Volume 18, Number 2 (2020), 319-331

URL: https://doi.org/10.28924/2291-8639

DOI: 10.28924/2291-8639-18-2020-319



# GENERALIZATIONS OF MINKOWSKI AND BECKENBACH-DRESHER INEQUALITIES AND FUNCTIONALS ON TIME SCALES

# RABIA BIBI<sup>1,\*</sup>, ANEES UR RAHMAN<sup>2</sup> AND MUHAMMAD SHAHZAD<sup>2</sup>

<sup>1</sup>Department of Mathematics, Abbottabad University of Science and Technology, Havelian, Abbottabad, Pakistan

<sup>2</sup>Department of Mathematics, Hazara University, Mansehra, Pakistan

\* Corresponding author: emaorr@gmail.email

ABSTRACT. We generalize integral forms of the Minkowski inequality and Beckenbach—Dresher inequality on time scales. Also, we investigate a converse of Minkowski's inequality and several functionals arising from the Minkowski inequality and the Beckenbach—Dresher inequality.

#### 1. Introduction and Preliminaries

A time scale  $\mathbb{T}$  is an arbitrary nonempty closed subset of the real numbers. The theory of time scales was introduced by Stefan Hilger [7] in order to unify the theory of difference equations and the theory of differential equations. For an introduction to the theory of dynamic equations on time scales, we refer to [3,8]. Martin Bohner and Gusein Sh. Guseinov [4,5] defined the multiple Riemann and multiple Lebesgue integration on time scales and compared the Lebesgue  $\Delta$ -integral with the Riemann  $\Delta$ -integral.

Let  $n \in \mathbb{N}$  be fixed. For each  $i \in \{1, \ldots, n\}$ , let  $\mathbb{T}_i$  denote a time scale and

$$\Lambda^n = \mathbb{T}_1 \times \ldots \times \mathbb{T}_n = \{t = (t_1, \ldots, t_n) : t_i \in \mathbb{T}_i, \ 1 \le i \le n\}$$

Received 2019-08-18; accepted 2019-09-24; published 2020-03-02.

2010 Mathematics Subject Classification. Primary 26D15; Secondary 26A51, 34N05.

Key words and phrases. Minkowski inequality, Beckenbach-Dresher Inequality, time scales integrals.

©2020 Authors retain the copyrights

of their papers, and all open access articles are distributed under the terms of the Creative Commons Attribution License.

an *n*-dimensional time scale. Let  $\mu_{\Delta}$  be the  $\sigma$ -additive Lebesgue  $\Delta$ -measure on  $\Lambda^n$  and  $\mathcal{F}$  be the family of  $\Delta$ -measurable subsets of  $\Lambda^n$ . Let  $E \in \mathcal{F}$  and  $(E, \mathcal{F}, \mu_{\Delta})$  be a time scale measure space. Then for a  $\Delta$ -measurable function  $f: E \to \mathbb{R}$ , the corresponding  $\Delta$ -integral of f over E will be denoted according to [5, (3.18)] by

$$\int_{E} f(t_{1}, \dots, t_{n}) \Delta_{1} t_{1} \dots \Delta_{n} t_{n}, \quad \int_{E} f(t) \Delta t, \quad \int_{E} f d\mu_{\Delta}, \quad \text{or} \quad \int_{E} f(t) d\mu_{\Delta}(t).$$

By [5, Section 3], all theorems of the general Lebesgue integration theory, including the Lebesgue dominated convergence theorem, hold also for Lebesgue  $\Delta$ -integrals on  $\Lambda^n$ . Here we state Fubini's theorem for integrals on time scales. It is used in the proofs of our main results.

**Theorem 1.1** (Fubini's theorem). Let  $(X, \mathcal{M}, \mu_{\Delta})$  and  $(Y, \mathcal{L}, \nu_{\Delta})$  be two finite-dimensional time scale measure spaces. If  $f: X \times Y \to \mathbb{R}$  is a  $\Delta$ -integrable function and if we define the functions

$$\varphi(y) = \int_X f(x, y) d\mu_{\Delta}(x)$$
 for a.e.  $y \in Y$ 

and

$$\psi(x) = \int_{Y} f(x, y) d\nu_{\Delta}(y)$$
 for a.e.  $x \in X$ ,

then  $\varphi$  is  $\Delta$ -integrable on Y and  $\psi$  is  $\Delta$ -integrable on X and

$$\int_{X} d\mu_{\Delta}(x) \int_{Y} f(x, y) d\nu_{\Delta}(y) = \int_{Y} d\nu_{\Delta}(y) \int_{X} f(x, y) d\mu_{\Delta}(x).$$
(1.1)

Hölder's inequality and Minkowski's inequality and their converses for multiple integration on time scales were investigated in [1]. These inequalities hold for both Riemann integrals and Lebesgue integrals on time scales. For completeness, let us recall these inequalities from [1].

**Theorem 1.2** (Hölder's inequality [1, Theorem 6.2]). For  $p \neq 1$ , define q = p/(p-1). Let  $(E, \mathcal{F}, \mu_{\Delta})$  be a time scale measure space. Assume w, f, g are nonnegative functions such that  $wf^p$ ,  $wg^q$ , wfg are  $\Delta$ -integrable on E. If p > 1, then

$$\int_{E} w(t)f(t)g(t)d\mu_{\Delta}(t) \le \left(\int_{E} w(t)f^{p}(t)d\mu_{\Delta}(t)\right)^{1/p} \times \left(\int_{E} w(t)g^{q}(t)d\mu_{\Delta}(t)\right)^{1/q}.$$
 (1.2)

If  $0 and <math>\int_E wg^q d\mu_{\Delta} > 0$ , or if p < 0 and  $\int_E wf^p d\mu_{\Delta} > 0$ , then (1.2) is reversed.

