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ABSTRACT. Physical capital and labour force are two major factors of any economy, which play a key role in its 

growth. The association of these two components with each other is also a matter of study, which is carried out in 

this endeavour by means of an ecological system with Holling-type II function. The governing model is an avant-

grade approach for economic theory as its equilibrium states and the stability analysis so obtained, referrer to 

different economic states with detail information about the capital-labour interaction. This novel assessment also 

contributes a significant way to scrutinize the capability of labours on consuming time on the capital and the 

efficiency of capital on processing output. Moreover, different patterns and cyclic behaviour of the Cobb-Douglas 

and constant-elasticity production functions, for different steady and oscillating states of the system are also 

provided comparatively. In addition, a numerical example is also discussed graphically with economic significance. 

These measurements will consequently keep the production cycle moving and so sustain the economic growth. 
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1. Introduction 

There is a large number of literature that has revealed different exogenous and endogenous 

causes and other active censures, which might destroy or stable the well-ordered economy of a 

country. The neo-classical theory of economic growth was firstly developed by Robert Solow as 

an alternative to the Harrod-Domar model of growth. Along with the labour and capital, he also 

added that the growth of any country comes from adding more ideas and new technologies. 

Recently, many types of research are found that illustrated these factors in production functions 

[1-9]. Fundamentally, these models accumulate many major assumptions of capital and labour 

in the production function, and as a consequence in the long-term economic growth. For 

instance, 

• Sustain rise in capital investment increases the ratio of capital to labour, which 

temporarily increases the growth rate. 

• Increase in the labour supply in addition to a higher level of productivity of labour and 

capital raises the trend of growth rate. 

• The declination of the marginal product of additional units of capital causes a long-term 

growth path with the same growth rate of GDP of an economy. 

• When the growth rate of output, capital and labour force is the same and so output per 

worker and capital per worker are constant, the steady-state growth path is reached. 

• Different pace of technological changes between countries will also show much 

variation in the growth rates. 

The present endeavour shows a ground-breaking approach to study the upshots of a 

production function that stem from the interaction of the capital and the labour force with the 

help of the ecological assumptions. We structured the dynamical system of predator-prey as the 

labour force (the output from the workers) and physical capital (machines), respectively. The 

predator-prey relationship is deep-rooted in nature and now it has become one of the inveterate 

concept to study the interactions among species and their environment. After the contrivance of 

theoretical ecology by Lotka [10] and Volterra [11], the models, named as Lotka-Volterra 

equations, played an important role in different fields of applied sciences [12-15]. The novelty in 

this attempt is the inclusion of Holling-type II function [16-20] in the system, which can 

effectively measure the functional response between the capital and the labour force. The 

existence of competitive interaction between these two factors produces a major change in the 
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production process that yields a salient change in economic growth. Using these moulds, the 

economic cycle that possibly occurs as a result of the interaction is also sketched in Fig. 1. Each 

equilibrium point of the dynamical system is discussed with its stability and economic 

significance. Different plots of some production functions [21-24] are also added to study the 

theory pictorially. The inventive incorporation of ecological concept in the economic growth 

theory will definitely make the mainstream economist think diversely while making economic 

measurements. 

 

 

Figure 1: Pictorial view of different circumstances with capital-labour interaction   

2. Mathematical Modelling and Equilibria 

Nowadays, economic growth is widely studied to estimate the social stability of a country 

around the globe. Most of the models, which are used for this purpose, are based on the 

production function that comprehends the exponential product of physical capital and labour 

force. The term physical capital includes things like machines, computers and other equipment 

that are used in the production process. Whereas the labour force is meant to be the 

performance of skilled and unskilled activities of human workers. The previous models lack 
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many repercussions, which occur during the output production. For instance, the effects of 

death, retirement or termination etc. of labours in a particular time period. Similarly, the time 

consumed operating a machine, its expiry etc. are the key factors that actually affect the 

performance of producing output in a targeted duration. These upshots affect the production 

progress on the individual level, which gradually leads to fluctuations in GDP of a country. 

Innovatively, considering all these facts, we take advantage of the well-known ecological 

systems, which sorts out dynamics of such ups and downs. The novelty in the model is that the 

labours are assumed as predators, which use the physical capitals as their prey in combination 

with Holling type II function. 

2.1. Model Manifestation 

Let, ( )tK  and ( )tL  represent the physical capital and labour force. Then the dynamics of these 

two species can be studied through the following system of equations, in conjunction with the 

Holling type II function [3-9, 16-20] as,  

( )
( )( ) ( ) ( )tKttKfs

td

tdK
II  −−= , 

( )
( )( ) ( ) ( )tLttLgr

td

tdL
II  −+= ,          (1) 

With the initial conditions as,  

( ) 00 KK =  and, ( ) 00 LL =            (2) 

In system (1), s  and r  show the capital investment and population of labours, respectively. 

