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ABSTRACT. We generalize integral forms of the Minkowski inequality and Beckenbach—Dresher inequality
on time scales. Also, we investigate a converse of Minkowski’s inequality and several functionals arising from

the Minkowski inequality and the Beckenbach—Dresher inequality.

1. INTRODUCTION AND PRELIMINARIES

A time scale T is an arbitrary nonempty closed subset of the real numbers. The theory of time scales
was introduced by Stefan Hilger [7] in order to unify the theory of difference equations and the theory
of differential equations. For an introduction to the theory of dynamic equations on time scales, we refer
to [3,8]. Martin Bohner and Gusein Sh. Guseinov [4,5] defined the multiple Riemann and multiple Lebesgue
integration on time scales and compared the Lebesgue A-integral with the Riemann A-integral.

Let n € N be fixed. For each ¢ € {1,...,n}, let T; denote a time scale and
A" =Ty x...xTp={t=(t,....tn): ; €Ty, 1 <i<n}
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an n-dimensional time scale. Let pa be the o-additive Lebesgue A-measure on A™ and F be the family
of A-measurable subsets of A". Let E € F and (E,F,ua) be a time scale measure space. Then for a
A-measurable function f : F — R, the corresponding A-integral of f over E will be denoted according

to [5, (3.18)] by

)ALt At At, dua, or dua(t).
/Efm, o)At At /Ef(t)t /Ef/m 0 /Em) pa(®)

By [5, Section 3], all theorems of the general Lebesgue integration theory, including the Lebesgue dominated
convergence theorem, hold also for Lebesgue A-integrals on A™. Here we state Fubini’s theorem for integrals

on time scales. It is used in the proofs of our main results.

Theorem 1.1 (Fubini’s theorem). Let (X, M, ua) and (Y, L,va) be two finite-dimensional time scale mea-

sure spaces. If f: X xY — R is a A-integrable function and if we define the functions

o) = /X @, y)dua(z) forae yeY
and
(x) = /Y Hy)dvaly) forae. z€ X,

then @ is A-integrable on'Y and 1 is A-integrable on X and

/X dua(z) /Y f (2, y)dvay) = [{ dva(y) /X F (@, y)dua (). (1.1)

Holder’s inequality and Minkowski’s inequality and their converses for multiple integration on time scales
were investigated in [1]. These inequalities hold for both Riemann integrals and Lebesgue integrals on time

scales. For completeness, let us recall these inequalities from [1].

Theorem 1.2 (Holder’s inequality [1, Theorem 6.2]). For p # 1, define ¢ = p/(p — 1). Let (E,F,ua)
be a time scale measure space. Assume w, f, g are nonnegative functions such that wfP, wg?, wfg are

A-integrable on E. If p > 1, then
1/p 1/q
[ wssnst < ( [ v 0mso) <([uogaan) a2
E E E
If0<p<1and [Lwg?dua >0, or if p<0 and [, wfPdua >0, then (1.2) is reversed.

Theorem 1.3 (Minkowski’s inequality [1, Theorem 7.2]). Let (E,F, ua) be a time scale measure space. For
p € R, assume w, f, g, are nonnegative functions such that wfP, wgP, w(f + g)P are A-integrable on E. If

p > 1, then

=

([woww+aorasn) < ([ w(t)f”(t)dua(t)>l/p + ([ w(t)gp<t>duA<t>)l/p. (13)

If0<p<1orp<0, then (1.3) is reversed provided each of the two terms on the right-hand side is positive.
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Theorem 1.4 (Converse of Holder’s inequality [1, Theorem 11.3]). For p # 1, define ¢ = p/(p — 1). Let
(E,F,pua) be a time scale measure space. Assume w, f, g are nonnegative functions such that wfP, wg?,

wfg are A-integrable on E. Suppose
0<m< f(t)g~ Pty <M forall teE.

If p > 1, then

1/p 1/q
[otsaanst) = Komon ([ woroman) < ([ oorowso) . o
E E E
where
(M —m)/P|imMP — MmP |/
37— |
If0<p<1orp<0, then (1.4) is reversed provided either fE wgldpa > 0 or fE wfPdua > 0.

K(p,m, M) = |p|"/?|q|"/ (1.5)

In [2] Bibi et al., obtain integral forms of Minkowski’s and Beckenbach—Dresher inequality on time scales.

In this paper we generalize these inequalities and investigate functional obtained from our new inequalities.

2. MINKOWSKI INEQUALITIES

Let Uj(x1,x2,...,x1), Vin(x1,22,...,2m), Gg(x1,x2,...,21), are real valued functions of I, m, and k
variables, respectively. Let (X, M, ua) and (Y, L£,va) be time scale measure spaces. Then, throughout in

the following sections, we use the following notations:
Ui =U(z) = U(u(2),u2(2), ..., w(z)), (2.1)
Vin = Vin(y) = Vi (01 (), v2(y), - - -, vm (1)),
Fi = Fi(z,y) = Fr(fi(z,9), f2(2,9), .., fu(z,9)),

where {u;(x)}_,, {vi(y)}™y, {fi(z,y)}E_,, are defined on X, Y, and X x Y, respectively. In the sequel, we

assume that all occurring integrals are finite.