**Theorem 1.3** (Minkowski's inequality [1, Theorem 7.2]). Let  $(E, \mathcal{F}, \mu_{\Delta})$  be a time scale measure space. For  $p \in \mathbb{R}$ , assume w, f, g, are nonnegative functions such that  $wf^p$ ,  $wg^p$ ,  $w(f+g)^p$  are  $\Delta$ -integrable on E. If  $p \geq 1$ , then

$$\left(\int_{E} w(t)(f(t)+g(t))^{p} d\mu_{\Delta}(t)\right)^{\frac{1}{p}} \leq \left(\int_{E} w(t)f^{p}(t) d\mu_{\Delta}(t)\right)^{1/p} + \left(\int_{E} w(t)g^{p}(t) d\mu_{\Delta}(t)\right)^{1/p}.$$
(1.3)

If 0 or <math>p < 0, then (1.3) is reversed provided each of the two terms on the right-hand side is positive.

**Theorem 1.4** (Converse of Hölder's inequality [1, Theorem 11.3]). For  $p \neq 1$ , define q = p/(p-1). Let  $(E, \mathcal{F}, \mu_{\Delta})$  be a time scale measure space. Assume w, f, g are nonnegative functions such that  $wf^p$ ,  $wg^q$ , wfg are  $\Delta$ -integrable on E. Suppose

$$0 < m \le f(t)g^{-q/p}(t) \le M$$
 for all  $t \in E$ .

If p > 1, then

$$\int_{E} w(t)f(t)g(t)d\mu_{\Delta}(t) \geq K(p,m,M) \left(\int_{E} w(t)f^{p}(t)d\mu_{\Delta}(t)\right)^{1/p} \times \left(\int_{E} w(t)g^{q}(t)d\mu_{\Delta}(t)\right)^{1/q}, \quad (1.4)$$

where

$$K(p, m, M) = |p|^{1/p} |q|^{1/q} \frac{(M-m)^{1/p} |mM^p - Mm^p|^{1/q}}{|M^p - m^p|}.$$
 (1.5)

If 0 or <math>p < 0, then (1.4) is reversed provided either  $\int_E w g^q d\mu_{\Delta} > 0$  or  $\int_E w f^p d\mu_{\Delta} > 0$ .

In [2] Bibi et al., obtain integral forms of Minkowski's and Beckenbach–Dresher inequality on time scales. In this paper we generalize these inequalities and investigate functional obtained from our new inequalities.

## 2. Minkowski Inequalities

Let  $U_l(x_1, x_2, ..., x_l)$ ,  $V_m(x_1, x_2, ..., x_m)$ ,  $G_k(x_1, x_2, ..., x_k)$ , are real valued functions of l, m, and k variables, respectively. Let  $(X, \mathcal{M}, \mu_{\Delta})$  and  $(Y, \mathcal{L}, \nu_{\Delta})$  be time scale measure spaces. Then, throughout in the following sections, we use the following notations:

$$U_{l} = U_{l}(x) = U_{l}(u_{1}(x), u_{2}(x), \dots, u_{l}(x)),$$

$$V_{m} = V_{m}(y) = V_{m}(v_{1}(y), v_{2}(y), \dots, v_{m}(y)),$$

$$F_{k} = F_{k}(x, y) = F_{k}(f_{1}(x, y), f_{2}(x, y), \dots, f_{k}(x, y)),$$
(2.1)

where  $\{u_i(x)\}_{i=1}^l$ ,  $\{v_i(y)\}_{i=1}^m$ ,  $\{f_i(x,y)\}_{i=1}^k$ , are defined on X, Y, and  $X \times Y$ , respectively. In the sequel, we assume that all occurring integrals are finite.

**Theorem 2.1** (Integral Minkowski inequality). If  $p \ge 1$ , then

$$\left[ \int_X \left( \int_Y F_k(x, y) V_m(y) d\nu_{\Delta}(y) \right)^p U_l(x) d\mu_{\Delta}(x) \right]^{\frac{1}{p}} \le \int_Y \left( \int_X F_k^p(x, y) U_l(x) d\mu_{\Delta}(x) \right)^{\frac{1}{p}} V_m(y) d\nu_{\Delta}(y) \quad (2.2)$$

holds provided all integrals in (2.2) exists. If 0 and

$$\int_{X} \left( \int_{Y} F_{k} V_{m} d\nu_{\Delta} \right)^{p} U_{l} d\mu_{\Delta} > 0, \quad \int_{Y} F_{k} V_{m} d\nu_{\Delta} > 0$$
(2.3)

holds, then (2.2) is reversed. If p < 0 and (2.3) and

$$\int_{X} F_k^p U_l \mathrm{d}\mu_{\Delta} > 0,\tag{2.4}$$

hold, then (2.2) is reversed as well.

*Proof.* Let  $p \geq 1$ . Put

$$H(x) = \int_{Y} F_k(x, y) V_m(y) d\nu_{\Delta}(y).$$

Now, by using Fubini's theorem (Theorem 1.1) and Hölder's inequality (Theorem 1.2) on time scales, we have

$$\int_{X} H^{p}(x)U_{l}(x)d\mu_{\Delta}(x) = \int_{X} H(x)H^{p-1}(x)U_{l}(x)d\mu_{\Delta}(x)$$

$$= \int_{X} \left( \int_{Y} F_{k}(x,y)V_{m}(y)d\nu_{\Delta}(y) \right) H^{p-1}(x)U_{l}(x)d\mu_{\Delta}(x)$$

$$= \int_{Y} \left( \int_{X} F_{k}(x,y)H^{p-1}(x)U_{l}(x)d\mu_{\Delta}(x) \right) V_{m}(y)d\nu_{\Delta}(y)$$

$$\leq \int_{Y} \left( \int_{X} F_{k}^{p}(x,y)U_{l}(x)d\mu_{\Delta}(x) \right)^{\frac{1}{p}} \left( \int_{X} H^{p}(x)U_{l}(x)d\mu_{\Delta}(x) \right)^{\frac{p-1}{p}} V_{m}(y)d\nu_{\Delta}(y)$$

$$= \int_{Y} \left( \int_{X} F_{k}^{p}(x,y)U_{l}(x)d\mu_{\Delta}(x) \right)^{\frac{1}{p}} V_{m}(y)d\nu_{\Delta}(y) \left( \int_{X} H^{p}(x)U_{l}(x)d\mu_{\Delta}(x) \right)^{\frac{p-1}{p}}$$

and hence

$$\left(\int_X H^p(x)U_l(x)\mathrm{d}\mu_{\Delta}(x)\right)^{\frac{1}{p}} \leq \int_Y \left(\int_X F_k^p(x,y)U_l(x)\mathrm{d}\mu_{\Delta}(x)\right)^{\frac{1}{p}} V_m(y)\mathrm{d}\nu_{\Delta}(y).$$

For p < 0 and 0 , the corresponding results can be obtained similarly.