Here, we assume ( )( ) ( )
( )








−=

1

1


tK
tKtKf  and ( )( ) ( )

( )








−=

2

1


tL
tLtLg  , as the logistic growth 

of capital and labours, where 1  and 2  define the maximum populations of capital and 

labours sustained by the environment. Whereas,   andextent to which the are the    

availability of the labour force affects the growth of capital and vice versa, accordingly. The 

Holling type II function, ( )tII , is outlined as, 

( )
( ) ( )

( )tKH

tLtK
tII





+
=

1
,           

whereor the  at which the labour come into contact with equipment the rate examines   

learning time and H  measures the handling time or the average time spent to process a capital 
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for producing output. Finally,and tal expiry of the capi or explain the depreciation  nd a   

the retirement, dismissal or death of labour, respectively. 

This advanced concept in the above system can be easily understood by considering different 

states of economic growth of any country. For instance, let the investment on machinery is 

increased while keeping the appointments of new labours constant. The existing labours are 

then allocated on appropriate machines for producing output. Each labour has to operate 

multiple machines at a time. This is because the proportion of machines per labour decreases as 

capital density increases. Additionally, at a very high level of investment on machines, labours 

require very little time waiting or searching for a machine and spend almost all their time in 

processing and producing output. Effectiveness of labour is then satiated and the number of 

invested capital reaches a plateau. This will in return brings out a positive effect on the growth 

rate of the labour force as it increases the labour efficiency to produce output more effectively.  

2.2. Equilibria and Stability Illustration  

Equilibria are the constant solutions to the system and are attained by taking the derivatives of 

the functions equal to zero, coupled with the stability analysis which is investigated through the 

eigenvalues of the Jacobian matrix at a particular equilibrium point. Generally, if the matrix has 

a positive real part or multiple zeroes then the equilibrium point is unstable for both cases. 

Negative real parts of all eigenvalues conclude the point to be locally asymptotically stable. 

Moreover, if the Jacobian matrix has negative real eigenvalues along with a pair of purely 

imaginary eigenvalues, then a Hopf bifurcation point might occur. The linearized stability test 

fails if it has negative real eigenvalues with exactly one zero eigenvalues. 

Now, consider Eq. (1) with 
( )

0=
td

tdK
 ,and let the Jacobian matrix for an equilibrium  

( )
0=

td

tdL
 

point ( ) LK ,  be, 
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,   (3) 

Then the governing system (1) has the following equilibrium points arising in different 

circumstances. 
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2.2.1. Trivial Equilibrium Point  

On substituting the trivial equilibrium point ( )0,00e  in the Jacobian matrix and simplifying, we 

get the eigen values ( ) −− rs , , which shows the 0e  to be locally asymptotically stable if, 

 s0  and.  r0   

2.2.2. Predator-free Equilibrium Point  

The predator-free equilibrium point is attained as 
( )
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
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 −
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1
s
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e
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which shows the 1e  to be locally asymptotically stable if, s and.
1
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++−
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2.2.3. Prey-free Equilibrium Point  

The calculated prey free equilibrium point is 
( )








 −

r

r
e

2
2 ,0 . For this point, the Jacobian 
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( )
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2.2.4. Coexistence Equilibrium Point  

Let the coexistence equilibrium point beuch that,, s ( )LKe ,3    
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where, 

( )
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The 3e  will exists, if ( )FMGA + 22 4  or ( ) 02 + FMG . On substituting 3e  in Eq. (3), we get 

the following characteristic equation, 
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2

4 2
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11 DDD −−
= , 

Sotherwise , o 04 2

2

1 − DD and  2,1=i or f 0iD , is locally asymptotically stable if 3e  

unstable with a complex conjugate pair and then a Hopf bifurcation will lead to a limit cycle. 

3. Numerical Discussion with Economic Significance 

In this section, we have discussed the aforementioned model for some numerical values of the 

parameters and attained different graphical demonstration using the Mathematica 11.0 software 

program. The Cobb-Douglas and constant-elasticity of production functions [21-24] are also 

portrayed to study the effects on the economic growth that takes place by means of the 

functional responses of physical capital and labour force. Mathematica 11.0 has a built-in 

program of the well-known fifth-fourth Runge Kutta method. Nowadays, this software has 

gained significant importance because of its friendly user interface and capability of solving any 
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kind of mathematical model. The appendix contains the code of this program made for 

illustrating the governing model numerically and graphically. 