Theorem 2.1 (Integral Minkowski inequality). If p > 1, then

. ! :
([ meammanm) twase] < [ ([ mepn@ase) e e
x \Jy v \JXx
holds provided all integrals in (2.2) exists. If 0 < p < 1 and
p

/ (/ Fkadl/A> Uidpa > 0, / F.V,,dva >0 (2.3)
x Uy Y

holds, then (2.2) is reversed. If p < 0 and (2.3) and

/ FPUdpa > 0, (2.4)
X

hold, then (2.2) is reversed as well.
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Proof. Let p > 1. Put
H@) = [ Filaa)Vodvs (o)

Now, by using Fubini’s theorem (Theorem 1.1) and Hélder’s inequality (Theorem 1.2) on time scales, we

have

-3
—~
&
=
&
—~
E
o,
=
>
8
~
N———
I
VR
>
Sy
S
8
~—
=
—~
8
~
o,
=
>
—
E
N——
=
<
~—~
3
>
<
~

3
—~
8
o
S
—
&
o,
=
>
8
N—
~__
N
S
o
N
>
<
N~—
N
Sy
S
8
N—
S
S
N—
(oW
=
>
—
&
~~_
|

and hence
L L
([ meuwns) < [ ([ mepvi@ans) vamaso.
X Yy \Jx
For p < 0 and 0 < p < 1, the corresponding results can be obtained similarly. O
Theorem 2.2 (Converse of integral Minkowski inequality). Suppose

Fk(m?y)
O S T @ ) Ve (1) 0 (9)

<M forall z€ X, yey.
If p > 1, then

ES
P

([ Aentiansn) i)

ZK(p,m,M)/

Y

([ e ntidns@) Vst @9

provided all integrals in (2.5) exist, where K (p,m, M) is defined by (1.5). If 0 < p < 1 and (2.3) holds, then
(2.5) is reversed. If p <0 and (2.3) and (2.4) hold, then (2.5) is reversed as well.

Proof. Let p > 1. Put

H(z) = /Y Fi (2, 9)Vin (v)dva (3).
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Then by using Fubini’s theorem (Theorem 1.1) and the converse Holder inequality (Theorem 1.4) on time

scales, we get
/ H(2)Ur(@)dpa (@ / ( / Fu(z,y)V, )dmy)) HP Y (@)U (2)dpa (z)
-/ ( / Fk<x,y)H"-1<x>Uz<x>dM<x>) Von () v (3)

(/X FP(z,y)U, (x)dMA(x)> 1/p

p—1

ZK(p,m,M)/

Y

< ([ mou@ans) " vmas o

—1

Dividing both sides by ([ H?(z)U(z )d,uA(x))pT, we obtain (2.5). For 0 < p < 1 and p < 0, the

corresponding results can be obtained similarly. O

Now we define the rth power mean MU!(F}, pa) of the function Fj, with respect to the measure pa by

1
[x Fi(z,y)U(z)dpa(z)\ 7 .
( ) ka Ui(z)dpa (@) ) if r#£0,
MU (Fy, pa) = oo
S5 log Fy (x,y)U; (x)dpa (x) . _
exp ( X T Ui(@)dpa(2) ) if r=0,

where fX Uidpa > 0.
Corollary 2.1. Let 0 < s <r. Then
MU (MEN(E,, dva), dus) > K( m, M) ME MV E, dua), dva).
Proof. By putting p = r/s and replacing Fj, by F}} in (2.5), raising to the power of % and dividing by

(/ UAz)dqu))i (f vm<y>dm<y>)'i |

we get the above result. O

3. MINKOWSKI FUNCTIONALS

In this section, we will consider some functionals which arise from the Minkowski inequality. Similar
results (but not for time scales measure spaces) can be found in [9].
Let Fy and V;,, be fixed functions satisfying the assumptions of Theorem 2.1. Let us consider the functional

M; defined by

M (U;) =

L (] Ff(w)Ul(x)duA(m))’l’vm<y>duA<y>r— J ([ Feemnians) oieyins o),
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where U; is a nonnegative function on X such that all occurring integrals exist. Also, if we fix the functions

Fy and Uj, then we can consider the functional

1
P

) = [ ([ Betims ) v mans )

— UX (/YFk(x,y)Vm(y)dVA(y))pUz(w)duA(m)};=

where V;,, is a nonnegative function on Y such that all occurring integrals exist.

Remark 3.1. (i) It is obvious that My and My are positive homogeneous, i.e., My(alU;) = aM(U;),
and My (aV,,) = aMy(V,,), for any a > 0.
(ii)) Ifp>1orp<0, then M1 (U;) >0, and if 0 < p < 1, then M{(U;) < 0.
(i) If p > 1, then Ma(V,,,) >0, and if p <1 and p # 0, then My (V) < 0.

