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ABSTRACT. In this paper, we study a numerical approximation of the following problem ut = ugz, vt = Vgz,
0<xz<1 0<t<T;ug(0,t) =u""(0,t) +v P(0,1), vz(0,t) = u=2(0,t) + v~ "(0,¢) and uz(1,t) =
vz(1,t) = 0,0 < ¢ < T, where m, p, ¢ and n are parameters. We prove that the solution of a semidiscrete
form of above problem quenches in a finite time only at first node of the mesh. We show that the time
derivative of the solution blows up at quenching node. Some conditions under which the non-simultaneous
or simultaneous quenching occurs for the solution of the semidiscrete problem are obtained. We establish

the convergence of the quenching time. Finally, some numerical results to illustrate our analysis are given.

1. INTRODUCTION

In this paper, we study the behavior of a semidiscrete approximation of the following heat equations

involving nonlinear boundary flux conditions :
up(x,t) = uge(,t), ve(x,t) = Vg (2, ), (z,t) € (0,1) x (0,T), (1.1)
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ug(0,8) = u="(0,t) + v P(0,t), v.(0,t) =u~9(0,t) + v~ "(0,¢), t € (0,T), (1.2)
ug(1,t) =0, ve(1,t) =0, t e (0,7), (1.3)
u(x,0) = uo(x), v(x,0) = vo(z), x € [0,1], (1.4)

where m,n >0, p,q > 0, up and vy are positive smooth functions satisfying the compatibility conditions
up(0) = ug ™(0) + v, P(0), v4(0) = ug ?(0) + vy " (0), ug(1) = 0, vy(1) =0, and uf, vy > 0 and ug, vy < 0 on
(0,1].

Here [0,T) is the maximal time interval such that
vVt e [0,T), 1nfog21{u(z,t),v(x,t)} > 0.

We have

lim inf mi t t)}=0*.
lim_ in Oggl{u(x, ), v(z,t)}

The time T can be finite or infinite. If T is finite, then we say that the solution (u,v) quenches in a finite
time and T is called the quenching time of (u,v). If T is infinite, then we affirm that the solution (u,v)
quenches globally.

Nonlinear parabolic systems like (1.1)-(1.4) come from chemical reactions, heat transfer, etc, where u and
v represent the temperatures of two different materials during heat propagation. The quenching phenomenon
of parabolic problems has been the issue of intensive study (see for example [3,4,8-10] and the references
cited therein), particulary the study of heat equations system with nonlinear boundary conditions has been
the subject of investigation of several authors in recent years (see [6,7,14,15,17] and the references cited
therein). In [7] the authors study this problem, they prove that the solution (u,v) quenches in finite time T

and the quenching occurs only at the boundary x = 0 for 0 < wg,vg < 1. They show that

e if p < n+ 1, there exist initial data such that the non-simultaneous quenching occurs ;
o if g < "(ffiﬂl) andp>n+1(p< %:11) and ¢ > m + 1), the non-simultaneous quenching occurs
for any positive initial data ;

e if g > m+1, p > n+1, any quenching must be simultaneous and obtain of results on non-simultaneous

quenching rate.

Moreover, if quenching is simultaneous they found the quenching rate, which depends on the parameter in
the flux associated to the other component of the initial data.
To the best of our knowledge, no studies have been performed on the numerical approximation of equations

(1.1)-(1.4). In this paper, we investigate in the numerical study using a semidiscrete form of (1.1)-(1.4),
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especially in study of simultaneous and non-simultaneous quenching. For that, we consider a uniform mesh

on the interval [0, 1]
x;=0@—Dh,i=1,...,1, h=1/(I - 1),

Un(t) = (Ur(t), ..., Ur®)T, Vi(t) = (Vi(2),...,Vi(t))T, where U;(t) and V;(t) are the values of the numerical
approximation of v and v at the nodes z; at time ¢t. We also denote ¢;; and s ;, respectively, the values
of the numerical approximation of ug and vy at the nodes x;. By the finite difference method we obtain the

following system of ODEs whose the solution is (Up, V},) :

U/(t) = 6°U;(t) — b (U™ () + VP (1) i=1,...,1, t€(0,Ty), (1.5)
Vi(t) = 8°Vi(t) — b (U7 1(t) + V™ (1)), i=1,...,1, t€(0,Ty), (1.6)
UZ(O) = Y1, V;(O) = ©2,i, 1= 1,...,], (17)

where
0<<,01’7; <M, 0<4P2,i <N, i1=1,...,1,
Ui—1(t) = 2Ui(t) + Uit (?)

