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Abstract. Inspiring by the weak symmetry occurring in the Hv-left invertive structures, in this article

we have introduce a new class of Hv-LA-groups which is a generalization of LA-hypergroups. We have

investigated different types of homomorphisms of Hv-LA-groups. Moreover, we have constructed the Hv-

LA-groups. At the end a useful application of weak symmetry related with Hv-left invertive structure has

been presented using the chemical redox reaction.

1. Introduction

Kazim and naseerudin [1] laid the idea of left almost semigroup (denoted by LA-semigroups). They

generalized some handy result of semigroup theory. Afterwards, Mushtaq [2] and other, went further in the

detail of the structure and added various beneficial results to the theory of LA-semigroup, see paper [3–9]. An

LA-semigroup is midway structure between commutative semigroup and groupoid. Mushtaq and kamran [10]

in 1996 proposed the idea of left almost groups. They proved that if G is left almost group and H is left
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almost subgroup then G/H is a set of left almost group. Hyperstucture notion was initiated by Marty in

1934, when he [11] elucidated hypergroup and embarked in analyze their properties and applied them to a

group. Handful papers and books have been written in this direction, see [12–14]. In 1990, in Greece, Thomas

Vougiouklis was organized a congress on hyperstructure and name it AHA, but also there had been three

more congresses organized in Italy by Corsini, on the same topic with different name. During that congress

Vougiouklis [17] introduced the concept of weak structure which is now named Hv-structures. The impetus

of Hv-structures is that, the quotient of group with respect to invariant subgroup is a group. Marty from

1934 notify that, the quotient of group with respect to any subgroup is a hypergroup. Finally, the quotient of

a group with respect to any partition (equivalently to any equivalence relation) is an Hv-group. Let (G, ◦) be

group and R be equivalence relation, then (G/R, ◦) is an Hv-Group. Several authors have studied different

aspects of Hv-structure. For instance, Vougiouklis [18, 19], Spratalis [20–24] and Davvaz [25]. Not long

ago, in 2011, Hila and Dine [15] laid the idea of LA-semihypergroups, which is generalization of semigroups,

semihypergroups and LA-semigroups. Yaqoob, Corsini and Yousfzai [16] extended the work of Hila and Dine

and characterized intera regular left almost hypergroups by their hyperideal by using pure left identity. The

idea of Hv-LA-semigroups was given by Gulistan et al., [26] in 2015. Another motivation for the study of

hyperstructure comes from chemical reaction, such as chain redox and dismutation reaction were provided

different example of weak structures. for detail see papers [27–29].

This very article communicates the novel class ofHv-LA-groups which is a generalization of LA-hypergroups.

We have defined various types of homomorphisms. Additionally, we have constructed the Hv-LA-groups,

and presented the chemical example by making use of redox reactions.

2. Preliminaries

In this section we recall some helping material from different papers, like [16,19,26].

Definition 2.1. [16] A hypergroupoid (H, ◦) is called LA-semihypergroup, if it satisfies the following law

(x ◦ y) ◦ z = (z ◦ y) ◦ x for all x, y, z ∈ H

Example: [16] Let H = Z if we define x ◦ y = y − x + 3Z, where x, y ∈ Z. Then (H, ◦) becomes an

LA-semihypergroup.

Definition 2.2. [19] The hyperoperation ∗ : H ×H −→ P ∗(H) is called weakly associative hyperoperation

(abbreviated as WASS) if for any a, b, c ∈ H

(a ∗ b) ∗ c ∩ a ∗ (b ∗ c) 6= ∅

Definition 2.3. [19]The hyperoperation is weakly commutative (abbreviated as COW) if for any a, b ∈ H

a ∗ b ∩ b ∗ a 6= φ
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Definition 2.4. [26] Let H be non-empty set and ∗ be hyperoperation on H. Then (H, ∗) is called an

Hv-LA-semigroup, if it satisfies the weak left invertive law, for all x, y, z ∈ H

(x ∗ y) ∗ z ∩ (z ∗ y) ∗ x 6= ∅

Example: [26] Let H = (0,∞) we define x ∗ y =
{

y
x+1 ,

y
x

}
where x, y ∈ H. Then for all x, y, z ∈ H

satisfies (x ∗ y) ∗ z ∩ (z ∗ y) ∗ x 6= ∅. Hence (H, ∗) is an Hv-LA-semigroup.

