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ABSTRACT. In this paper we introduce certain subclasses of analytic functions by applying Srivastava-Attiya
operator. Our main purpose is to derive inclusion results by using concept of conic domain and subordination

techniques. We also deduce some new as well as well-known results from our investigations.

1. INTRODUCTION

Let x denotes the class of analytic functions f(z) in the open unit disk

U = {z:|z| < 1} such that

fz)=z+ Z anz".
n=2

(1.1)

Subordination of two functions f and g is denoted by f < g and defined as f(z) = g(w(2)), where w(z) is

schwarz function in U. Let S, S* and C denotes the subclasses of x of univalent functions, starlike functions

and convex functions respectively. For 0 < § < 1, §*(d) and C(d) are the subclasses of S of functions f

satisfies;

z2f'(z) - 14+ (1-20)z

e N
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(2f'(z)  1+(1-20)=
) T 1-z

respectively. Mocanu [13] introduced the class M, of a—convex functions f € S satisfies;

(z€0), (1.3)

) PR s
(“ e f@>><1—z’ (14

where « € [0,1], @f’(z) # 0. and z € U. We see that My = S* and M; = C. This class is vastly studied
by several authors. See [4,15,17-19]. For k € [0,00), Kanas and Wisniowska [8,9] introduced the classes
k — UCV of k-uniformly convex functions and k — ST of k-starlike functions. The analytic conditions for

these classes are given [6-9] as;

k—UCV = {f €S: Re (1 + Z]{(S)) >k ij(g) } . (z€0). (1.5)
O PO O A EYC B A
k ST_{feS.R (f(z)>>k ) 1‘}, (z € D). (1.6)
We can rewrite the above relations easily as;
Re (p(z)) > k|p(z) — 1], (1.7)

where p(z) =1+ ZJ{,/;S) or p(z) = ZJ{;S) It is clear that p(U) is conic domain defined as;

Q. ={weC: Re(w)>k|lw-1|}, (1.8)

or

Qk{u+iv:u>k (u1)2+v2}, (0<k < 0). (1.9)

These conic domains are being studied by several authors. See [2,6,14,16]. Sokol and Nonukawa [23]

introduced the class defined as;

MN = {f € S:Re (1 n Zﬁé?) > ZJ{;S) - 1‘} , (2€0). (1.10)

It is obvius that M N C C. Recently S. Sivasubramanian et al. [22] extend the Sokol and Nonukawa’s work

in terms of conic domains. They introduced a new class k — M N of functions f € S such that

w1 505) >

In motivation of the work [23], A. Rasheed et al. [21], introduced an interesting class k — UM, (0 < a <1)

-1

, (z€0). (1.11)

of functions f € S such that
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2f'(2) (Zf/(z))/] 2f'(2)
Re |(1 -« + « >k -1, (2€0). 1.12
S O O A e #e0 )
Obviously, we can see k —UM; =k — MN and 1 —UM; = MN.
We recall a Hurwitz-Lerch Zeta function ®(s,b; z) [25] defined by
oo Zn
B(s.a o) — 1.13
(s,a;2) ;(n—l—b)s’ (1.13)

(beC\Zy ; s eC when |z| <1; Re(s) > 1 when |z] = 1),
where C and Z; denotes the set of complex numbers and the set of negative integers respectively.
Srivastava and Attiya [24] introduced the linear operator J,; : x — x defined in terms of the convolution
( or Hadamard product ), by
Jsnf(2) = Gsp(2) * f(2), (1.14)
where
Gsp(2) = (1 +0)°[®(s,b; 2) — b°], (1.15)
with z € U, b e C\ Z; and s € C. Therefore, using (1.13) to (1.15), we have

Js’bf(z) =z+ Z <Tll++?)) anz", (1.16)

n=2
where z ¢ U, be C\ Z; and s € C.

The srivastava-Attiya operator generalizes the integral operators introduced by Alexandar [1], Libera [10],
Bernardi [3] and Jung et al. [5].

In 2007, Raducanu and Srivastava [20] introduced and studied the class 57, (0) of functions f e x satisfies
Jspf(2) € 57(0).

Now by using concepts of conic domains and Srivastava-Attiya integral operator, we introduce new classes

as following.