S2U;(t) = 3 ,2<i<I—1, te(0,Ty),
W () — 2U, (1) ;1 () — 2U; (1)
PULt) = =, Uil = =5 , t€(0,Ty),
blzg andbi:07 i:2,...,I.

h?

Here [0,T}) is the maximal time interval such that
Vt € [0,T3), inf lrgnilgl{Ul-(t), Vi(t)} > 0.

We have
lim inf min {U;(¢), Vi(t)} = 0%.

t—T,” 1<i<I
The time T}, can be finite or infinite. If T}, is finite, then we say that the solution (Uj,V},) quenches in a
finite time and T}, is called the semidiscrete quenching time of (Uy, V},). If T}, is infinite, then we affirm that
the solution (U, V) quenches globally.

We show that our semidiscrete scheme reproduces well the conditions for the quenching, quenching set
or simultaneous and non-simultaneous quenching of system (1.1)-(1.4). By following, it is also proved that
when quenching occurs, the semidiscrete quenching time converges to the theoretical one when the mesh
size goes to zero and we give a result on numerical non-simultaneous quenching rate. For previous work on
numerical approximations of heat equations with non-linear boundary conditions we refer to [1,2,5,11-13,16]

and the references cited therein. The rest of the paper is organized as follows : in the next section, we give
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some properties concerning our semidiscrete scheme. In Section 3, under some conditions, we prove that
the solution of the semidiscrete scheme (1.5)-(1.7) quenches in a finite time, we give a result on numerical
quenching set. We also show that the time derivative of the solution blows up at quenching node. In Section
4 a criterion to identify simultaneous and non-simultaneous quenching is proposed. In Section 5, we show
the convergence of the semidiscrete scheme and the convergence of the quenching times to the theoretical
one when the mesh size goes to zero. Finally, in the last section, we give some numerical results to illustrate
our analysis.

2. PROPERTIES OF THE SEMIDISCRETE SCHEME

In this section, we give some auxiliary results for the problem (1.5)-(1.7).

Definition 2.1. We say that (Up, V4) € (Cl([O,Th),RI))2 is a lower solution of (1.5)-(1.7) if

Z/(t) < 52Ul(t) - bl(ﬂim(t) +7iip(t))a i = 17 .. 'aIa te (OaTh)7
V'/(t) < 5 i(t) — bi(@_q(t) +J_n(t))7 i=1,...,1, t€(0,Th),

0<Ui(0) <14, 0<Vi(0) < a4, 1=1,...,1,

where (Up, V3,) is the solution of (1.5)-(1.7). On the other hand, we say that
(Un, Vi) € (Cl([O,Th),RI))2 is an upper solution of (1.5)-(1.7) if these inequalities are reversed.

The following lemma is a discrete form of the maximum principle.
Lemma 2.1. Let ey, cn, an, fBn € (C°([0,T),RY) and Uy, Vi, € C1([0,T}), RY) such that

Ul(t) — 2Ui(t) + es(OUi(t) + e () Vi(t) >0, i=1...,1, t€ (0,T}),
Vi (t) = 02Vi(t) + i (Ui (1) + Bi()Vi(t) > 0, i=1...,1, t € (0,Th),

U;(0) >0, Vi(0)>0, i=1...,I

Then we have

Uz(t)zoa ‘/Z(t)zov Z:]-aIate(OaTh)

Proof. Let Ty < Ty, and let (Z,(t), Wi(t)) = (eMUn(t),eMVy(t)) where X is a real. We find that
(Zn(t), Wp(t)) satisfies the following inequalities :

ZUt) — 82Z;(8) + (es(t) — NZi(t) + ci(OWi(t) =0,  i=1...,1, t€ (0,Th), (2.1)

W/ (t) — 82Wilt) + i () Zi(t) + (Bi(t) = NWi(t) >0, i =1...,1, t € (0,T},), (2.2)
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Z;(0) >0, W;(0)>0, i=1...1 (2.3)
Set m = min{ min Zi(t), min Wi(t)}. Since for ¢ € {0,...,I}, Z;(t) and W;(t) are
1<4<1,t€[0,Tp)] 1<i<1,t€[0,To]
continuous functions on a compact, we can assume that m = Z;, (t;,) for a certain ig € {0,...,I}
Assume m < 0.

Taking A negative such that

eio(tig) —A>0and Bio(tio) —A>0.