3. Hv-LA-Groups

In this section, we present a new generalize class of non-associative hyperstructures namely Hv-LA-groups

and provided different examples and some basic results.

Definition 3.1. Let H be a non-empty set and ∗ be hyperoperation on H. Then (H, ∗) is called an Hv-LA-

group, if it satisfies the following axioms

(i) (x ∗ y) ∗ z ∩ (z ∗ y) ∗ x 6= ∅ for all x, y, z ∈ H,

(ii) H ∗ x = H = H ∗ x for all x ∈ H.

Example: Let H = {a, b, c} be a finite set. The hyperoperation ∗ is defined as follow

∗ a b c

a a {a, b} {a, c}

b c {H} {a, b}

c b {a, c} {H}

Here all elements of H satisfy the weak left invertive law. Also left invertive law is not hold in H, i.e.

H = (a ∗ b) ∗ c 6= (c ∗ b) ∗ a = {a, b}

Alike, associative law is not hold in H, i.e.

H = (c ∗ c) ∗ a 6= c ∗ (c ∗ a) = {a, c} .

Even, weak associative law is not true

{b} = (b ∗ a) ∗ a ∩ b ∗ (a ∗ a) = {c} = φ

Hence (H, ∗) is an Hv-LA-group.
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Example: Let H = {a, b, c, d} be a finite set and the hyperoperation is defined in the following table.

∗ a b c d

a a b c d

b c {a, c} {b, c} d

c b {a, c} {a, c} d

d d d d {a, b, c}

As all elements of H satisfy the weak left invertive law but H do not satisfies the left invertive law, associative

law and weak associative law i.e.

{a, c} = (b ∗ b) ∗ c 6= (c ∗ b) ∗ b = {a, b, c} ,

and {a, c} = (b ∗ b) ∗ c 6= b ∗ (b ∗ c) = {a, b, c} .

Also {b} = (b ∗ a) ∗ a ∩ b ∗ (a ∗ a) = {c} = φ

So (H, ∗) is an Hv-LA-group.

Now we will discuss some very basic results related with Hv-LA-groups.

Lemma 3.1. If (H, ∗) is an Hv-LA-group, then

(a ∗ b) ∗ (c ∗ d) ∩ (a ∗ c) ∗ (b ∗ d) 6= φ, hold for all a, b, c, d ∈ H.

Proof: Let us consider

x ∈ (a ∗ b) ∗ (c ∗ d)

= ((c ∗ d) ∗ b) ∗ a

= ((b ∗ d) ∗ c) ∗ a

= (a ∗ c) ∗ (b ∗ d) .

This implies that x ∈ (a ∗ c) ∗ (b ∗ d). From this we can say that (a ∗ b) ∗ (c ∗ d) ∩ (a ∗ c) ∗ (b ∗ d) 6= φ, hold

for all a, b, c, d ∈ H. 2

Proposition 3.1. Let (H, ◦) be an LA-hypergroup with left identity e and non-empty set A, such that

A ⊆ H. If (A ◦ (A ◦ x)) ◦ y ∩ (A ◦ (A ◦ y)) ◦ x 6= ∅ ∀x, y ∈ H and we define a hyperoperation A⊗
R on H as

xA⊗
Ry = (x ◦ y) ◦A, then (H, A⊗

R) become an Hv-LA-group.
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Proof: Let x, y, z ∈ H, we have

(xA⊗
Ry)A⊗

Rz = ((x ◦ y) ◦A)A⊗
Rz

= (((x ◦ y) ◦A) ◦ z) ◦A

= ((z ◦A) ◦ (x ◦ y)) ◦A

= (A ◦ (A ◦ z)) ◦ (y ◦ x)

