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ABSTRACT. The aim of this paper is to get the boundedness of rough sublinear operators generated by
fractional integral operators on vanishing generalized weighted Morrey spaces under generic size conditions
which are satisfied by most of the operators in harmonic analysis. Also, rough fractional integral operator
and a related rough fractional maximal operator which satisfy the conditions of our main result can be

considered as some examples.

1. INTRODUCTION AND USEFUL INFORMATIONS

1.1. Background. The classical fractional integral (The classical fractional integral operator is also known

as Riesz potential.) was introduced by Riesz in 1949 [6], defined by
Lnf(x)=(-A)"% f(z) O<a<mn,
1
_ / f(y) dy

y(a) ) |z -y~
RTL
with
r520T (5)
Y() = =75
r(3-%)

where T'(+) is the standard gamma function and I, plays an important role in partial diferential equation

as the inverse of power of Laplace operator. Especially, Its most significant feature is that I, maps L,(R™)
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continuously into L, (R™), with % = %— ~and 1 < p < 7, through the well known Hardy-Littlewood-Sobolev
imbedding theorem (see pp. 119-121, Theorem 1 and its proof in [7]) for I,.
Let Q € Ly(S"™1), 1 < s < o0, Q(pz) = Q(z) for any u > 0, z € R™ \ {0} and satisfy the cancellation

condition

where 2’ = ra7 for any z # 0.
We first recall the definitions of rough fractional integral operator T o and a related rough fractional

maximal operator Mg . as follows:

Definition 1.1. Define

Q _
Inof(z) = (@ nli)af(y)dy 0<a<n,
|z =yl
1
Moo f (z) = SUp / Q@ —y)|Ifly)ldy 0<a<n.
|z—y|<r

Next, we give the definition of weighted Lebesgue spaces as follows:

Definition 1.2. (Weighted Lebesgue space) Let 1 < p < oo and given a weight w (z) € A, (R™), we shall

define weighted Lebesgue spaces as

1

Lp(w) = LR w) = { £ |fln,. = /\f(x)l”w(x)dw <oob,  l<p<oo

Lo = LB = {1 1, = essuplF(@)u(e) < oo}

Here and later, A, denotes the Muckenhoupt classes (see [2]).
Now, let us consider the Muckenhoupt-Wheeden class A (p, ¢) in [5]. One says that w(z) € A(p,q) for

1 <p < q<ooifand only if

P’

(W] A(p,q) = SUp |B|71/w(x)qd:c \B\*l/w(x)*p'dx < 0, (1.1)
B
B B

Q=

where the supremum is taken over all the balls B. Note that, by Holder’s inequality, for all balls B we have

1_1_ —
[w]A.g) > [Wapag s = BI? "1 HwllL,mlw I, 3 > 1. (1.2)

By (1.1), we have

1
o7

/w(x)qu /w(x)ﬂ”dx <|B|it . (1.3)
B B

Q=
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’

On the other hand, let u (z) = w (z)° , p= CIfw (x)sl € A(Z, %), then we get u(x) € A(p, §).

@ |

and ¢ =

“’L‘»Q

By (1.2) and (1.3),
Il o ln My ) ~ 1B 55 (1.4)
is valid.

Now, we introduce some spaces which play important roles in PDE. Except the weighted Lebesgue space
L,(w), the weighted Morrey space Ly, (w), which is a natural generalization of L,(w) is another important
function space. Then, the definition of generalized weighted Morrey spaces M, ,, (w) which could be viewed
as extension of L, ,(w) has been given as follows:

For 1 < p < oo, positive measurable function ¢(x,r) on R™ x (0, c0) and nonnegative measurable function
won R", f € M, ,(w) =M, ,(R",w) if f € LI’¢ (R") and

1
I fllat, o (w) = me;}}gﬁ m”.f”LP(B(x,r),w) < o0.
is finite. Note that for ¢(z,r) = w(B(z,r))7, 0 < k < 1 and ¢(z,r) = 1, we have M, ,(w) = Ly .(w) and
M, ,(w) = L,(w), respectively.
Extending the definition of vanishing generalized Morrey spaces in [3] to the case of generalized weighted

Morrey spaces defined above, we introduce the following definition.