A pictorial view of the system (1) is obtained by taking 2=s , 2=r  , 31 =  , 52 =  ,, 1=  

1= , 2=  , 4=  , 4=  ,in  shown , as ( ) 10 =L and ( ) 10 =K , with initial conditions 5=H  

Fig. 2. The existence of trivial equilibrium point can be seen clearly in this figure for a long-term. 

This is assumed as the production phase in the absence of technical machinery and skilled 

labours, as comprehensively discussed in the Cobb-Douglas model [21-22]. It also explains that 

if depreciation of capital and termination of labours become greater than the investment and 

appointment of new labours, accordingly, both factors will extinct after a particular time. As a 

result, the economic growth will either stop or reach the underperformance stage. 

Fig. 3 apparently describes the prey free equilibrium stage for the values, 2=s , 4=r  , 31 =  , 

52 = , 6= , 1=  , 8=  , 4=  , 2=  ,. The , with the same initial conditions 15=H  

condition evidently states that the increase in the number of employees requires more 

investment in the capital. Thus, if further investment is not made, the rate becomes inversely 

proportional to the increasing number of labours and the deficiency of physical capital occurs. 

Therefore, on continuous usage of the available capitals, after reaching a particular time, it will 

suffer devastation and no more machinery will exist. It is the plateau when a change in the 

economy is due to the effective endeavours of labours to produce output without using 

advanced types of machinery. Examples can be taken as the countries that are below the line of 

underdevelopment, which have a deficiency in the latest technical developments. Subsequently, 

the economic growth will either stop or move slowly as compared to the developed countries 

that accompany high technologies to boost their production growth. 

The predator-free equilibrium is shown in Fig. 4 for the parameters taken as 5=s , 020r =  , 

31 = , 52 =  , 6= , 1=  , 8=  , 4=  , 2=  ,, with the aforementioned initial 3=H  

conditions. It elucidates that there is an investment on new latest technologies but due to the 

lack of skilled and expert labours, this will automatically decrease the efficiency of labour force 

towards the production, which in return decreases the economic growth. 

Fig. 5 portrays the oscillations that illustrate the unstable state of coexistence equilibrium for the 

parameters taken as 3=s , 2=r  , 11 =  , 32 =  , 6= , 1=  , 8=  , 2=  , 3=  ,, 5.3=H  

with the same initial conditions. It states the performance of both the factors with the rate of 
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investment on capital greater than the rate of labour appointments. This will create fluctuations 

in the economic activity of a country. 

Furthermore, Figs. 6-9 demonstrate the production for different stages of equilibria of the 

capital and labour force for the time  100,0t , 21 =  , 32 =  , 6= , 1=  , 8=  , , 5.3=H  

and different values of s , r  ,  ,known -the wellplotting s are achieved by . These figure  

Cobb-Douglas production function, 

( ) ( ) ( )  −
=

1
, tLtKLKP ,          (4) 

with factor productivity 1=  and 4.0= . Here, the values of ( )tK  and ( )tL , generated 

through the dynamical system (1), are substituted in Eq. (4) to attain the curves. To the best of 

our knowledge, in most of the literatures [21-22] the parametric graph of Eq. (4) is usually 

plotted for constant rate of labour force. Evidently, those curves contradict the reality that are 

the actual cause of rise and fall of economic cycle. Here, comparative patterns of the Eq. (4) are 

illustrated for distinct configurations of capital and labour.  Fig. 5 shows an increasing 

production process when investment and growth rate of labours are equal and so is the 

depreciation and retirement rate. In Fig. 6 a curvy rise and fall can be seen in the production 

function, which is attained by taking the investment level less than growth of the labour and 

depreciation of the capital greater than the retirements of the labours. On the other hand, 

production process is found increasing in Fig. 7 in a nonlinear manner for the case when the 

investment level is greater than the growth of the labour and also depreciation rate is taken 

greater than retirements. Furthermore, when investment is increased as compared to the growth 

of labors and depreciation rate is decreased against the retirements of the labors, a cyclic 

production progress is attained, as shown in Fig. 8. 