= y ◦ ((A ◦ (A ◦ z)) ◦ x)

and on the other hand

(zA⊗
Ry)A⊗

Rx = ((z ◦ y) ◦A)A⊗
Rx

= (((z ◦ y) ◦A) ◦ z) ◦A

= ((x ◦A) ◦ (z ◦ y)) ◦A

= (A ◦ (A ◦ x)) ◦ (y ◦ z)

= y ◦ ((A ◦ (A ◦ x)) ◦ z)

but, since y ◦ ((A ◦ (A ◦ z)) ◦ x)∩ y ◦ ((A ◦ (A ◦ x)) ◦ z) 6= ∅ ∀ for all x, y, z ∈ H. It follows that (xA⊗
Ry)A⊗

Rz ∩

(zA⊗
Ry)A⊗

Rx 6= ∅. Next, we have

xA⊗
RH = (x ◦ H) ◦A = H also HA⊗

Rx = (H ◦ x) ◦A = H.

Hence (H, A⊗
R) becomes an Hv-LA-group. 2

Next we defined some regular relations on Hv-LA-groups.

Definition 3.2. The equivalence relation ρ is called regular on right (on the left ), if for all x of H ( H is

an Hv-LA-group), from aρb, it follows that (a ◦ x)
−
ρ (b ◦ x) , (x ◦ a)

−
ρ (x ◦ b) respectively.

Lemma 3.2. The relation ρ = φ−1 ∗ φ = {(x, y) ∈ H1 ×H1 : φ(x) = φ(y)} is regular on H1.

Proof: The ρ is an equivalence relation on H1 obviously. We have to show that ρ is regular on H1.

Let x, y, z ∈ H1 such that xρy, this implies that φ(x) = φ(y) =⇒ φ(xz) = φ(yz) and φ(zx) = φ(zy). so

(xz)ρ(yz). Thus xρy =⇒ (xz)ρ(yz) and (zx)ρ(zy). Hence ρ = φ−1 ∗ φ = {(x, y) ∈ H1 ×H1 : φ(x) = φ(y)} is

regular on H1. 2

On Hv-LA-group H, we are concerned with equivalence relation for which the family of equivalence classes

form an Hv-LA-group under the hyperoperation induced by that on H. For an equivalence relation ρ on

H, we may use xρ, and x or ρ(x) to denote the equivalence class of x ∈ H. Moreover, generally if A is a
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non-empty subset of H then Aρ = U{xρ | x ∈ A}. We let H/ρ denote the family {xρ | x ∈ H} of class of ρ.

The hyperoperation on H induces a hyperoperation ⊗ on H/ρ defined by

xρ ⊗ yρ = {zρ / z ∈ xρ ◦ yρ}

Where x, y ∈ H. The structure (H/ρ,⊗) is known as quotient structure.

Theorem 3.1. Let (H, ◦) be Hv-LA-group. Then (H/ρ,⊗) is an Hv-LA-group iff

(ρ (x) ◦ ρ (y)) ◦ ρ (z) ∩ (ρ (z) ◦ ρ (y)) ◦ ρ (x) 6= φ ∀x, y, z ∈ H

Proof: In H/ρ, we have

let U ∈ (ρ (x)⊗ ρ (y))⊗ ρ (z) = {u/u ∈ x ◦ y} ⊗ z

= {t ∈ u ◦ z, u ∈ x ◦ y}

= {t ∈ (z ◦ y) ◦ x}

=⇒ U ∈ (ρ (x)⊗ ρ (y))⊗ ρ (z)

This implies that (ρ (x)⊗ ρ (y))⊗ ρ (z) ⊆ (ρ (z)⊗ ρ (y))⊗ ρ (x) . So (ρ (x)⊗ ρ (y))⊗ ρ (z) ∩ (ρ (z)⊗ ρ (y))⊗

ρ (x) 6= φ. Since x ◦ H = H = H ◦ x, =⇒ whence H/ρ ⊗ x = H/ρ = x ⊗ H/ρ. Hence (H/ρ,⊗) is an

Hv-LA-group. 2

Theorem 3.2. Let (H, ◦) be Hv-LA-group and ρ be equivalence relation on H. If ρ is a regular relation,

then (H/ρ,⊗) is an Hv-LA-group.