Definition 1.1. Let k € [0,00) and o, § € [0,1]. Then f € k— UM (v, B) if and only if

2f'(2) +a(2f’(2))' 2f'(2) | Lf(2)
f(2) f'(2) f(2) f'(2)

Some of the special cases are given below and we refer to [8,9,21-23].

Re [(1 —«)

+7

]>k‘(1—ﬁ) 1], (2€0).

Special cases:

(i) For 8 =0, the class k — UM («, B) reduces to the class k — UM,,. See [21].

(ii) For « = 1 and 8 = 0, the class k — UM (o, 8) reduces to the class k — M N. See [22].
(iii) For « = 1, § = 0 and k = 1, the class k — UM (a, §) reduces to the class MN. See [23].
(iv) For a =1 and 8 =1, the class k — UM («, 8) reduces to the class k — UCV. See [9].
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(v) For a =0 and 8 =0, the class kK — UM («, 8) reduces to the class k — ST. See [8].

Definition 1.2. Let o, € [0,1], k € [0,00), b e C\Z; and s € C. Then
fek—UM: (o, B) if and only if Jspf(2) € k — UM (e, B).

Clearly, for s = 0 the classes k — UM} (a, 8) and k — UM (e, ) coincides.

2. PRELIMINARIES
Lemma 2.1. [12] Let h be an analytic function on O except for at most one pole on OU and univalent on
U, p be an analytic function in U with p(0) = h(0) and p(z) # p(0), z € U. If p is not subordinate to h,
then there exist points zg € U, § € 00 and € > 1 for which
o (2] < lz0l) C R (D), p(z0) = M&o), 200 (20) = o’ (€0)-

Lemma 2.2. [6] If f € S*() for some a € [$,0), then

Re <f(;)> > 3 _12a.

Lemma 2.3. [6] If Re ( f’(z)) > a for some o € [1,0], then

Re (f(z)) - 2a23+ 1

3. MAIN RESULTS

Theorem 3.1. Let k € [0,00) and o, B € [0,1]. Also, let p be a function analytic in the unit disk such that
p(0) =1. If

then

where v = y(k, a, ) is given by

1| [(a—2k+Bk)*  8(a+Bk) (o—2k+ Bk)
vk a.8) = 7 l\/ e axh a+h (3.1)

Proof. We may assume that v > 3 since the condition Re (p(z) + Zg(/i;)) >0

implies at least Re (p(z)) > % (See [11]). Suppose now, on the contrary that p £ h. Then, by Lemma 2.1,

there exist zg € U, & € U and m > 1 such that
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(1—7)?*+a?

30 —n) (z,y €R).

p(20) =7 + iz, zo0p'(20) = my, where y < —

Using these relations, we have

fre {p(’z‘)) + aZOP/(ZO)} —k ’p(Zo) -1+ ﬁzop’(zo) > 0,

p(20) p(20)

or

20p'(20)
p(20)

20p'(20)
p(20)

0< Re[p(zo)+oz ]k'p(z0)1+ﬁ

= Re {'y—l—ix—&—a my' ]—k”y+ix—1+5
v+

my

v +ix

amyy

L | tiz)’ — (o + i) + By
72_’_.%.2

Y +1ix

2
oy (1_,},)2+$2 _k\/(X+Yaj2) + T2
20 =7\ ?*+a? v+ z?

where X = W, Y = W and T = (2y —1)°. The function R(z) is even in regard of z. Now

we have to show that R(z) has maximum value at = 0 when o, 8 € [0,1] and v € [

<y - = R(z),

1

3,1). We can easily

check

ay(2y-1)
(I=7)(*+2?)

2\/(X +Ya2)? + Ta?

R(zr)= -z A2 + a2

—kQ2Y (X +YaH)+ T —

Then R'(xz) =0, if and only if, 2 = 0. Since «, 8 € [0,1] and v € [%, 1). So one can see

R'(z) = — [Om — g {(2(1 —7)+B)(2y+8)+2(2y - 1)2}] <0.