**Theorem 2.2** (Converse of integral Minkowski inequality). Suppose

$$0 < m \le \frac{F_k(x, y)}{\int_Y F_k(x, y) V_m(y) d\nu_{\Delta}(y)} \le M \quad \text{for all} \quad x \in X, \ y \in Y.$$

If  $p \ge 1$ , then

$$\left[ \int_{X} \left( \int_{Y} F_{k}(x, y) V_{m}(y) d\nu_{\Delta}(y) \right)^{p} U_{l}(x) d\mu_{\Delta}(x) \right]^{\frac{1}{p}} \\
\geq K(p, m, M) \int_{Y} \left( \int_{X} F_{k}^{p}(x, y) U_{l}(x) d\mu_{\Delta}(x) \right)^{\frac{1}{p}} V_{m}(y) d\nu_{\Delta}(y) \quad (2.5)$$

provided all integrals in (2.5) exist, where K(p, m, M) is defined by (1.5). If 0 and (2.3) holds, then (2.5) is reversed. If <math>p < 0 and (2.3) and (2.4) hold, then (2.5) is reversed as well.

*Proof.* Let  $p \geq 1$ . Put

$$H(x) = \int_{Y} F_k(x, y) V_m(y) d\nu_{\Delta}(y).$$

Then by using Fubini's theorem (Theorem 1.1) and the converse Hölder inequality (Theorem 1.4) on time scales, we get

$$\int_{X} H^{p}(x)U_{l}(x)d\mu_{\Delta}(x) = \int_{X} \left( \int_{Y} F_{k}(x,y)V_{m}(y)d\nu_{\Delta}(y) \right) H^{p-1}(x)U_{l}(x)d\mu_{\Delta}(x) 
= \int_{Y} \left( \int_{X} F_{k}(x,y)H^{p-1}(x)U_{l}(x)d\mu_{\Delta}(x) \right) V_{m}(y)d\nu_{\Delta}(y) 
\geq K(p,m,M) \int_{Y} \left( \int_{X} F_{k}^{p}(x,y)U_{l}(x)d\mu_{\Delta}(x) \right)^{1/p} 
\times \left( \int_{X} H^{p}(x)U_{l}(x)d\mu_{\Delta}(x) \right)^{\frac{p-1}{p}} V_{m}(y)d\nu_{\Delta}(y).$$

Dividing both sides by  $\left(\int_X H^p(x)U_l(x)\mathrm{d}\mu_{\Delta}(x)\right)^{\frac{p-1}{p}}$ , we obtain (2.5). For 0 and <math>p < 0, the corresponding results can be obtained similarly.

Now we define the rth power mean  $M^{[r]}(F_k,\mu_\Delta)$  of the function  $F_k$  with respect to the measure  $\mu_\Delta$  by

$$M^{[r]}(F_k, \mu_{\Delta}) = \begin{cases} \left(\frac{\int_X F_k^r(x, y) U_l(x) d\mu_{\Delta}(x)}{\int_X U_l(x) d\mu_{\Delta}(x)}\right)^{\frac{1}{r}} & \text{if } r \neq 0, \\ \exp\left(\frac{\int_X \log F_k(x, y) U_l(x) d\mu_{\Delta}(x)}{\int_X U_l(x) d\mu_{\Delta}(x)}\right) & \text{if } r = 0, \end{cases}$$

$$(2.6)$$

where  $\int_X U_l d\mu_{\Delta} > 0$ .

Corollary 2.1. Let  $0 < s \le r$ . Then

$$M^{[r]}(M^{[s]}(F_k, \mathrm{d}\nu_\Delta), \mathrm{d}\mu_\Delta) \ge K\left(\frac{r}{s}, m, M\right) M^{[s]}(M^{[r]}(F_k, \mathrm{d}\mu_\Delta), \mathrm{d}\nu_\Delta).$$

*Proof.* By putting p = r/s and replacing  $F_k$  by  $F_k^s$  in (2.5), raising to the power of  $\frac{1}{s}$  and dividing by

$$\left(\int_X U_l(x) d\mu_{\Delta}(x)\right)^{\frac{1}{r}} \left(\int_Y V_m(y) d\nu_{\Delta}(y)\right)^{\frac{1}{s}},$$

we get the above result.

## 3. Minkowski Functionals

In this section, we will consider some functionals which arise from the Minkowski inequality. Similar results (but not for time scales measure spaces) can be found in [9].

Let  $F_k$  and  $V_m$  be fixed functions satisfying the assumptions of Theorem 2.1. Let us consider the functional  $M_1$  defined by

$$\mathsf{M}_1(U_l) = \left[ \int_Y \left( \int_X F_k^p(x,y) U_l(x) \mathrm{d}\mu_\Delta(x) \right)^\frac{1}{p} V_m(y) \mathrm{d}\nu_\Delta(y) \right]^p - \int_X \left( \int_Y F_k(x,y) V_m(y) \mathrm{d}\nu_\Delta(y) \right)^p U_l(x) \mathrm{d}\mu_\Delta(x),$$

where  $U_l$  is a nonnegative function on X such that all occurring integrals exist. Also, if we fix the functions  $F_k$  and  $U_l$ , then we can consider the functional

$$\mathsf{M}_{2}(V_{m}) = \int_{Y} \left( \int_{X} F_{k}^{p}(x, y) U_{l}(x) \mathrm{d}\mu_{\Delta}(x) \right)^{\frac{1}{p}} V_{m}(y) \mathrm{d}\nu_{\Delta}(y) - \left[ \int_{X} \left( \int_{Y} F_{k}(x, y) V_{m}(y) \mathrm{d}\nu_{\Delta}(y) \right)^{p} U_{l}(x) \mathrm{d}\mu_{\Delta}(x) \right]^{\frac{1}{p}},$$

where  $V_m$  is a nonnegative function on Y such that all occurring integrals exist.