Proof: First we show that ⊗ is a well defined on H/ρ, consider x = x1 and y = y1. We check that

x⊗y = x1⊗y1. We have xρx1 and yρy1. Since ρ is regular, it follows that (x ◦ y) ρ (x1 ◦ y) , (x1 ◦ y) ρ (x1 ◦ y1)

whence (x ◦ y) ρ (x1 ◦ y1). This implies that for all n ∈ (x ◦ y) there exists n1 such that nρn1. Which shows

that n = n1. It follows that that x⊗ y ⊆ x1⊗ y1 and similarly we obtain converse. Hence ⊗ is well defined .

Next we show weak left invertive property of ⊗. Let x, y, z be arbitrary element in H/ρ and l ∈ (x⊗ y)⊗ z.

This implies that v ∈ x⊗y and l ∈ v⊗z. It means that v1 ∈ x◦y and l1 ∈ v◦z such that vρv1 and lρl1. since ρ

is regular relation, it follows that there exists l2 ∈ v1◦z ⊆ (x ◦ y)◦z ⊆ (z ◦ y)◦x ( since H is a Hv-LA-group)

such that l1ρl2. From here we obtain that there exist l3 ∈ z ◦ y such that l2 ∈ l3 ◦ x. we have

l = l1 = l2 ∈ l3 ⊗ x ⊆ (z ⊗ y)⊗ x

=⇒ (x⊗ y)⊗ z ⊆ (z ⊗ y)⊗ x

=⇒ (x⊗ y)⊗ z ∩ (z ⊗ y)⊗ x 6= φ.
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Finally we show the reproductive axiom

since x ◦ H = H = H ◦ x

whence x⊗H/ρ = H/ρ = H/ρ⊗ x.

Hence (H/ρ,⊗) is a Hv-LA-group. 2

Next we defined the homorphisms of Hv-LA-groups.

Definition 3.3. A mapping φ : H1 −→ H2 (where H1 and H2 are Hv-LA-group) is said to be good homo-

morphism if it satisfies the following property

φ(xy) = φ(x)φ(y) ∀ x, y ∈ H1

Example: Let H1 = {a, b, c} and H2 = {l,m, n}, be two Hv-LA-hypergroups with hyperoperation is

defined in the following tables respectively,

∗ l m n

l {l} {m} {n}

m {n} {l, n} {m}

n {m} {l, n} {l, n}

and

◦ a b c

a {a} {b} {c}

b {c} {a, c} {b, c}

c {b} {a, c} {a, c}

The mapping f : H1 −→ H2 is defined by f (a) = l , f (b) = m, f (c) = n. Then assuredly f homomorphism

is a strong homomorphism.

If good homomorphism is 1− 1 and onto is called isomorphism. If f is an isomorphism, then H1 and H2

are said to be isomorphic, which is denoted by H1
∼= H2.

Definition 3.4. Let (H1, ◦) and (H2, ∗) be two Hv-LA-hypergroups. The map f : H1 −→ H2 is called

inclusion homomorphism if for all x, y ∈ H1 satisfies the following property

f(x ◦ y) ⊆ f(x) ∗ f(y)
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Example: Let H1 = {l,m, n} and H2 = {a, b, c} be two Hv-LA- hypergroups with hyperoperations

defined in the following table:

∗ l m n

l {l} {m} {n}

m {n} {l,m} {m}

n {m} {n} {n, l}

and

◦ a b c

a {a} {b} {c}

b {c} {H} {b}

c {b} {c} {H}

The mapping f : H1 −→ H2 is defined by f(l) = a , f(m) = b , f(n) = c. Then clearly f is an inclusion

homomorphism.

Definition 3.5. Let (H1, ◦) and (H2, ∗) be two Hv-LA-hypergroup. The map f : H1 −→ H2 is called weak

homomorphism or Hv homomorphism, if for all x, y ∈ H1, the condition is hold

f(x ◦ y) ∩ f(x) ∗ f(y) 6= φ

Example: Let H1 = {l,m, n} and H2 = {a, b, c} are two finite sets, where (H1, ∗) and (H2,◦) are

Hv-LA-hypergroups, the hyperoperation is defined in following tables:

∗ l m n

l {l} {m} {n}

m {n} {l,m} {m}

n {m} {n} {n, l}

and

◦ a b c

a a {a, b} {a, c}

b c {H} {a, b}

c b {a, c} {H}

.