Definition 1.3. (Vanishing generalized weighted Morrey spaces) For 1 < p < oo, ¢(x,r) is a positive
measurable function on R™ x (0,00) and nonnegative measurable function w on R™, f € VM, ,(w) =
VM, ,(R™,w) if f € L% (R") and

1
lim sup —— ) w) = 0. 1.5
Yim sup ey Ml s@n.w) (1.5)

Inherently, it is appropriate to impose on @(z,t) with the following circumstances:

lim sup M =0, (1.6)

t=0 zecRrn @(xat)

and

inf sup M > 0.
t>1az€R“ (P(Z‘,t)

=

(1.7)

From (1.6) and (1.7), we easily know that the bounded functions with compact support belong to VM, ., (w).

On the other hand, the space VM, ,(w) is Banach space with respect to the following finite quasi-norm

L

I fllvas, ) = sup @) 1 f1L,(B(er)w)s

zER", >0 P

such that

1
1- - r = 07
TI_I}’(I) :Izseuﬂgl (p(ﬂ?,’l") ||f||Lp(B(x7 J)
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we omit the details. Moreover, we have the following embeddings:

VM, (w) C Mpp (w), [ fllagy o) < 1 lvas, o w)-

Henceforth, we denote by ¢ € B (w) if ¢(z,r) is a positive measurable function on R™ x (0, c0) and positive
for all (x,r) € R™ x (0,00) and satisfies (1.6) and (1.7).
The purpose of this paper is to consider the mapping properties for the rough fractional type sublinear

operators Tq  satisfying the following condition
|Q
|TQ ocf | S | |n o |f( )l dya T ¢ Supp f (18)

on vanishing generalized weighted Morrey spaces. Similar results still hold for the operators Iq o and Mgq 4,
respectively. On the other hand, these operators have not also been studied so far on vanishing generalized
weighted Morrey spaces and this paper seems to be the first in this direction.

At last, here and henceforth, F' = G means F 2 G 2 F'; while F' 2 G means F > CG for a constant
C > 0; and p’ and s’ always denote the conjugate index of any p > 1 and s > 1, that is, ﬁ =1- % and
Si, =1- % and also C' stands for a positive constant that can change its value in each statement without
explicit mention. Throughout the paper we assume that x € R™ and r > 0 and also let B(xz,r) denotes

z-centred Euclidean ball with radius r, B¢ (z,r) denotes its complement. For any set F, y, denotes its

characteristic function, if F is also measurable and w is a weight, w(FE) := /w(x)dx

E
2. MAIN RESULTS
Our result can be stated as follows.
Theorem 2.1. Suppose that 0 <a<n,1<s' <p<Z, 7 :%—f 1<g<oo, Q€L (S" 1), 1<s5< 00,

Qux) = Q(zx) for any p > 0, x € R™"\{0} such that Tq,q is rough fractional type sublinear operator satisfying

(1.8). Forp>1, w (x)sl € A(Z,2) and s’ <p, the following pointwise estimate

dt
t

1 _1
IToaflL, (Berwy S (W (B (x0,7)))" /||f||L (B(o,t),wr) (W (B (20,1))) (2.1)

holds for any ball B (xo,r) and for all f € LIS (R™). If o1 € B(wP), @2 € B(w?) and the pair (o1, ¢2)

satisfies the following conditions
o0
t 1
) ::/ sup %;dt < 00 (2.2)
q

for every § > 0, and

/ ( ¥1 (3?, t) ldt 5 P2 (1‘7 ’I") , (23)
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then for p > 1, w(m)s/ € A(%,g) and s’ < p, the operator Tq o is bounded from VM, ., (w?) to

VMg, (w?). Moreover,

1Toafllvar, .. gy S W llvagy o o (2.4)

Proof. Since inequality (2.1) is the heart of the proof of (2.4), we first prove (2.1).

For any zg € R", we write as f = f1 + fa, where f1 (y) = f (Y) XB(xo,2r) (¥): f2 (W) = [ (Y) X(B(2g,2)) (¥):

r >0 and X p(z,2r) denotes the characteristic function of B (g, 2r). Then

||TQ,af||Lq(wq7B(mo,T)) < HTQ,aleLq(wq,B(wmr)) + ||TQ,ozf2||Lq(wq7B(mo)T)) :

Let us estimate ||T97uf1|\Lq(wqu(zovr)) and ||TQ7af2||Lq(wq7B(z07T)), respectively.