If t;, = 0, then Z;,(0) < 0, which contradicts (2.3), hence t;, # 0 ;
if 1 <ig < I, we have

—

Moreover by a straightforward computation we get

Zz(o (tio) - 52Zi0 (tio) + (e’io (tlo) - /\) Z’io (tio) + ¢ (tZU)Wlo (tlo) < 05

but these inequalities contradict (2.1) and the proof is completed.

O

Lemma 2.2. Let (Uy,V3) and (Up, Vi) be lower and upper solutions of (1.5)-(1.7) respectively such that,
(Un(0), Vi(0)) < (Uw(0), Vi(0)) then

(Un(t), Va(8)) < (Un(t), Va(2))-

Proof. Let us define (Zp,(t), Wi (t)) = (Un(t), Va(t)) — (Un(t), Va(t)). We obtain

ZI(t) — 62 Z;(t) — mbi (i (8) "™ 1 Z;(t) — pbs(vs(£)) P Wi(t) >0, i =1,...,1

W/ (t) — 6*Wi(t) — qbs (s (£)) "9 Zs(t) — nbi(vi(0)) "' Wi(t) >0, i =1,...,1

(2.6)
where 11;(t), v;(t) lie, respectively, between U;(t) and U;(t), and between V;(t) and V;(t), for i € {1,...,I}
We can rewrite (2.4)-(2.5) as

Zi(t) = 6°Zi(t) + ei(t) Zi(t) + c;(t)Wi(t) > 0, i

=1,...,1, te (O,Th),

W (t) — 2Wi(t) + a;(t) Zi(t) + B () Wi(t) > 0, i=

1,...,1, t€(0,T}),
where e;(t) = —mbi(ui(t)™™", c(t) = —pbi(ui(t)) P, ()

—qbi(pi(t))"971, and Bi(t) =
—nb;(v;(t))™"" Y i=1,...,1,¥t € (0,T}). According to Lemma 2.1, Z;(t) > 0, Wi(t) >0, fori=1,...,1,
vt € (0,T},) and the proof is completed.

O
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The next lemma gives the properties of the semidiscrete solution.

Lemma 2.3. Let (U, V) € (CH([0,Th), RI))2 be the solution of (1.5)-(1.7) with an initial data (1,1, P2.1)
upper solution such that 0 < ¢1; < @141 <M and 0 < @o,; < 2,41 < N fori=1,...,1 —1. Then we

have

(1) 0< Ul(t) < ©1,i <M and 0 < V;(t) < ©2.i <N, fO’f’ i=1,...,I, te [O,Th),'
(ii) (Uiz1(t), Vig1(t)) > (Ui(t), Vi(t), i=1,...,1—1, t€(0,Tp) ;
(i) (UL, VI(0) <0, i=1,....0, t € (0,Tn).

Proof. (1) Since (@1,n,%2,n) is an upper solution of (1.5)-(1.7), by the Lemma 2.1 and 2.2 we have
0<Ui(t) < Mand 0 < V,(t) < N, for i=1,...,1, t € [0,Tp).

(ii) We argue by contradiction. Assume, that to the first ¢ > 0, such that (K;, L;)(t) = (Uit1 — Ui, Vig1 —

Vi)(t) > 0, for 1 <i < T —1, but min{K;,(to), Li, (to)} = 0 for a certain iy € {1,...,] —1}. Assume

that K (to) = Usy+1(to) — Uiy (to) = 0. Without lost of generality, we can suppose that iy is the

smallest integer which satisfies the above equality. Therefore, by simple computation, (Kp, Ly)

verifies
K, (t) = —A'K,(t) + B'U, ™ (t) + B'V, P (¢),
Ly (t) = —A'L,(t) + B'U, “(t) + B'V, (1),
where
3. -1 0 0 2.0 0 0
-1 2 -1 0 0
1
A/:ﬁ 0 0 aB,:
-1 2 -1 0 0
0 0o -1 3 0 0 0

On the one hand

K, (to) — Kiy(to — €)

! =l <
K’Lo (t()) lg% B = 07
and, on the other hand
I
=i K(t) + Y, U (to) + bj, VE (tg) > 0.
j=1

Thus we have a contradiction, hence we obtain the desired result.
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(iii) Denote F;(t) = U;(t) — U;(t + ¢) and G;(t) = Vi(t) — Vi(t +¢), for i = 1,...,1, using (i) we obtain
F;(0) >0, G;(0) >0 fori=1,...,I. It is not hard to see that

Fi(t) = 0*Fy(t) +mbi(&(1) ™" Fi(t) + pbi(ns (1)) P71 Ga(t) > 0,
Gi(t) = 82Gi(t) + abi(&(t)) "7 EFy(t) + nbi(n:(t)) " Git) 2 0,

where &;(t), n;(t) lie, respectively, between U;(t+¢) and U;(t) and between V(¢ +¢) and V;(¢). From

Lemma 2.1 we get
F;(t)>0and G;(t) >0fori=1,...,I, t € (0,Ty).