The mapping f : H1 −→ H2 is defined by f(l) = a, f(m) = b, f(n) = c. Then clearly f is a weak

homomorphism or Hv-LA-homomorphism.

Theorem 3.3. Let φ : H1 −→ H2 be good homomorphism of an Hv-LA groups. Then there exist a

monomorphism ψ : H1/ρ −→ H2 such that imφ = imψ and diagram
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commutes i.e. ψ ∗ ρ• = φ where the mapping ρ• : H1 −→ H1/ρ is defined by ρ•(x) = ρ(x) ∀x ∈ H1.

Proof: Let ψ : H1/ρ −→ H2 is defined as ψ(ρ(x)) = φ(x) ∀x ∈ H1 since φ : H1 −→ H2. First we show

that ψ is well defined. For this let ρ(x1), ρ(x2) ∈ H1/ρ such that

ρ(x1) = ρ(x2)

ρ•(x1) = ρ•(x2)

ψ(ρ•(x1)) = ψ(ρ•(x2))

φ(x1) = φ(x2)

ψ(ρ(x1)) = ψ(ρ(x2)).

Next we will show that ψ is one -one. For this let ψ(ρ(x1)), ψ(ρ(x2)) ∈ H1/ρ

ψ(ρ(x1)) = ψ(ρ(x2))

φ(x1) = φ(x2)

ψ(ρ•(x1)) = ψ(ρ•(x2))

ρ•(x1) = ρ•(x2)

ρ(x1) = ρ(x2).

Finally we show that ψ is homomorphism. Let x, y ∈ H1 we have

ψ(ρ(x) ∗ ρ(y)) = {ψ(ρ(z)) : z ∈ xy} = {φ (z) : z ∈ xy}

= φ(xy) = φ (x)φ (y) = ψ(ρ(x)) ∗ ψ(ρ(y))
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Hence ψ is monomorphism and it is easy to prove that imφ = imψ. Now for all x ∈ H1, we have (ψ∗ρ•)(x) =

ψ((ρ•)(x)) = ψ((ρ)(x)) = φ(x). Hence diagram commutes. 2

Theorem 3.4. Let φ : H1 −→ H2 be good homomorphism of an Hv-LA groups. Then H1/ρ ∼= Imφ.

Proof: It follows from the Theorem 3.3. 2

Theorem 3.5. Let φ : H1 −→ H2 be good homomorphism of an Hv-LA groups. If k is a regular relation on

H1 such that k ⊆ ρ, then there exists a unique monomorphism ψ : H1/k −→ H2 such that Imφ = Imψ and

diagram

commute i.e.ψ ∗ k? = φ, where mapping k? : H1 −→ H2/k is defined as k?(x) = k (x) ∀x ∈ H1.

Proof: Straightforward. 2

Theorem 3.6. Let θ and σ be two regular relation on an Hv-LA-group H such that θ ⊆ σ. Then σ/θ is

regular relation on H/θ.

Proof: We define σ/θ : H/θ ◦ H/θ −→ P ?(H/θ) by σ/θ(θ(x)) = θ(x) ∀θ(x) ∈ H/θ. We first show

that the mapping is well defined, consider θ (x) = θ (y) =⇒ (x, y) ∈ θ ⊆ σ =⇒ (θ (x) , θ (y)) ∈ σ/θ

and so σ/θ (θ (x)) = σ/θ (θ (y)) . Next we show that σ/θ is an equivalence relation. Let x ∈ H, then

(x, x) ∈ σ =⇒ (θ (x) , θ (y)) ∈ σ/θ, thus σ/θ is reflexive. Also let x, y ∈ H, such that (θ (x) , θ (y)) ∈ σ/θ.