Since f1 € L, (wP,R™), by the boundedness of T o from L, (w?,R™) to Lg (w?, R™) (see Theorem 3.4.2
in [4]), (1.4) and since 1 < ¢’ < p < g we get
”TQ,afIHLq(wq,B(%,r)) < HTQ,afllqu(wq,]Rn)
S Ul g )

= Hf”Lp(wP,B(xo,%))

T od
s t
St ||f||Lp(wp,B(zo,2r))/m
2r

(oo}
s’ —s’ dt
~ Hw ||L%(B(wo7r))”w ||L(p/)/(B(a:0,r))/||f||Lp(wp,B(z07t)) m
2r

s

o0
1 _s dt
S ! (B0, ) [ 171y ur ey 0 ey 0 mars
2r

o7

7

o0 -1
1 Sl 1
S 1 B0 [ 185y um e |16 ey @] 7
2r

Q=

S (W (B(wo,7)))

Q=

1
—dt.
t

<[ WAl o (0 (B, )
2r

Now, let’s estimate the second part (= || Tq,o f2| (w9, B(zo,r)))- For the estimate used in Ta,ofall; (w9, B(zo,7))’
q ’ ? q ) ’

we first have to prove the below inequality:

_11
Tl @1 S [ 18l om0 (07 (Blaos ) Jat. (25)
2r
By [1] (see pp. 7 in the proof of Lemma2:), we get
dt

Toafa(@) S [ 106

2r

LoB@o) 1L, (B@oy) riza
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On the other hand, by Holder’s inequality we have

s = | [ 1F @I dy

B(zo,t)
D ~/1/
<| [ rwrwera) | [ wera
B(Z[),t) B(Io,t)
1
P
= _1 1411
< / WP @) dy | (w? (B(xo, 1)) 7 |Blo,t)|7 a7
B(xo,t)
_1 1411
= £z, (wr, Blzo,ty) (W (Blzo, 1)) * |B(2o,1) vraTy, (2.7)
where in the second inequality we have used the following fact:
By (1.4), we get the following:
*‘11/
-7 & -4 1411 %
O dy | = il won] ™ 1B (o, t) [7]
B(ajo,t)
[ s - 117
= (10 o) 1B Gty 7743
|| [ wwra| e
B(zo,t)
. _1 1411
= (w? (B(wo, 1)) * |B(wo, )| a7 >, (2.8)

At last, substituting (3.10) in [1] and (2.7) into (2.6), the proof of (2.5) is completed. Thus, by (2.5) we get

Q=

||TQ,af2||Lq(wqu(z0,r)) s (wq (B(xOJ")))

1
—dt.
t

_1
< U8l o (07 (Blaost)) ™
2r

Combining all the estimates for ||Tg7af1||Lq(wq B(wo,r)) 20d ||TQ7af2HLq(wq Blwo,r))r WE 8et (2.1).
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Now, let’s estimate the second part (2.4) of Theorem 2.1. Indeed, by the definition of vanishing generalized

weighted Morrey spaces, (2.1) and (2.3), we have

1
T a wi) — — |7 @ w x0o,T
1To0fllva, ., wo) o <p2(:c,r)H 2,0 fllLy(we,B(zor)
1 1
< sup ———— (w? (B (z0,r)))"

z€R™ >0 902(% 7")

T q _1dt
x ”f”Lp(B(ro,t),wP) (w? (B (x0,1))) * I
< " (w (B (z0,1)))
S sup ———— (w To,7))) 1
zER™ >0 oa(z,7) 0
[ q - -1 dt
x| (W (B (z0,t))) @ 1 (z,t) |1 (2,1) ||fHLp(B(zo,t),wp) T

T

Q=

1
5 ||f||VMp,<p1 (wP) Sup (wq (B (.To,T)))

2ER™ >0 902(35’ 7')

< [ @ (B a0 w0 T

4
S ||f||vMp,m(w”) )

At last, we need to prove that

1
ﬁHfHLp(wP,B(xom)) = 0.

. 1 .
lim sup W||T£2,af”Lq(wq,B(a:U,T)) S }1_1}(1) Sél]lg 4,01(-1'
) reR™ )

=0 zcrn P2
But, because the proof of above inequality is similar to Theorem 2 in [3], we omit the details, which completes

the proof. O

Corollary 2.1. Under the conditions of Theorem 2.1, the operators Mq . and I, are bounded from

V Mp,p, (WP) to VMg, ().
Corollary 2.2. For w = 1, under the conditions of Theorem 2.1, we get the Theorem 2 in [3].
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