This fact implies the desired result.

3. QUENCHING AND BLOW-UP

Let (Un, Vi) be the solution of (1.5)-(1.7) with 0 < 1, < M, 0 < ¢1; < N for i = 1,...,I. Inspired

by [4,7] we prove that (U, V) quenches in a finite time and (U}, V})) blows up at quenching node.

Theorem 3.1. The solution (U, V3) of (1.5)-(1.7) quenches in a finite time with the only quenching node
1 =1.

Proof. Integrating (1.5) in time we find
t
UL(t) — Us(0) = / §2U () + b (U™ (7) + VP (7))dr
0

summing up the above inequality we get

I 1 t
Z hU;(t) = ZhUi(O) n /0 U"l(T)h* Uilr) | Ba(r) - DO _owrm(ry + v P ().

From (1.5) we have

gUl(t) B gUl(o) _ /O U2(T) ; Ul(T) _ (Ul_m(T) + Vl_p(T))dT
Thus
I—1 I-1 t
gUl(t) + ; hU; (t) + gUl( ) = gUI(O) + ; hU;(0) + gUl( ) — /O Uy ™ (1) + Vy P(r)dr,
therefore
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Proceeding as before, we find that

I-1
h h
—Vi(t hV;(t)+ =Vi(t) K N — (M~9+ N~ ™),
Vi) 3O AViE) + GVA(0) < N - (74 N )
which yield a contradiction because Uy, and V}, are positive for all times. Then there exists 0 < T}, < oo such

that

lim min{U,(¢), V1(t)} = 07.

t—T—
To show i = 1 is the unique quenching node. In everything that follows i € {1,...,I — 1} and ¢ € (0,T},).
Set g(Ui(t)) = U; ™(t), f(Vi(t)) = V" (t), d(Us(t)) = U *(t), j(Vi(t)) = V7" (t), and

K2 K2 K2

2t = T OO0y ow, ) + 1) (3.1)
wi) = POV awn) + i) (32

where ¢;, 62¢; > 0,67 d; < 0,1 =0, 1 = 1, $:(g(Us(0))+f(V;(0))) < 67U;(0) and ¢;(d(U;(0))+5(V;(0))) <
5+ Vi (0).

By means of Taylor expansions we have

*(9ik(Ji(1)) = @ik’ (Ji(1))0%T;(t) + k(Ji(1)8%¢i + k' (Ji(t))5F b Ti(t) + K (Ji(t))d~ 60~ Ji(t)

IO ) 1,8

(rk(1(1)) = &1k (J1(£)8* T (t) + k(1 (£)5% 61 + 2K (J1(£))6 T $16T Ty (¢)

+i (K"(\i(t), i=2,...,]—1,

+o1 (5 1 (D)2 (o1 (1)).
If we use the fact that J;, §7J;(¢) and §2J;(t) are nonnegative and the hypothesis on ¢y, we arrive at
8 (Gik(Ji(t)) = @ik! (Ji(1))0%Ji(t), i =1,..., 1 — 1, (3.3)
By using (3.3) we can get
Zi(t) = 8°Zi(t) > % (9(Ui) + f(Vi) + bidhig'(U) (9(Us) + £ (Vi) + bishi f'(Us) (d(Us) + 5(V5)) -
The above inequalities implies that

Zi(t) — 62 Z(t) + big (Ui()) Zi(t) + bi ' (Vi(£))Wi(t) > bi[%(g(Ui(t)) + f(Vi(t)))

+ (U O)AUs (1) + 5(Vi(t)) + ' (Us () (9(Ui(t)) + f(Vi(t))]-
We obtain

Zi(t) — 6°Zi(t) + big' (Ui (1)) Zi(t) + bi f' (Vi (£))Wi(t) > 0,
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for the parameter h small enough. Thus we have

Z{(t) — 0°Zi(t) + big (Us(t)) Zi(t) + bi f' (Vi(£)) Wi (t) > 0,
W/ (t) = 6°Wi(t) + bid (U;(£)) Zi(t) + b’ (Vi(£))Wi(t) > 0,

Z;(0) > 0, W;(0) >0

Using the Lemma 2.1 we have Z;(t) > 0 and W;(¢t) >0, fori =1,...,1 —1 and ¢t € (0,7}). This implies
Uita(t) — Ui(t)