As (x, y) ∈ σ =⇒ (y, x) ∈ σ due to the symmetry of σ. Which implies that (θ (y) , θ (x)) ∈ σ/θ. Hence

σ/θ is symmetric . Again let x, y, z ∈ H, such that (θ (x) , θ (y)) , (θ (y) , θ (z)) ∈ σ/θ and (x, y) , (y, z) ∈

σ =⇒ (x, z) ∈ σ due to the transitivity of σ. Which implies that (θ (x) , θ (y)) ∈ σ/θ. Hence σ/θ is transitive.

Thus σ/θ is an equivalence relation. Now we have to show that, it is a regular. For it let x, y, z ∈ H, such

that (θ (x))σ/θ (θ (y)) =⇒ (x, y) ∈ σ =⇒ xσy =⇒ (xz) ρ (yz) =⇒ {θ (µ) : µ ∈ xz}σ/θ{θ (ν) : ν ∈ yz}.
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Which implies that (θ (x)⊗ θ (z))σ/θ (θ (y)⊗ θ (z)) and similarly we can show that (θ (x))σ/θ (θ (y)) =⇒

(θ (z)⊗ θ (x))σ/θ (θ (z)⊗ θ (z)) . Hence σ/θ is regular relation on H/θ. 2

Theorem 3.7. Let θ and σ be two regular relations on an Hv-LA-group H such that θ ⊆ σ. Then

(H/θ) / (σ/θ) ∼= H/σ.

Proof: Let us define ψ : (H/θ) / (σ/θ) −→ H/σ by ψ (σ/θ (θ (x))) = σ (x) ∀x ∈ H. It is easy to show

that this map is bijective. We only show that it is homomorphism. Suppose x, y ∈ H, then

ψ(σ/θ (θ (x))⊗ σ/θ (θ (y))) = ψ({σ/θ (θ (z)) : θ (z) ∈ θ (x)⊗ θ (z)})

= ψ({σ/θ (θ (z)) : z ∈ xy})

= {ψ(σ/θ (θ (z)) : z ∈ xy)}

= {σ (z) : z ∈ xy} = σ (x)σ (y)

= ψ(σ/θ (θ (x)))⊗ ψ(σ/θ (θ (y)))

Hence ψ is homomorphism. Thus (H/θ) / (σ/θ) ∼= H/σ. 2

3.1. Construction of Hv-LA-Groups: In this section we present the construction of Hv-LA-groups

through any non-empty set having more than two elements.

Consider a finite set H, such that |H| > 2. Define the hyperoperation ◦ on H as follows

xi ◦ xj =



xj for i = 1

xk for j = 1and k ≡ 2− i mod |H|

H for i = j, i 6= 1, j 6= 1

xi otherwise, for i ≺ j or i � j


Then H under the hyperoperation ◦ form an Hv-LA-group. The above construction can be explained with

the help of an example.

Example: Let H = {x1,x2, x3} be any set and define the binary hyperoperation ◦ defined above in the

following cayley,s table:

◦ x1, x2 x3

x1, x1 x2 x3

x2 x3 H x2

x3 x2 x3 H

Then clearlyH form anHv-LA-group. One can see that ◦ satisfy the weak left invertive law with reproductive

axiom, also ◦ is non-left invertive and non-associative i.e.

H = (x3 ◦ x3) ◦ x2 6= (x2 ◦ x3) ◦ x3 = x2



Int. J. Anal. Appl. 17 (5) (2019) 875

and

H = (x2 ◦ x2) ◦ x1 6= x2 ◦ (x2 ◦ x1) = x2

also it is not WASS

(x2 ◦ x1) ◦ x1 ∩ x2 ◦ (x1 ◦ x1) = φ.

Hence (H, ◦) is an Hv-LA-group. The result can easily be generalized to n elements.

3.2. Chemical example of Hv-LA- group: Here in this section we utilize the newly defined structure

namely Hv-LA- groups in applications. For this purpose we study chemical reactions. The best example of

Hv-LA-group in chemical reaction is a redox reaction.

