ ‖ut‖22 − εAp(.) (∇u)

+εbAr(.) (u)− εωδ−1

∫
Ω

|u|m(x)
dx. (4.6)

Then

G
′
(t) ≥ (1− εδ)

∫
Ω

|u|m(x)−2
u2
tdx+ ‖ut‖22 − εωδ

−1

∫
Ω

|u|m(x)
dx

+ε (1− µ) r1H (t) + εbµAr(.) (u) + ε

(
(1− µ)

r1

p2
− 1

)
Ap(.) (∇u) ,

where µ is a constant such that 0 < µ ≤ 1− p2

r1
.

Also, by using (3.6) , we obtain

G
′
(t) ≥ (1− εδ)

∫
Ω

|u|m(x)−2
u2
tdx+ ‖ut‖22 − εωδ

−1

∫
Ω

|u|m(x)
dx

+ε (1− µ) r1H (t) + ε

(
bµ+ 1− µ− p2

r1

)
Ar(.) (u) . (4.7)
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Then, by Lemma 7 and (3.11) , (4.7) becomes

G
′
(t) ≥ (1− εδ)

∫
Ω

|u|m(x)−2
u2
tdx+ ‖ut‖22 − εc ωδ

−1
(
‖u‖r1r1 +H (t)

)
+ε (1− µ) r1H (t) + εc

(
bµ+ 1− µ− p2

r1

)
‖u‖r1r1 . (4.8)

So that

G
′
(t) ≥ (1− εδ)

∫
Ω

|u|m(x)−2
u2
tdx+ ‖ut‖22 + ε

(
(1− µ) r1 − c ωδ−1

)
H (t)

+ε

(
c

(
bµ+ 1− µ− p2

r1

)
− c ωδ−1

)
‖u‖p1

p1
. (4.9)

So, we chosen δ large sufficient and ε small enough for that we can find λ1, λ2 > 0, such that

G
′
(t) ≥ λ1H (t) + λ2 ‖u‖r1r1 ≥ K1

(
H (t) + ‖u‖r1r1

)
, (4.10)

and

G (0) = H (0) + εL (0) > 0.

Similarly in (4.7) , we have

‖u‖22 ≤ c
(
H (t) + ‖u‖r1r1

)
. (4.11)

On the other hand, by (4.11) , we get

G (t) ≤ K2

(
H (t) + ‖u‖r1r1

)
. (4.12)

Combining with (4.12) and (4.10) , we arrive at

G
′
(t) ≥ ηG (t) . (4.13)

Finally, a simple integration of (4.13) gives

G (t) ≥ G (0) eηt, ∀t ≥ 0. (4.14)

Thus completes the proof. �
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