**Remark 3.1.** (i) It is obvious that  $M_1$  and  $M_2$  are positive homogeneous, i.e.,  $M_1(aU_l) = aM_1(U_l)$ , and  $M_2(aV_m) = aM_2(V_m)$ , for any a > 0.

- (ii) If  $p \ge 1$  or p < 0, then  $M_1(U_l) \ge 0$ , and if  $0 , then <math>M_1(U_l) \le 0$ .
- (iii) If  $p \ge 1$ , then  $M_2(V_m) \ge 0$ , and if p < 1 and  $p \ne 0$ , then  $M_2(V_m) \le 0$ .

**Theorem 3.1.** (i) If  $p \ge 1$  or p < 0, then  $M_1$  is superadditive. If  $0 , then <math>M_1$  is subadditive.

- (ii) If  $p \ge 1$ , then  $M_2$  is superadditive. If p < 1 and  $p \ne 0$ , then  $M_2$  is subadditive.
- (iii) Suppose  $U_{l1}$  and  $U_{l2}$  are nonnegative functions such that  $U_{l2} \ge U_{l1}$ . If  $p \ge 1$  or p < 0, then

$$0 \le \mathsf{M}_1(U_{l1}) \le \mathsf{M}_1(U_{l2}),\tag{3.1}$$

and if 0 , then (3.1) is reversed.

(iv) Suppose  $V_{m1}$  and  $V_{m2}$  are nonnegative functions such that  $V_{m2} \geq V_{m1}$ . If  $p \geq 1$ , then

$$0 \le \mathsf{M}_2(V_{m1}) \le \mathsf{M}_2(V_{m2}),\tag{3.2}$$

and if p < 1 and  $p \neq 0$ , then (3.2) is reversed.

*Proof.* First we show (i). We have

$$\begin{split} \mathsf{M}_{1}(U_{l1} + U_{l2}) &- \mathsf{M}_{1}(U_{l1}) - \mathsf{M}_{1}(U_{l2}) \\ &= \left[ \int_{Y} \left( \int_{X} f^{p}(x,y) (U_{l1} + U_{l2})(x) \mathrm{d}\mu_{\Delta}(x) \right)^{\frac{1}{p}} V_{m}(y) \mathrm{d}\nu_{\Delta}(y) \right]^{p} \\ &- \int_{X} \left( \int_{Y} F_{k}(x,y) V_{m}(y) \mathrm{d}\nu_{\Delta}(y) \right)^{p} (U_{l1} + U_{l2})(x) \mathrm{d}\mu_{\Delta}(x) \\ &- \left[ \int_{Y} \left( \int_{X} F_{k}^{p}(x,y) U_{l1}(x) \mathrm{d}\mu_{\Delta}(x) \right)^{\frac{1}{p}} V_{m}(y) \mathrm{d}\nu_{\Delta}(y) \right]^{p} \\ &+ \int_{X} \left( \int_{Y} F_{k}(x,y) V_{m}(y) \mathrm{d}\nu_{\Delta}(y) \right)^{p} U_{l1}(x) \mathrm{d}\mu_{\Delta}(x) \\ &- \left[ \int_{Y} \left( \int_{X} F_{k}^{p}(x,y) U_{l2}(x) \mathrm{d}\mu_{\Delta}(x) \right)^{\frac{1}{p}} V_{m}(y) \mathrm{d}\nu_{\Delta}(y) \right]^{p} \end{split}$$

$$+ \int_{X} \left( \int_{Y} F_{k}(x, y) V_{m}(y) d\nu_{\Delta}(y) \right)^{p} U_{l2}(x) d\mu_{\Delta}(x)$$

$$= \left[ \int_{Y} \left( \int_{X} F_{k}^{p}(x, y) (U_{l1} + U_{l2})(x) d\mu_{\Delta}(x) \right)^{\frac{1}{p}} V_{m}(y) d\nu_{\Delta}(y) \right]^{p}$$

$$- \left[ \int_{Y} \left( \int_{X} F_{k}^{p}(x, y) U_{l1}(x) d\mu_{\Delta}(x) \right)^{\frac{1}{p}} V_{m}(y) d\nu_{\Delta}(y) \right]^{p}$$

$$- \left[ \int_{Y} \left( \int_{X} F_{k}^{p}(x, y) U_{l2}(x) d\mu_{\Delta}(x) \right)^{\frac{1}{p}} V_{m}(y) d\nu_{\Delta}(y) \right]^{p}.$$

Using the Minkowski inequality (1.3) for integrals (Theorem 1.3) with p replaced by 1/p, we have

$$\mathsf{M}_{1}(U_{l1} + U_{l2}) - \mathsf{M}_{1}(U_{l1}) - \mathsf{M}_{1}(U_{l2}) \begin{cases} \geq 0 & \text{if } p \geq 1 \text{ or } p < 0, \\ \leq 0 & \text{if } 0 < p \leq 1. \end{cases}$$

$$(3.3)$$

So,  $M_1$  is superadditive for  $p \ge 1$  or p < 0, and it is subadditive for 0 . The proof of (ii) is similar:After a simple calculation, we have

$$\begin{split} \mathsf{M}_2(V_{m1}+V_{m2}) &- \mathsf{M}_2(V_{m1}) - \mathsf{M}_2(V_{m2}) \\ &= \left[ \int_X \left( \int_Y F_k(x,y) V_{m1}(y) \mathrm{d}\nu_\Delta(y) \right)^p U_l(x) \mathrm{d}\mu_\Delta(x) \right]^{\frac{1}{p}} \\ &+ \left[ \int_X \left( \int_Y F_k(x,y) V_{m2}(y) \mathrm{d}\nu_\Delta(y) \right)^p U_l(x) \mathrm{d}\mu_\Delta(x) \right]^{\frac{1}{p}} \\ &- \left[ \int_X \left( \int_Y F_k(x,y) (V_{m1}+V_{m2})(y) \mathrm{d}\nu_\Delta(y) \right)^p U_l(x) \mathrm{d}\mu_\Delta(x) \right]^{\frac{1}{p}}. \end{split}$$