3.3. Redox reaction: The chemical reaction in which one specie loss the electron and other specie gain the

electron. Oxidation mean loss of electron. Reduction mean gain of electron. The redox reaction is a vital

for biochemical reaction and industrial process. The electron transfer in cell and oxidation of glucose in the

human body are the example of redox reaction. The reaction between hydrogen and fluorine is an example

of redox reaction i.e.

H2 + F −→ 2HF

H2 −→ 2H+ + 2e−( Oxidation)

F2 + 2e− −→ 2F (Reduction)

Each half reaction has standard reduction potential
(
E0
)

which is equal to the potential difference at equi-

librium under the standard condition of an electrochemical cell in which the cathode reaction is half reaction

considered and anode is a standard hydrogen electrode (SHE). For the redox reaction, the potential of cell

is defined as

E◦cell = E◦
cathod − E◦

anode

where E◦
anode is the standard potential at the anode and E◦

cathod is the standard potential at the cathode

as given in the table of standard electrode potential. Now consider the redox reaction of Mn

Mn0 + 2Mn+4 + 2Mn+3 −→ 3Mn+2 + 2Mn+4

Mn0 −→ Mn+2 +Mn+4 + 2e− + 2Mn+3 + 2Mn+4

Manganese having a variable oxidation state of 0,+1,+2,+3,+4,+5,+6,+7. If we take

Mn0,Mn+4,Mn+3,Mn+4 together we will get pure redox reaction. The flow chart is given as
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Mn species with different oxidation state react with themselves. All possible reactions are presented in

the following table

⊕ Mn0 Mn+1 Mn+2 Mn+3 Mn+4

Mn0 Mn0
{
Mn0,Mn+1

} {
Mn0,Mn+2

} {
Mn0,Mn+3

} {
Mn0,Mn+4

}
Mn+1

{
Mn0,Mn+1

} {
Mn0,Mn+2

} {
Mn0,Mn+3

} {
Mn+2

} {
Mn+1,Mn+4

}
Mn+2 Mn+1

{
Mn0,Mn+3

} {
Mn+1,Mn+3

} {
Mn+1,Mn+4

} {
Mn+2,Mn+4

}
Mn+3

{
Mn0,Mn+3

} {
Mn+1,Mn+3

} {
Mn+2,Mn+3

}
Mn+3

{
Mn+3,Mn+4

}
Mn+4

{
Mn0,Mn+4

} {
Mn+1,Mn+4

} {
Mn+2,Mn+4

} {
Mn+3,Mn+4

}
Mn+4

The standard reduction potentials
(
E0
)

for conversion of each oxidation state to another are E0
(
Mn+4/Mn+3

)
=

+0.95, E0
(
Mn+3/Mn+2

)
= +1.542, E0

(
Mn+2/Mn+1

)
= −0.59, E0

(
Mn+1/Mn+0

)
= 0.296. If we replace

Mn0 = a, Mn+1 = b, Mn+2 = c, Mn+3 = d, Mn+4 = e, then we obtain the following table

⊕ a b c d e

a {a} {a, b} {a, c} {a, d} {a, e}

b {a, b} {a, c} {a, d} {c} {b, e}

c {a, c} {a, d} {b, d} {b, e} {c, e}

d {a, d} {b, d} {c, d} {d} {d, e}

e {a, e} {b, e} {c, e} {d, e} {e}
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As all elements of H satisfy the weak left invertive law with the reproductive axiom, but H do not satisfies

the left invertive law, associative law and weak associative law

{a, c} = (b⊕ b)⊕ a 6= (a⊕ b)⊕ b = {a, b, c} ,

{a, b, c, d} = (b⊕ b)⊕ c 6= b⊕ (b⊕ c) = {a, b, c} ,

and (b⊕ d)⊕ d = {b, e} ∩ c = b⊕ (d⊕ d) = φ.

Hence (H,⊕) is an Hv-LA-group.

4. Conclusion and Perspectives

In this research, We have introduce a new class of Hv-LA-groups and investigated different types of

homomorphisms of Hv-LA-groups. Additionally, we construct the Hv-LA-groups and applied our result to

a chemical redox reaction. In the future work, we will apply our result to different kind of applications.
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