>
1 . . 1
thatf>¢z(( () + f(Vi _2< )forz:l,...,J,WltthJ:2,where
J€{2,...,I—1}. Thus by summing we obtain

G-Dh (1 1 (i—Dh ([ 1 1 ,
) > R — | > —_— — .
U;(t) > Uy + 5 g + e 5 A + o whenever ¢ > 1

The same happens for V},. |

Theorem 3.2. If lim Uy (t) =07 ( lim Vi(t) = 0+>, then Uy (t) blows up (V}(t) blows up).

t—=T," t—=T,"

Proof. Suppose Uj,(t) is bounded. Then, there exists a negative constant M such that Uj (t) > M. We have

I-1 4 I-1 4
D2 MU0 > > WM.
=1 j=1 =1 j=1
I-1 i -1
WM = > ih’M
i=1j=1 i=1
M kM
2 2
I-1 i -1 [ &
SN rU) = ZhQU’ (t) + R2UL(t) | + R2UL(t)
i=1 j=1 i=2 \j=2
From (1.5) we arrive at
I-1 4 h
> _RUG(H) = Un(t) = Ur(t) = (Vi 7(8) + UT™(0) + S UL (1)
=1 j=1

and Lemma 2.3 we arrive at

Ur(t) = Ui(t) — (Vi) P+ U (1)™™) > % + hM.

As t — T, , the left-hand side tends to infinity while the right-side is finite. This contradiction shows that
U} blows up. O
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4. SIMULTANEOUS VS. NON-SIMULTANEOUS QUENCHING

In this Section we consider (Up, V},) the solution of (1.5)-(1.7) with h fixed, and we give some sufficient

conditions for the existence of simultaneous and non-simultaneous quenching.
Theorem 4.1. If U;, quenches and V}, does not quench in (1.5)-(1.7) then ¢ < m + 1.
Proof. As Vj, does not quench, by (1.5) there exists ¢ > 0 such that

Ui(t) = —cUp (1),

integrating this inequality from ¢ to T}, we get

Ui(t) < C(Ty, — t)7=71, where C = ((m+ 1)e)/(" (4.1)
By using (4.1) and (1.6) , we obtain
VI(t) < 62Va(t) — bu (V7 (0) + C(T — )77 )

Thus V1 (T},) < C1 — C’foTh (T, — t)*%ﬁdt. We can see that this integral diverges if ¢ > m + 1, which is a

contradiction and the proof is completed. (Il
Corollary 4.1. Simultaneous quenching happens if ¢ > m+1, p > n+ 1.

Lemma 4.1. Let (U, Vi) be the solution of (1.5)-(1.7). Assume that Uy, quenches at time Ty, (V}, quenches
at time Ty, ) and

810 —bi (017" + 938) + e (pri +v37) <0, (4.2)
8225 — b (018 +037) +c (o1 +9a7) <O. (4.3)

Then there exists a positive constant C such that for t € (0,T},)

U1 (t)m+1 Vl (t)n+1
Cmy1) ~ ! (C(n+l> >Th_t>’

Ui(t) 2 C(T - )71 (Vi) = C(Th — )77 ). (4.4)
Proof. Set fori=1,...,1,te (0,T}),
Zy(t) = Uj(t) + c (U7 ™(t) + V7P (1)) and Wi(t) = V/(t) + ¢ (U; (1) + V7" (1)) -
A straightforward calculation gives
ZI(t) — 6% Z;(t) + oy () Zi(t) + Bi()Wy(t) <0, i=1,...,I, t € (0,Ty),
W/ (t) — Wi(t) + a; () Z;(t) + b;()Wi(t) <0, i=1,...,I, t € (0,Ty),

Z;(0)<0,  W;(0)<0, i=1,...,1.
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By virtue of Lemma 2.1
Z;i(t) <0, W;(t) <0, i=1,...,1, t € (0,Tp).

Thus we get

Uj(t) < —cU7™(t) and V;(t) < —cV,7™(t), i=1,...,1, t € (0,Ty). (4.5)
Assume that Up, quenches (V}, quenches), integrating (4.5) from ¢ to T}, we arrive at
which implies

Uy(t) > C(Ty, — t) 7 (Vl(t) > O(T), — t)#l) .
|

Theorem 4.2. If p < n+ 1, then there exist initial data such that Vy, quenches but Uy, doesn’t.