In addition, comparison plots of different production functions proposed in the literature [21-

24] are also demonstrated in Figs. 10(a-c)-12(a-c). These graphs are also attained consequently 

through the solutions of the dynamical system (1) for different values of   and H , with 21 =  

, 32 =  , 6= , 1=  , 2=  , 3=  , 2=r  ,is  production functionDouglas -The Cobb . 3=s  

shown in Figs. 10a, 11a and 12a, the constant-elasticity of production function [23], 

, ( ) ( ) ( ) ( ) ( )( ) 


/1

10183.1,
−−−

−+= tLtKLKP
t

        (5) 



Int. J. Anal. Appl. 17 (4) (2019) 639 

 

is plotted in Figs. 10b, 11b and 12b for 584.0= , 519.0= and 756.0= . While Figs. 10c, 

11c and 12c represent the production function [23, 24], 

( ) ( ) ( ) ( )( ) 


/1

1,
−−−

−+= tLtKLKP ,        (6) 

for 1= , 519.0=  and 756.0= , where   is the efficiency parameter,   is functional 

distribution parameter and  is the elasticity substitution parameter in Eqs. (5) and (6). The 

unstable open regions are clearly found in Figs. 10(a-c) of each production function, 

respectively, for 8= and 1=H . Figs. 11a and 11c, illustrate small logarithmic spirals for the 

parameters 2= and 2=H , whereas Fig. 11c starts with a constant line and after some time 

goes round. Furthermore, when 8= and 5.3=H , Figs. 12a and 12c portrait a single rotation, 

while 12b produces multiple rotations, with the contraction in the open unstable region. 

4. Conclusion 

In this paper, we studied the economic growth by means of the ecological system in conjunction 

with Holling-type II function. The discussions were successfully made by relating the biological 

terms of the system with the economical parameters and defining preys and predators as the 

capital and labour force, accordingly. All the possible equilibrium points of the ecological 

structure were analysed according to economic significance. Many production functions have 

been found in literature, which has been used to study economic growth. Here, we took some 

among them and studied the effect of functional response of physical capital and labour force 

on these production functions. 

We figured out the following outcomes that are surely beneficial for the mainstream economists 

for different aspects of economic studies. 

• Each of the constant solutions shows different states of the economy that might occur 

endogenously or exogenously. 

• Generated production functions show different curves for each case of equilibrium 

points of physical capital and labour force. 

• The prey-free steady-state interprets the economy that is less developed technologically. 

Here, exogenous causes might affect the rate of investment on the latest equipment, 

which can boost the efficiency of labour output. 

• Predator-free state reflects the economy that lacks skilled labours, i.e. in the absence of 

competent labours, the increasing rate of investment on the latest types of machinery 

will not be adequately beneficial for economic growth. This state might also be due to 
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the migration of educated and proficient labours to other countries for the sack of high 

wages etc. Thus to this end, proponents of endogenous causes might play a key role in 

this regard. 

• The coexistence fluctuations are considered as the ups and downs in the growth of 

capital and efficiency of labours force. The production function of such economies yields 

cyclic behaviour. These cycles keep the economic ball rolling of any country. 

• The functional response of physical capital and labour is evidently seen to be a major 

characteristic of the production function, as these factors together may create a positive 

effect on economic growth. 

• The time consumed by the labours on each equipment can modify the output of the 

labour force factor, which overall enrich the production progress. 

• The Holling-type II function helps to evaluate the handling time and searching efficiency 

of the labours for the physical capitals. 

• Stability conditions at each state can balance the investment and depreciation on capital, 

similarly growth in excessive appointments and retirement or dismiss of professional 

labours. 

In future, some more interspecific interactions between different economic components will be 

discussed in addition to the imprecise theory. 

 

Appendix 

solex = NDSolve[{D[K[t], t] == s K[t] (1 - K[t]/\[Eta]1 ) - (\[Beta] \[Alpha] K[t] L[t])/(1 + 

\[Alpha] H K[t]) - \[Delta] K[t], D[L[t], t] == r L[t] (1 - L[t]/\[Eta]2 ) + (\[Gamma] \[Alpha] 

K[t] L[t])/(1 + \[Alpha] H K[t]) - \[Sigma] L[t] , K[0] == 1, L[0] == 1}, {K[t], L[t]}, {t, 0, 100}] 

 

Plot[Evaluate[{K[t], L[t]} /. solex], {t, 0, 5}, PlotStyle→{Blue, Dashed}, Frame→True, 

PlotTheme→"Business", AxesStyle→Directive[Black, 12], FrameLabel→{"Time(t)", 

"Population(K[t],L[t])"}, PlotLegends→{"K[t]", "L[t]"}] 

ParametricPlot3D[Evaluate[{(K[t])^0.4 (L[t])^0.6, (K[t]), (L[t])} /. solex], {t, 0, 100}, 

PlotTheme→"Marketing", PlotRange→All, AxesLabel→{"P[K,L]", "K[t]", "L[t]"}] 
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solH1 = ParametricNDSolve[{D[K[t], t] == s K[t] (1 - K[t]/\[Eta]1 ) - (\[Beta] \[Alpha] K[t] 