Using the Minkowski inequality (2.2) for integrals (Theorem 2.1), we have that this is nonnegative for  $p \ge 1$  and nonpositive for p < 1 and  $p \ne 0$ . Now we show (iii). If  $p \ge 1$  or p < 0, then using superadditivity and positivity of  $M_1$ ,  $U_{l2} \ge U_{l1}$  implies

$$\mathsf{M}_1(U_{l2}) = \mathsf{M}_1(U_{l1} + (U_{l2} - U_{l1})) \ge \mathsf{M}_1(U_{l1}) + \mathsf{M}_1(U_{l2} - U_{l1}) \ge \mathsf{M}_1(U_{l1}),$$

and the proof of (3.1) is established. If  $0 , then using subadditivity and negativity of <math>M_1$ ,  $U_{l2} \ge U_{l1}$  implies

$$M_1(U_{l2}) \le M_1(U_{l1}) + M_1(U_{l2} - U_{l1}) \le M_1(U_{l1})$$

The proof of (iv) is similar.

**Remark 3.2.** Put  $X, Y \subseteq \mathbb{N}$ , then for fixed  $F_k$  and  $U_l$ , the function  $M_2$  has the form

$$\mathsf{M}_2(V_{m1}) = \sum_{j \in Y} V_{m1}(j) \left( \sum_{i \in X} U_l(i) F_k(i,j)^p \right)^{1/p} - \left( \sum_{i \in X} U_l(i) \left( \sum_{j \in Y} V_{m1}(j) F_k(i,j) \right)^p \right)^{1/p},$$

where  $f(i,j) = F_k(i,j) \ge 0$ . If  $p \ge 1$ , then the mapping  $M_2$  is superadditive, and  $V_{m2}(j) \ge V_{m1}(j)$  for all  $j \in Y$  implies

$$0 \le \sum_{j \in Y} V_{m1}(j) \left( \sum_{i \in X} U_l(i) F_k(i,j)^p \right)^{1/p} - \left( \sum_{i \in X} U_l(i) \left( \sum_{j \in Y} V_{m1}(j) F_k(i,j) \right)^p \right)^{1/p}$$

$$\le \sum_{j \in Y} V_{m2}(j) \left( \sum_{i \in X} U_l(i) F_k(i,j)^p \right)^{1/p} - \left( \sum_{i \in X} U_l(i) \left( \sum_{j \in Y} V_{m2}(j) F_k(i,j) \right)^p \right)^{1/p}$$

provided all occurring sums are finite.

Corollary 3.1. (i) Suppose  $U_{l1}$  and  $U_{l2}$  are nonnegative functions such that  $CU_{l2} \ge U_{l1} \ge cU_{l2}$ , where  $c, C \ge 0$ . If  $p \ge 1$  or p < 0, then

$$c\mathsf{M}_1(U_{l2}) \le \mathsf{M}_1(U_{l1}) \le C\mathsf{M}_1(U_{l2}),$$

and if 0 , then the above inequality is reversed.

(ii) Suppose  $V_{m1}$  and  $V_{m2}$  are nonnegative functions such that  $CV_{m2} \ge V_{m1} \ge cV_{m2}$ , where  $c, C \ge 0$ . If  $p \ge 1$ , then

$$c\mathsf{M}_2(V_{m2}) \le \mathsf{M}_2(V_{m1}) \le C\mathsf{M}_2(V_{m2}),$$

and if p < 1 and  $p \neq 0$ , then the above inequality is reversed.

Corollary 3.2. If  $V_{m1}$  and  $V_{m2}$  are nonnegative functions such that  $V_{m2} \ge V_{m1}$ , then

$$M^{[0]}\left(\int_{Y} F_{k}(x,y) V_{m1}(y) d\nu_{\Delta}(y), \mu_{\Delta}\right) - \int_{Y} M^{[0]}(F_{k}, \mu_{\Delta}) V_{m1}(y) d\nu_{\Delta}(y)$$

$$\leq M^{[0]}\left(\int_{Y} F_{k}(x,y) V_{m2}(y) d\nu_{\Delta}(y), \mu_{\Delta}\right) - \int_{Y} M^{[0]}(F_{k}, \mu_{\Delta}) V_{m2}(y) d\nu_{\Delta}(y), \quad (3.4)$$

where  $M^{[0]}(F_k, \mu_{\Delta})$  is defined in (2.6).

The next result gives another property of  $M_1$ , but a similar result can also be stated for  $M_2$ .

**Theorem 3.2.** Let  $\varphi:[0,\infty)\to[0,\infty)$  be a concave function. Suppose  $U_{l1}$  and  $U_{l2}$  are nonnegative functions such that

$$\varphi \circ U_{l1}$$
,  $\varphi \circ U_{l2}$ ,  $\varphi \circ (\alpha U_{l1} + (1 - \alpha)U_{l2})$ 

are  $\Delta$ -integrable for  $\alpha \in [0,1]$ . If  $p \geq 1$ , then

$$\mathsf{M}_1(\varphi \circ (\alpha U_{l1} + (1 - \alpha)U_{l2})) \ge \alpha \mathsf{M}_1(\varphi \circ U_{l1}) + (1 - \alpha)\mathsf{M}_1(\varphi \circ U_{l2}),$$

and if 0 , then the above inequality is reversed.

*Proof.* We show this only for  $p \geq 1$  as the other case follows similarly. Since  $\varphi$  is concave, we have

$$\varphi(\alpha U_{l1} + (1 - \alpha)U_{l2})) \ge \alpha \varphi(U_{l1}) + (1 - \alpha)\varphi(U_{l2}).$$

Now, from (3.1) and (3.3), we have

$$\begin{aligned} \mathsf{M}_1(\varphi \circ (\alpha U_{l1} + (1-\alpha)U_{l2})) &\geq \mathsf{M}_1(\alpha(\varphi \circ U_{l1}) + (1-\alpha)(\varphi \circ U_{l2})) \\ &\geq \mathsf{M}_1(\alpha(\varphi \circ U_{l1})) + \mathsf{M}_1((1-\alpha)(\varphi \circ U_{l2})) \\ &\geq \alpha \mathsf{M}_1(\varphi \circ U_{l1}) + (1-\alpha)\mathsf{M}_1(\varphi \circ U_{l2}), \end{aligned}$$

and the proof is established.