Proof. We argue by contradiction. Assuming that U, and V} quench simultaneously at time T} for any

initial data. We have
t Th 2 Ty Th
/ Ui(s) ds > Ui(s) ds = — Us(s) —Ui(s) ds — —
0 0 h% Jo h Jo

By using the Lemma 4.1, we obtain

2 20 [Tn

Th
Ul(t) ZU1(0)+ﬁ/ UQ(S)* Ul(s) dS*T (Th75)7#+(Th75)7m ds
0

0
As p < n+ 1 this integral is converged and
n+l—p

_1 ntl—p
U1(t> > () — OQTherl — CgTh nt s with Cl, Cg, C3>0.

By summation of (1.6) we observe that

h l h ! - / —q —n

—51@»—51@>—§;hm@>:= U 9(t) + V),
I—-1

—f{w—ffw—iymw>> U ?(0) + Vi ™(0)

integrate (4.6) from 0 to T}, we can obtain

Vi(0) (U79(0) + V7 ™(0)) ' > Th,

Ur™(s) + Vi "(s) ds

(4.6)

then if T}, is small enough (depending on Up(0) and V3 (0)), Uy (Th) > co > 0. We have a contradiction with

the hypothesis that U, quenches and the result is obtained as desired.

]
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Theorem 4.3. If ¢ < "(7:”7;11) andp>n+1 (p < %:11) and ¢ > m+ 1) then Uy, (Vi) quenches alone

under any positive initial data.

Proof. Assume that there exists initial data such that Up, and V}, quench simultaneously at time T},. Without

lost of generality, we can suppose that this initial data satisfies (4.2)-(4.3). According to (1.6)
Vi(t) = 0*Va(t) — b (U *(8) + Vi (1)),
VI(t) = =bi(U1(1) + Vi (1)),
Th
Vi(t) < bl/ Uy %(s) + Vi "(s) ds.
t

From Lemma 4.1 we know Uy (¢) > C(T) — t)m%“, Wi(t) > C(T, — t)n%rl, moreover q < MnL_;D . Hence there

exists C’ > 0 such that Vi (¢) < C'(T), — t)n%rl. Let us consider (1.5)

Ui(t) = 82Un(t) = b (U7 ™ (1) + Vi P(1)),

Ui(t) < 6°UL(t) — b Vi (1),

Ul(t) < 82Uy (t) — byC'~P(T), — t) "7t

Integrating both sides from 0 to T}, we obtain
Th »
_UL(0) < & —02/ (T — )~ 77 dt.
0

We can see that the integral diverges if p > n + 1, which is a contradiction. The result is obtained. O

Remark 4.1. Let (Up,Vy) be the solution of (1.5)-(1.7) such that the initial data satisfies (4.2)-(4.3).
We can see of the Lemma 4.1 and the proof of Theorem 4.3 that if Uy (Vi) quenches at time Ty, then
Ui(t) ~ (T, — t)% (V1 (t) ~ (Ty, — t)%) for t close enough to Ty,.

5. CONVERGENCE OF THE SEMIDISCRETE QUENCHING TIME

In this section, we study the convergence of the semidiscrete quenching time. Now we will show that for
each fixed time interval [0, 7] where (u,v) is defined, the solution (Uy,, V},) of (1.5)-(1.7) approximates (u,v)

when the mesh parameter h goes to zero. We denote

up(t) = (u(xq,t),. .. ,u(zI,t))T, vp(t) = (v(x1,t), ... ,v(z;,t))T,

U (Ol = max, 10O, |U(0)ns = min, U3 (1)

Theorem 5.1. Assume that the problem (1.1)-(1.4) has solution
(u,v) € (C**([0,1] x [0,T*]))2 and the initial data (¢1,n,p2,n) at (1.5)-(1.7) verifies

l1.n = un(0)lloc = 0(1), [[p2,n — v1(0)[lcc = o(1) h — 0. (5.1)



Int. J. Anal. Appl. 17 (6) (2019) 1046

Then, for h small enough, the semidiscrete problem (1.5)-(1.7) has a unique solution (Up,Vp) €
(ct ([O,T*],RI))2 such that

Lo Un(t) = un(t) oo = O(llp1,n — un(0)]loo + 02,1 — v1(0)[loo + h?), as h — 0,
e Vi () = on(®) oo = Ol1,n — un(0) oo + 02,1 — v3(0)[loo + h?), as h — 0.