Thus R(z) has maximum value at « = 0, that is

Rz) < R(0) = o~ 221=7) k1= +5) _

2y 2y

for v = ~(k, o, B) is given by (3.1), which contradicts the assumption. Hence

1+ (1—29)z
— =
p(z) = ——— (2),
where v = y(k, a, 8) is given by (3.1). O
Theorem 3.2. Let o, 5 € [0,1], k € [0,00), b e C\Z, and s ¢ C. Then
k—UM;(a,B) C S5 (7)),

where v = y(k,«, B) is given by (3.1).
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Proof. Let f € k—UM{(a, 8). Then, by Definition 1.2, Js ,f(2) € k — UM/(a, ), that is

BRI A1) N C1C3C2)10 1 I PPN % ) NN CTC AR C0) D
Re |(1 — «) Tonf(2) + Jonf(2)) ] >k|(1-75) Tonf(2) +8 (st (2) 1, (z€0).
Putting p(z) = Z(J]:i]{((j)))/, we have
zp’(Z)} _ ‘ N zp'(2)
Re [p(z) +a o) klp(z) —1+p )
Our required result follows easily by using Theorem 3.1. O

When s = 0, then we have the following new result for class k — UM («, 8)

Theorem 3.3. Let k € [0,00) and o, § € [0,1]. Then
k—UM(a,B) C S*(7),
where v = y(k, a, B) is given by (3.1).

The proof is straight forward by putting p(z) = Z]J:(,S) and using Theorem 3.1.

When k = 0, then we have the following result for a class 0— UM («, 8) = M,, introduced by Mocanu [13].

Corollary 3.1. Let f € M,. Then f € S*(vy), where

When § = 0, then we have the following result, proved in [21].

Corollary 3.2. Let f € k—UM(«,0) =k —UM,. Then f € S*(v), where

(20 — ) + /(20 — n)* + 8n
4 b

’V(aﬂk) =

at+k

_ _k —
where ¥ = 75, 1 = 357

When a =1, 8 = 0, then we have the following result, proved in [22].
Corollary 3.3. Let f € k—UM(1,0) =k — MN. Then f € S*(v), where
1 1-2k\’ 8 12k
o - L _ . 3.4
k) =7 \/(1+k) T m (1+k) (34)

When o =1, 8 =0, and k = 1, then we have the following result, proved in [22].

Corollary 3.4. Let f € 1 —UM(1,0) = MN. Then f € S*(v), where vy ~ 0.6403.

When a = § = 1, then we have the following result, proved in [6].
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Corollary 3.5. Let f € k—UM(1,1) =k —UCV. Then f € S*(v), where

~(k) :i (;’;)2 +8— GI’Z) . (3.5)

Theorem 3.4. Let f € k— UM (a,3). Then

Js7bf(z) 1+ (1 - 27))2
= )
z 1—=2

where n = ﬁ and v = (k,«, B) is given by (3.1).

Proof. Let f € k— UM (a, 8). Then by Theorem 3.2 we have
2(opf(2)) 1+ (1=29)2
JSJ,f(z) 1—=z2 ’
where v = y(k, a, 8) is given by (3.1). Using Lemma 2.2, we get

Jspf(z) 1+ (1—2n)z
= )
z 1—=2

where n = ﬁ O

When s = 0, then one can prove the following result by using Theorem 3.3 together with Lemma 2.2.

Theorem 3.5. Let f € k— UM (a,8). Then

f(z) 1+ (-2
z 1—=z2

i

where n = ﬁ and v = y(k,a, B) is given by (3.1).

When o =1, 8 = 0, then we have the following result, proved in [22].

Corollary 3.6. Let f € k—UM(1,0) =k — MN. Then

fz) 1+ (=20
z 1—=z

)

where n = ﬁ and v = y(k) is given by (3.4).

When oo =1, 8 =0 and k = 1, then we have the following result, proved in [22].

Corollary 3.7. Let f € 1 —UM(1,0) = MN. Then

f(2) - 1+ (1-2n)z
z 1—=z2

, where n ~ 0.58159.
When a = § =1, then we have the following result, proved in [6].

Corollary 3.8. Let f e k—UM(1,1)=k—UCV. Then

f(2) - 1+ (1—-2n)z
z 1—=z

)

where n = ﬁ and v = y(k) is given by (3.5).



Int. J. Anal. Appl. 17 (4) (2019) 681

When o = § =k = 1, then we have the following result, proved in [6].

Corollary 3.9. Let f€1—-UM(1,1)=1—-UCV. Then

Re (f(;)) > 0.6289.