Let  $F_k$ ,  $U_l$  and  $V_m$  be fixed functions satisfying the assumptions of Theorem 2.1. Let us define functionals  $M_3$  and  $M_4$  by

$$\mathsf{M}_3(A) = \left[ \int_Y \left( \int_A F_k^p(x,y) U_l(x) \mathrm{d}\mu_\Delta(x) \right)^{\frac{1}{p}} V_m(y) \mathrm{d}\nu_\Delta(y) \right]^p - \int_A \left( \int_Y F_k(x,y) V_m(y) \mathrm{d}\nu_\Delta(y) \right)^p U_l(x) \mathrm{d}\mu_\Delta(x)$$

and

$$\mathsf{M}_4(B) = \int_B \left( \int_X F_k^p(x,y) U_l(x) \mathrm{d}\mu_\Delta(x) \right)^{\frac{1}{p}} V_m(y) \mathrm{d}\nu_\Delta(y) - \left[ \int_X \left( \int_B F_k(x,y) V_m(y) \mathrm{d}\nu_\Delta(y) \right)^p U_l(x) \mathrm{d}\mu_\Delta(x) \right]^{\frac{1}{p}},$$
 where  $A \subseteq X$  and  $B \subseteq Y$ .

The following theorem establishes superadditivity and monotonicity of the mappings M<sub>3</sub> and M<sub>4</sub>.

**Theorem 3.3.** (i) Suppose  $A_1, A_2 \subseteq X$  and  $A_1 \cap A_2 = \emptyset$ . If  $p \ge 1$  or p < 0, then

$$M_3(A_1 \cup A_2) \ge M_3(A_1) + M_3(A_2),$$

and if 0 , then the above inequality is reversed.

(ii) Suppose  $A_1, A_2 \subseteq X$  and  $A_1 \subseteq A_2$ . If  $p \ge 1$  or p < 0, then

$$M_3(A_1) \leq M_3(A_2),$$

and if 0 , then the above inequality is reversed.

(iii) Suppose  $B_1, B_2 \subseteq Y$  and  $B_1 \cap B_2 = \emptyset$ . If  $p \ge 1$ , then

$$M_4(B_1 \cup B_2) \ge M_4(B_1) + M_4(B_2),$$

and if p < 1 and  $p \neq 0$ , then the above inequality is reversed.

(iv) Suppose  $B_1, B_2 \subseteq Y$  and  $B_1 \subseteq B_2$ . If  $p \ge 1$ , then

$$M_4(B_1) \leq M_4(B_2),$$

and if p < 1 and  $p \neq 0$ , then the above inequality is reversed.

The proof of Theorem 3.3 is omitted as it is similar to the proof of Theorem 3.1.

**Remark 3.3.** For  $p \ge 1$ , if  $S_m$  is a subset of Y with m elements and if  $S_m \supseteq S_{m-1} \supseteq \ldots \supseteq S_2$ , then we have

$$M_4(S_m) \ge M_4(S_{m-1}) \ge \ldots \ge M_4(S_2) \ge 0$$

and  $M_4(S_m) \ge \max\{M_4(S_2) : S_2 \text{ is any subset of } S_m \text{ with } 2 \text{ elements}\}.$ 

### 4. Beckenbach-Dresher Inequalities

Let  $U_l$ ,  $V_m$ ,  $F_k$  be defined as in (4.1). Let  $\mathcal{F}_n(x_1, x_2, \ldots, x_n)$ ,  $\mathcal{G}_t(x_1, x_2, \ldots, x_t)$  are real valued functions of n, and t variables, respectively. Let  $(X, \mathcal{M}, \mu_{\Delta})$ ,  $(X, \mathcal{M}, \lambda_{\Delta})$  and  $(Y, \mathcal{L}, \nu_{\Delta})$  be time scale measure spaces. Then, throughout in the following sections, we use the following notations:

$$W_n = W_n(x) = W_n(w_1(x), w_2(x), \dots, w_n(x)),$$

$$G_t = G_t(x, y) = G_t(g_1(x, y), g_2(x, y), \dots, g_t(x, y)),$$
(4.1)

where  $U_l$  and  $W_n$  are nonnegative functions on X,  $V_m$  is a nonnegative function on Y,  $F_k$  is a nonnegative function on  $X \times Y$  with respect to the measure  $(\mu_{\Delta} \times \nu_{\Delta})$ , and  $\mathcal{G}_t$  is a nonnegative function on  $X \times Y$  with respect to the measure  $(\lambda_{\Delta} \times \nu_{\Delta})$ . In the sequel, we assume that all occurring integrals are finite.

## Theorem 4.1. If

$$s \ge 1, \quad q \le 1 \le p, \quad and \quad q \ne 0 \tag{4.2}$$

or

$$s<0,\quad p\leq 1\leq q,\quad and\quad p\neq 0, \tag{4.3}$$

then

$$\frac{\left[\int_{X} \left(\int_{Y} F_{k}(x, y) V_{m}(y) d\nu_{\Delta}(y)\right)^{p} U_{l}(x) d\mu_{\Delta}(x)\right]^{\frac{s}{p}}}{\left[\int_{X} \left(\int_{Y} \mathcal{G}_{t}(x, y) V_{m}(y) d\nu_{\Delta}(y)\right)^{q} \mathcal{W}_{n}(x) d\lambda_{\Delta}(x)\right]^{\frac{s-1}{q}}}$$

$$\leq \int_{Y} \frac{\left(\int_{X} F_{k}^{p}(x, y) U_{l}(x) d\mu_{\Delta}(x)\right)^{\frac{s}{p}}}{\left(\int_{X} \mathcal{G}_{t}^{q}(x, y) \mathcal{W}_{n}(x) d\lambda_{\Delta}(x)\right)^{\frac{s-1}{q}}} V_{m}(y) d\nu_{\Delta}(y) \quad (4.4)$$

provided all occurring integrals in (4.4) exist. If

$$0 < s \le 1, \quad p \ge 1, \quad q \le 1, \quad and \quad q \ne 0,$$
 (4.5)

then (4.4) is reversed.