Proof. Let o > 0 be such that
(lulloo, lvlloc) < o, t € 10,T7]. (5.2)

Then the problem (1.5)-(1.7) has for each k, a unique solution (U, V;,) € (C* ([O,T*]7RI))2. Let t(h) < T*

be the greatest value of ¢ > 0 such that

max{||Up (t) — un(t)|loo; [[Va(t) = vn(t)]loc} < 1. (5.3)

The relation (5.1) implies t(h) > 0 for h small enough. Using the triangle inequality, we obtain

NUR()]|oo <140 and, ||Va(t)|leo <1+ 0 for t € (0,t(h)). (5.4)

Let (e1,n, €2.4)(t) = (Up, —up, Vi — i) (1), Vt € [0, T*] be the discretization error. these error functions verify

6/171-('” = 526171‘(25) + mbi(ﬂi(t))fmflel,i(t) +pb¢(@i(t))7p71€27i(t) + O(hQ),

eh i (t) = 0%e2,i(t) + qbi(0:(t)) "7 Teri(t) + nbi(0i(t)) ™" ea,i(t) + O(R?),

where 0;(t) and ©;(t) lie, respectively, between U;(t) and u(z;,t), and between V;(¢) and v(z;,t), for i €
{1,...,I}. Using (5.2) and (5.4), there exist K and L positive constants such that
€l i(t) < 6%e1i(t) + biLleyi(t)] + b Llea(t)| + Kh?,

6’2’1-(15) S (526212'@) + bZL|€1’Z(t)| + b1L|€2’Z(t)‘ + Kh2

let (z,w) € (C**([0,1], 0, T*]))2 be such that
z(x,t) = (||<p17h —up(0)]oo + [l2,n — v1(0)|loc + QhQ) eM+2)t=(1-2)" and o = z, V(z,t) € [0,1] x [0,T7],

with M, @ positive constants. We can prove by the Lemma 2.2 that
le1,i(t)] < 2(wi,t), le2:(t)] < w(wi,t), 1 <i< I, forte (0,t(h)).
We deduce that
UL () = un(®lloo < (o1 = un(O)lloc + llo2,n — vn(0)lloc + Q%) M2,
Vi (8) = vn(®)lle < (lor,n = un(0)lloo + 92 — vn(0)lloc + Q%) M +2),
for t € (0,t(h)). Suppose that T* > t(h) from (5.3), we obtain

1= [[Un(t(h) = un(t(t)llso < (Iprh = un(0)lloc + ll02,n = vn(0) o + QRZ) eM+2),



Int. J. Anal. Appl. 17 (6) (2019) 1047

Since the term on the right hand side of the above inequality goes to zero as h tends to zero, we deduce that,

1 <0, which is impossible. Hence we have ¢(h) = T™*, and the proof is completed. O

Theorem 5.2. Let (u,v) € (C*([0,1] x [O,T)))2 be solution of (1.1)-(1.4) with quenches time T and the
ingtial data at (1.5)-(1.7) satisfies (4.2)-(4.3) and (5.1). Then the solution (Up,V3) of (1.5)-(1.7) quenches
in a finite time T}, and we have

lim T}, = 7.

h—0

Proof. From Theorem 3.1, (Up, V) quenches in a finite time Tj. Assume that U, quenches.

Set € > 0. There exists n > 0 such that

y1+m

C(im+1) =

0

IN

€
3 y<n. (5:5)
There exists a time Ty € (T — ;T) such that 0 < |u(x;,t)| < 2, for i = 1,...,1, t € [Ty, T). Setting
Ty = oL it s not hard to see that 0 < ||u(x;,t)|int, for ¢ € [0, T1]. From Theorem 5.1, it follows that for

h sufficiently small

n
1UR(t) = un()oc < 5
Applying the triangle inequality, we get
1UR(T1) ling < [[UR(T1) = un(T1)lloe + llun(T1)[lins < 0.

Since Uy, quenches, we can deduce from Lemma 4.1 and (5.5) that

U (T lif™ |, €
T, —T|<|T) — T T, —T| < ——m 1 — <g,
T N i+ 11 = Cim+1) +2_E
The case where V}, quenches is analogous. O

6. NUMERICAL EXPERIMENTS

In this section, we present some numerical approximations to the quenching time of (1.5)-(1.7) for the

4
initial data p1; = @2, =1+ i sin (%(z — 1)h) for i = 1,...,I — 1, with different values of m, n, p and q.

We also consider the implicit scheme below

yth) _ gk -m -p
S S ((Uf’“)) + (V) ) L 1<i<I,
Atk
VD 0 Y .
i = g2y () o+ (v L 1<i<I,
At’;; T 1 )
U =p1s, V9= 1<i<,

inf inf > inf inf

where k > 0, Ath = h2min { UL |7 1O IV IEE IVl .
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Definition 6.1. We say that the discrete solution (U}(Lk), Vh(k)) of the implicit scheme quenches in a finite
time if

N k k . ) _ i
klg{)lo 1nf{||U,(L )”inf, ||Vh( )Hinf} = 0 and the series >3 0 Atf converges. The quantity tf = E?:é At s
called the numerical quenching time of the solution (U,gk)7 Vh(k)) and Ty, = :;’OO Atﬁ is called the numerical

quenching time of the solution (Up, V3).