L[t])/(1 + \[Alpha] H K[t]) - \[Delta] K[t], D[L[t], t] == r L[t] (1 - L[t]/\[Eta]2 ) + (\[Gamma] 

\[Alpha] K[t] L[t])/(1 + \[Alpha] H K[t]) - \[Sigma] L[t] , K[0] == 1, L[0] == 1}, {K[t], L[t]}, {t, 0, 

300}, {H, \[Alpha]}, MaxSteps →\[Infinity]] 

ParametricPlot3D[Evaluate[{(K[t][1, 8])^0.4 (L[t][1, 8])^0.6, (K[t][1, 8]), (L[t][1, 8])} /. solH1], {t, 

0, 100}, PlotTheme→"Marketing", PlotRange→All, AxesLabel→{"P[K,L]", "K[t]", "L[t]"}] 

ParametricPlot3D[Evaluate[{0.584 (1.0183)^ t (0.519 (K[t][1, 8])^-0.756 + 0.481 (L[t][1, 8])^-

0.756)^-1.822, (K[t][1, 8]), (L[t][1, 8])} /. solH1], {t, 0, 100}, PlotTheme→"Marketing", 

PlotRange→All, AxesLabel→{"P[K,L]", "K[t]", "L[t]"}] 

ParametricPlot3D[Evaluate[{(0.519 (K[t][1, 8])^-0.756 + 0.481 (L[t][1, 8])^-0.756)^-1.822, (K[t][1, 

8]), (L[t][1, 8])} /. solH1], {t, 0, 100}, PlotTheme→"Marketing", PlotRange→All, 

AxesLabel→{"P[K,L]", "K[t]", "L[t]"}] 
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Figure 2. Solutions of Eq. (1) showing trivial equilibrium point when 2=s , 2=r  , 31 =  , 

52 = , 1= , 1=  , 2=  , 4=  , 4=  ,. 5=H   

 

Figure 3. Solutions of Eq. (1) showing prey free equilibrium point when 2=s , 4=r  , 31 =  , 

52 = , 6= , 1=  , 8=  , 4=  , 2=  ,. 15=H   
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Figure 4. Solutions of Eq. (1) showing predator-free equilibrium point when 5=s , 020r =  , 

31 = , 52 =  , 6= , 1=  , 8=  , 4=  , 2=  ,. 3=H   

 

 

Figure 5. Solutions of Eq. (1) showing unstable fluctuations of coexistence equilibrium point 

when 3=s , 2=r  , 11 =  , 32 =  , 6= , 1=  , 8=  , 2=  , 3=  ,. 5.3=H   
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Figure 6. Cobb-Douglas production function [22] for  100,0t , 21 =  , 32 =  , 6= , 1=  , 

8= , 5.3=H  when . 4== , 2== rs   

 

 

Figure 7. Cobb-Douglas production function [22] for  100,0t , 21 =  , 32 =  , 6= , 1=  , 

8= , 5.3=H   when . 2,4 ==  , 4,2 == rs   
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Figure 8. Cobb-Douglas production function [22] for  100,0t , 21 =  , 32 =  , 6= , 1=  , 

8= , 5.3=H   when . 2,4 ==  , 316.0,5 == rs   

 

 

Figure 9. Cobb-Douglas production function [22] for  100,0t , 21 =  , 32 =  , 6= , 1=  , 

8= , 5.3=H   when . 3,2 ==  , 2,3 == rs   
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(a) Production function [22] with 1=  and 4.0= . 

 

(b) Production function [23] with 584.0= , 519.0= and 756.0= . 
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(c) Production function [24] with 1= , 519.0= and 756.0= . 

Figure 10(a-c). Different production functions [22-24] for, 21 =  , 32 =  , 6= , 1=  , 2=  , 

3= , 2=r  ,. 1=H and 8= when 3=s   

 

 

(a) Production function [22] with 1=  and 4.0= . 
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(b) Production function [23] with 584.0= , 519.0= and 756.0= . 

 

(c) Production function [24] with 1= , 519.0= and 756.0= . 

Figure 11(a-c). Different production functions [22-24] for , 21 =  , 32 =  , 6= , 1=  , 2=  , 

3= , 2=r  ,. 2=H and 2= when 3=s   
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(a) Production function [22] with 1=  and 4.0= . 

 

(b) Production function [23] with 584.0= , 519.0= and 756.0= . 
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(c) Production function [24] with 1= , 519.0= and 756.0= . 

Figure 12(a-c). Different production functions [22-24] for , 21 =  , 32 =  , 6= , 1=  , 2=  , 

3= , 2=r  ,. 5.3=H and 8= when  3=s   

  