*Proof.* Assume (4.2) or (4.3). By using the integral Minkowski inequality (2.2) and Hölder's inequality (1.2), we have

$$\frac{\left[\int_{X}\left(\int_{Y}F_{k}(x,y)V_{m}(y)\mathrm{d}\nu_{\Delta}(y)\right)^{p}U_{l}(x)\mathrm{d}\mu_{\Delta}(x)\right]^{\frac{s}{p}}}{\left[\int_{X}\left(\int_{Y}\mathcal{G}_{t}(x,y)V_{m}(y)\mathrm{d}\nu_{\Delta}(y)\right)^{q}\mathcal{W}_{n}(x)\mathrm{d}\lambda_{\Delta}(x)\right]^{\frac{s-1}{q}}}$$

$$\leq \frac{\left[\int_{Y}\left(\int_{X}F_{k}^{p}(x,y)U_{l}(x)\mathrm{d}\mu_{\Delta}(x)\right)^{\frac{1}{p}}V_{m}(y)\mathrm{d}\nu_{\Delta}(y)\right]^{s}}{\left[\int_{Y}\left(\int_{X}\mathcal{G}_{t}^{q}(x,y)\mathcal{W}_{n}(x)\mathrm{d}\lambda_{\Delta}(x)\right)^{\frac{1}{q}}V_{m}(y)\mathrm{d}\nu_{\Delta}(y)\right]^{s-1}}$$

$$= \left[\int_{Y}\left(\left(\int_{X}F_{k}^{p}(x,y)U_{l}(x)\mathrm{d}\mu_{\Delta}(x)\right)^{\frac{s}{p}}\right)^{\frac{1}{s}}V_{m}(y)\mathrm{d}\nu_{\Delta}(y)\right]^{s}$$

$$\times \left[\int_{Y}\left(\left(\int_{X}\mathcal{G}_{t}^{q}(x,y)\mathcal{W}_{n}(x)\mathrm{d}\lambda_{\Delta}(x)\right)^{\frac{1-s}{q}}\right)^{\frac{1-s}{1-s}}V_{m}(y)\mathrm{d}\nu_{\Delta}(y)\right]^{1-s}$$

$$\leq \int_{Y}\left(\int_{X}F_{k}^{p}(x,y)U_{l}(x)\mathrm{d}\mu_{\Delta}(x)\right)^{\frac{s}{p}}\left(\int_{X}\mathcal{G}_{t}^{q}(x,y)\mathcal{W}_{n}(x)\mathrm{d}\lambda_{\Delta}(x)\right)^{\frac{1-s}{q}}V_{m}(y)\mathrm{d}\nu_{\Delta}(y).$$

If (4.5) holds, then the reversed inequality in (4.4) can be proved in a similar way.

## 5. Beckenbach-Dresher Functionals

Let  $F_k$ ,  $\mathcal{G}_t$ ,  $U_l$ ,  $\mathcal{W}_n$  be fixed functions satisfying the assumptions of Theorem 4.1. We define the Beckenbach–Dresher functional  $BD(V_m)$  by

$$\begin{split} \mathsf{BD}(V_m) &= \int_Y \frac{\left(\int_X F_k^p(x,y) U_l(x) \mathrm{d}\mu_\Delta(x)\right)^{\frac{s}{p}}}{\left(\int_X \mathcal{G}_t^q(x,y) \mathcal{W}_n(x) \mathrm{d}\lambda_\Delta(x)\right)^{\frac{s-1}{q}}} V_m(y) \mathrm{d}\nu_\Delta(y) \\ &- \frac{\left[\int_X \left(\int_Y F_k(x,y) V_m(y) \mathrm{d}\nu_\Delta(y)\right)^p U_l(x) \mathrm{d}\mu_\Delta(x)\right]^{\frac{s}{p}}}{\left[\int_X \left(\int_Y \mathcal{G}_t(x,y) V_m(y) \mathrm{d}\nu_\Delta(y)\right)^q \mathcal{W}_n(x) \mathrm{d}\lambda_\Delta(x)\right]^{\frac{s-1}{q}}}, \end{split}$$

where we suppose that all occurring integrals exist.

**Theorem 5.1.** If (4.2) or (4.3) holds, then

$$BD(V_{m1} + V_{m2}) \ge BD(V_{m1}) + BD(V_{m2}). \tag{5.1}$$

If  $V_{m2} \geq V_{m1}$ , then

$$BD(V_{m1}) \le BD(V_{m2}). \tag{5.2}$$

If  $C, c \geq 0$  and  $CV_{m2} \geq V_{m1} \geq cV_{m2}$ , then

$$CBD(V_{m2}) \ge BD(V_{m1}) \ge cBD(V_{m1}). \tag{5.3}$$

If (4.5) holds, then (5.1), (5.2) and (5.3) are reversed.