In Tables 1, 2 and 3, in rows, we present the numerical quenching times, the numbers of iterations and
the orders of the approximations corresponding to meshes of 16, 32, 64, 128, 256, 512, 1024. We take for
the numerical quenching time T}, = 2»203 Atﬁ which is computed at the first time when At’fb = \tﬁ“ — tﬁ\ <
10716, The order(s) of the method is computed from

— lOg((T4h,7T2h)/(T2h7Th)), where h = 1/(I — 1).

5 log(2)
TABLE 1. Numerical quenching TABLE 2. Numerical quenching
times obtained with the implicit times obtained with the explicit Eu-
Euler method for m = 0.5, p = 1, ler method for m = 1, p = 2.5,
q=2,n=0.5. q=0.5,n=1.
I T, k s I T, k s
16 | 0.15390794 | 34896 - 16 | 0.13630655 | 168 -
32 1 0.14878519 | 48454 - 32 1 0.13147195 | 484 -
64 | 0.14737661 | 66676 | 1.86 64 |0.13016571 | 1540 | 1.89
128 | 0.14699264 | 92814 | 1.87 128 | 0.12981187 | 5384 | 1.88
256 | 0.14688843 | 137205 | 1.88 256 | 0.12971578 | 20063 | 1.88
512 | 0.14686025 | 238258 | 1.89 512 | 0.12968969 | 77515 | 1.88
1024 | 0.14685267 | 545941 | 1.89 1024 | 0.12968263 | 305050 | 1.88

e g
o oo

no quenching of U,
quenching of V|

0.05 0.5 0.05 05

time 00 space time space

FIGURE 1. On the left, no quenching of U, and on the right, quenching of V}, for m = 0.5,

p=1,q¢=2,n=0.5.
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TABLE 3. Numerical quenching times obtained with

the implicit Euler method for m = 0.3, p = 2, ¢ = 2,

n =0.3.

1 13, k

V2]

16 | 0.12862938 127 -

32 | 0.12271047 | 372 -

64 | 0.12106075 | 1213 | 1.84

128 | 0.12060846 | 4323 | 1.87

256 | 0.12048544 | 16309 | 1.88

512 | 0.12045217 | 63432 | 1.89

1024 | 0.12044321 | 250457 | 1.89

quenching of U,
no quenching of V|

0.05 0.5 0.05 05

time 0 0 space time 0 0 space

FIGURE 2. On the left, quenching of U, and on the right, no quenching of V}, for m = 1,

p=2.5,q=0.5,n=1.

quenching of V|
° = n
[T T

=
oo

0.05 0.5 0.05 05

time 00 space time 0 space

FIGURE 3. On the left, quenching of U and on the right, quenching of V} for m = 0.3,
p=2,q=2,n=03.

Remark 6.1. The various tables of our numerical results show that there is a relationship between the

quenching time and flows on the boundaries. If we consider the problem (1.5)-(1.7) in the case where the
4

ingtial data @2, = 1, =1+ i sin (2(i — 1)h), i =1,...,1, from figures 1-3, we observe respectively the

quenching of (U, V3). From tables 1-3, we observe the convergence of quenching time T}, of the solution of

(1.5)-(1.7), since the rate of convergence is near 2. This result does not surprise us because of the result
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established in the previous section. Moreover we can see that of the figure 1, Vi, quenches while Uy, doesn’t
when p < n+ 1, of the figure 2, Uy quenches while Vi, doesn’t when q < "(:17;;1) and p > n+1 and of the
figure 3, Up, and Vi, quench simultaneously when p > n+1 and ¢ > m + 1. These numerical results are in

fact consistent with the Corollary 4.1, Theorem 4.2 and Theorem 4.3.

CONCLUSION

In this work, we proposed a semi-discrete scheme, based on finite difference method in space for system
of heat equations, coupled by nonlinear boundary flux. The stability and the convergence of semi-discrete
scheme are proved respectively. Under some conditions the semidiscrete scheme reproduces well the condi-
tions for the quenching, quenching set and simultaneous and non-simultaneous quenching. The analysis in

this paper can be extended to more general to some systems of nonlinear parabolic equations.
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