Theorem 3.6. Let o, € [0,1], k € [0,00), be C\Zy and s e C. If

R { (Jonf(2)) + 2(J5,bf(z))'} >k‘(‘]s”’f( N ety

then

L+ (=292 Jf(z)  1+(1=20):
1—=2 z 1—=2

(Jspf(2)) <

where n = WTH and v = vy(k,a, B) is given by (3.1).

Proof. If we put p(z) = 1/(Jsuf(2))’, then

2/ (2) 2 (Jspf(2)”

p(z)  2(Jspf(2)

The proof follows easily by using Theorem 3.1 along with Lemma 2.3. ]

We can deduce the following result from Theorem 3.6 by choosing s = 0.
Theorem 3.7. Let k € [0,00) and o, 8 € [0,1]. If

Re |\/f'(2) + a;];/:((j))] >k ‘,/f/(z) + B;‘;/,l((zz)) - 1],

then

1+(1—2’y)z§f(z) - 1+ (1—-2n)z
1-2 z 1—-=2

f(z) <

where n = 272%1 and v = vy(k,«, B) is given by (3.1).
When a =1, 8 = 0, then we have the following result, proved in [22].

Corollary 3.10. If

Re [\/f’(z) + ";J;((j))] >k \\/W— 1,

then
!
Re( f(z)>>7:Re< ) >
where n = LZ‘H and v = (k) is given by (3.4).

When k = 1, then we have the following result, proved in [22].
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Corollary 3.11. If

Re[ 7o) + ;J}éj)) ] > |V

then

Re ( f’(z)) >~ ~0.64 = Re (ﬂj)> > 1~ 0.60.
For k = 0, we have the following result, refer to [22].

Corollary 3.12. If

w0

then

Re ( f’(z)) >~ ~0.64 = Re <f(zz)> > 1 ~ 0.60.

Theorem 3.8. Let o, 5 € [0,1], k € [0,00), be C\Zy and s e C. If

e {Js,bgw e (z(ﬁ:}{((zz)))’ _ 1)] - Js,bif(z) 8 (z(izb;(f)»’ _ 1) _ 1‘,

then
Js,bf(z) = 1 + (1 - 27)2

b
z 1—=2

where v = y(k, «, B) is given by (3.1).

Js v f(2)

- in Theorem 3.1.

The proof follows easily by substituting p(z) =

For s = 0, we can easily deduce the following result.

Theorem 3.9. Let k € [0,00) and o, 5 € [0,1]. If

[ (5 )| oo (5 )

then

f(2) 5 1—1—(1—27)27
z 1—2

where v = v(k, o, ) is given by (3.1).
When o =1, 8 = 0, then we have the following result, proved in [22].

Corollary 3.13. If

2f'(z) | f(2) f(2) flz) 1+ —=29)z
Re 70 +1]>k‘zl’¢ . < 1

where v = y(k) is given by (3.4).

When v =1, =0 and k = 1, then we have the following result, proved in [22].
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Corollary 3.14. If

Re {Zﬂg) + fiz) - 1} > ’f(;) - 1‘ — Re (f(;)) >y =~ 0.64.

When a =1, =0 and k = 0, then we have following result.

Corollary 3.15. If

Re [zﬁg) +f(;)—1} > 0= Re (f(;)> > %

If we substitute p(z) = (Js,f(2)) in Theorem 3.1, then we have the following result.

Theorem 3.10. Let o, 8 € [0,1], k € [0,00), b e C\Z; and s ¢ C. If

Re {(Js,bf(z))’ + az(‘]bﬂz))] >k ‘(J&bf(z))’ PG (C9)

(Jsnf(2)) (Jspf(2)) ’
then
Re ((Jspf(2))) >~
where v = y(k, o, B) is given by (3.1).
For s = 0, we have the following result.
Theorem 3.11. Let k € [0,00) and a, 8 € [0,1]. If
Re [f’(z) + azjjég)] >k|f(z)+ Bz;,/;ij) —11,

then
Re (f'(2)) >~

where v = y(k, o, ) is given by (3.1).

When o =1, 8 = 0, then we have the following result, proved in [22].

Corollary 3.16. If

2f"(2)
f'(z)

Re {f’(z)—&— } >k|f'(z) = 1] = Re(f'(2)) > v ~ 0.64.
When a =1, § =k = 0, then we have the following result.

Corollary 3.17. If Re | f'(z) + @] 0, then Re (f'(2)) > i.
I'(2) 2
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