*Proof.* Assume (4.2) or (4.3). Then we have

$$\begin{split} & \mathsf{BD}(V_{m1} + V_{m2}) - \mathsf{BD}(V_{m1}) - \mathsf{BD}(V_{m2}) \\ & = \frac{\left[\int_X \left(\int_Y F_k(x,y) V_{m1}(y) \mathrm{d}\nu_\Delta(y)\right)^p U_l(x) \mathrm{d}\mu_\Delta(x)\right]^{\frac{s}{p}}}{\left[\int_X \left(\int_Y \mathcal{G}_t(x,y) V_{m1}(y) \mathrm{d}\nu_\Delta(y)\right)^q \mathcal{W}_n(x) \mathrm{d}\lambda_\Delta(x)\right]^{\frac{s-1}{q}}} \\ & + \frac{\left[\int_X \left(\int_Y F_k(x,y) V_{m2}(y) \mathrm{d}\nu_\Delta(y)\right)^p U_l(x) \mathrm{d}\mu_\Delta(x)\right]^{\frac{s}{p}}}{\left[\int_X \left(\int_Y \mathcal{G}_t(x,y) V_{m2}(y) \mathrm{d}\nu_\Delta(y)\right)^q \mathcal{W}_n(x) \mathrm{d}\lambda_\Delta(x)\right]^{\frac{s-1}{q}}} \\ & - \frac{\left[\int_X \left(\int_Y F_k(x,y) V_{m1}(y) \mathrm{d}\nu_\Delta(y) + \int_Y F_k(x,y) V_{m2}(y) \mathrm{d}\nu_\Delta(y)\right)^p U_l(x) \mathrm{d}\mu_\Delta(x)\right]^{\frac{s}{p}}}{\left[\int_X \left(\int_Y \mathcal{G}_t(x,y) V_{m1}(y) \mathrm{d}\nu_\Delta(y) + \int_Y \mathcal{G}_t(x,y) V_{m2}(y) \mathrm{d}\nu_\Delta(y)\right)^q \mathcal{W}_n(x) \mathrm{d}\lambda_\Delta(x)\right]^{\frac{s-1}{q}}} \\ & > 0, \end{split}$$

where in the last inequality we used (4.4) from Theorem 4.1. Using Theorem 4.1 again,  $V_{m2} \ge V_{m1}$  implies

$$BD(V_{m2}) = BD(V_{m1} + (V_{m2} - V_{m1})) \ge BD(V_{m1}) + BD(V_{m2} - V_{m1}) \ge BD(V_{m1}).$$

The proof of (5.3) is similar. If (4.5) holds, then the reversed inequalities of (5.1), (5.2) and (5.3) can be proved in a similar way.

Let  $F_k$ ,  $\mathcal{G}_t$ ,  $U_l$ ,  $V_m$ ,  $\mathcal{W}_n$  be fixed functions. We define a functional BD<sub>1</sub> by

$$\begin{split} \mathsf{BD}_1(A) &= \int_A \frac{\left(\int_X F_k^p(x,y) U_l(x) \mathrm{d}\mu_\Delta(x)\right)^{\frac{s}{p}}}{\left(\int_X \mathcal{G}_t^q(x,y) \mathcal{W}_n(x) \mathrm{d}\lambda_\Delta(x)\right)^{\frac{s-1}{q}}} V_m(y) \mathrm{d}\nu_\Delta(y) \\ &- \frac{\left[\int_X \left(\int_A F_k(x,y) V_m(y) \mathrm{d}\nu_\Delta(y)\right)^p U_l(x) \mathrm{d}\mu_\Delta(x)\right]^{\frac{s}{p}}}{\left[\int_X \left(\int_A \mathcal{G}_t(x,y) V_m(y) \mathrm{d}\nu_\Delta(y)\right)^q \mathcal{W}_n(x) \mathrm{d}\lambda_\Delta(x)\right]^{\frac{s-1}{q}}}, \end{split}$$

where  $A \subseteq Y$ .

For  $BD_1$ , the following result holds.

**Theorem 5.2.** (i) Suppose  $A_1, A_2 \subseteq Y$  and  $A_1 \cap A_2 = \emptyset$ . If (4.2) or (4.3) holds, then

$$BD_1(A_1 \cup A_2) \ge BD_1(A_1) + BD_1(A_2),$$

and if (4.5) holds, then the above inequality is reversed.

(ii) Suppose  $A_1, A_2 \subseteq Y$  and  $A_1 \subseteq A_2$ . If (4.2) or (4.3) holds, then

$$BD_1(A_1) < BD_1(A_2),$$

and if (4.5) holds, then the above inequality is reversed.

The proof of Theorem 5.2 is omitted as it is similar to the proof of Theorem 5.1.

**Remark 5.1.** If  $S_k \subseteq X$  has k elements and if  $S_m \supseteq S_{m-1} \supseteq \ldots \supseteq S_2$ , then (4.2) or (4.3) implies

$$\mathsf{BD}_1(S_m) \ge \mathsf{BD}_1(S_{m-1}) \ge \cdots \ge \mathsf{BD}_1(S_2) \ge 0$$

and  $BD_1(S_m) \ge \max\{BD_1(S_2) : S_2 \text{ is any subset of } S_m \text{ with } 2 \text{ elements}\}$ , while (4.5) implies the reversed inequalities with max replaced by min.

Conflicts of Interest: The author(s) declare that there are no conflicts of interest regarding the publication of this paper.

#### References

- M. Anwar, R. Bibi, M. Bohner, and J. Pečarić, Integral inequalities on time scales via the theory of isotonic linear functionals, Abstr. Appl. Anal. 2011(2011), Art. ID 483595.
- [2] R. Bibi, M. Bohner, J. Pečarić, and S. Varošanec, Minkowski and Beckenbach-Dresher inequalities and functionals on time scales, J. Math. Inequal. Appl. 2013(2013), 299–312.
- [3] M. Bohner and A. Peterson, Dynamic equations on time scales: An introduction with applications, Birkhäuser, Boston, 2001.
- [4] M. Bohner and G. Sh. Guseinov, Multiple integration on time scales, Dynam. Systems Appl. 14 (2005), 579–606.
- [5] M. Bohner and G. Sh. Guseinov, Multiple Lebesgue integration on time scales, Adv. Difference Equ. 2006 (2006), Art. ID 26391.
- [6] B. Guljaš, C. E. M. Pearce, and J. Pečarić, Some generalizations of the Beckenbach–Dresher inequality, Houston J. Math. 22 (1996), 629–638.
- [7] S. Hilger, Ein Maßkettenkalkül mit Anwendung auf Zentrumsmannigfaltigkeiten, Ph. D. thesis, Universität Würzburg, 1988.
- [8] S. Hilger, Analysis on measure chains a unified approach to continuous and discrete calculus, Results Math. 18 (1990), 18–56.
- [9] B. Ivanković, J. Pečarić, and S. Varošanec, Properties of mappings related to the Minkowski inequality, Mediterranean J. Math. 8 (2011), 543–551.
- [10] S. Varošanec, A generalized Beckenbach–Dresher inequality and related results, Banach J. Math. Anal. 4 (2010), 13–20.