Theorem 3.1. (i) Ifp>1 orp <0, then My is superadditive. If 0 < p < 1, then My is subadditive.
(ii) If p > 1, then My is superadditive. If p <1 and p # 0, then Mz is subadditive.

(iii) Suppose Ujy and Us are nonnegative functions such that Ujg > Up. If p>1 or p <0, then
0 <My (Unn) < My(Usz), (3.1)

and if 0 < p < 1, then (3.1) is reversed.

(iv) Suppose Vi1 and Ve are nonnegative functions such that Vg > Vipr. If p > 1, then
0 < Ma(Vin1) < Ma(Vina), (3.2)
and if p < 1 and p # 0, then (3.2) is reversed.
Proof. First we show (i). We have

M1 (Ui + Ui2) — M1 (Uin) — M1 (Us2)

i [/Y </X fP(,y)(Un + Uzz)(m)duA(:c)> g

_ /X ( /Y Fk(z,y)Vm(y)dl/A(y)>p(Ul1+Ul2)(17)dHA(I)

_ VY (/X F;f(a:,y)Uu(a:)duA(w)f Vm(y)dVA(y)r

Vm(y)dVA(y)l

_ [/Y </X F;f(x,y)Uzz(x)dua(w)y Vm(y)dm(y)r
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+/X< YFk(z,y)Vm(y)dVA(y))pUlz(fc)dMA(iE)

/Y</XF1§(JS,Z/)(U11+Ul2)(x)duA(x)>

- [ L/ F;f(x,y)Un(x)duA(@);

(
- /Y(/XF;f(a?,y)Uzz(:c)duA(x));Vm(y)dVA(y)r.

3 =

Vm (y)dVA (y)]

Vm(y)dVA(y)]

Using the Minkowski inequality (1.3) for integrals (Theorem 1.3) with p replaced by 1/p, we have

>0 if p>lorp<o,

M1 (Ui + Uiz) — M1 (Unn) — My (Us2) (3.3)

<0 if 0<p<l1.

So, M; is superadditive for p > 1 or p < 0, and it is subadditive for 0 < p < 1. The proof of (ii) is similar:

After a simple calculation, we have

MQ(le + Vm?) - M2(Vm1) - M2(Vm2)

— [/X (/YFk(x,y)le(y)dVA(y))pUz(fﬁ)dua(fﬂ)}

" [ /. ( / Fk(x,y)sz(y)dVA(y))pUl(x)dMA(x)]

P
P

1
P

([ At + Vs vs ) Vi)

Using the Minkowski inequality (2.2) for integrals (Theorem 2.1), we have that this is nonnegative for p > 1
and nonpositive for p < 1 and p # 0. Now we show (iii). If p > 1 or p < 0, then using superadditivity and

positivity of My, Ujs > U implies
M1 (U2) = M1 (U + (Uiz — Unn)) > My (Unn) + My (Uia — Upn) > M (Un),

and the proof of (3.1) is established. If 0 < p < 1, then using subadditivity and negativity of My, Ujs > Upy

implies
M1 (Ui2) < M1 (Unn) + M1 (U2 — Uin) < My (Up).

The proof of (iv) is similar. O

Remark 3.2. Put X,Y C N, then for fized F}, and Uy, the function My has the form

1/p
Ma(Vin1) = > Vi1 (4) (Z Uz(i)Fk(z’,j)P> — [ > il) | > Vi () Fii ) ,

jey i€eX i€X jey
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where f(i,7) = Fx(i,7) > 0. If p > 1, then the mapping Ms is superadditive, and Via(j4) > Vin1(j) for all

7 €Y implies

1/p p\ 1/p
0< Y Vi(y) (Z U, <i)Fk(i,j>P> — | D06 [ D Vi (4) Fe (i, )
jey i€ X ieX JEY
1/p p\ /P
<> Via(h) <Z U, (z‘)Fk(z‘,j)”> — > Uil) [ D Vi () B )
jey i€eX ieX JEY
provided all occurring sums are finite.
Corollary 3.1. (i) Suppose Uy and Ujs are nonnegative functions such that CUyy > Uy > cUpa, where

¢,C>0. Ifp>1o0rp<0, then
cM1 (Ui2) < My (Upn) < CMy(Usa),

and if 0 < p < 1, then the above inequality is reversed.
(ii) Suppose Vi1 and Vo are nonnegative functions such that CViyg > Vi1 > ¢Vine, where ¢,C > 0. If

p>1, then

CM2(‘/;7L2) < MQ(V:ml) < CMQ(VmQ)y

and if p <1 and p # 0, then the above inequality is reversed.

Corollary 3.2. If V,,1 and V,,2 are nonnegative functions such that Vo > V1, then

MOl (/Y Fk(x,y)Vm(y)dz/A(y),uA) —/YM[O](FkaUA)le(y)dVA(y)
< MO ([ AeVaat)dvsWona ) = [ MO pa)Voaliaval). G
where MIV(Fy, pa) is defined in (2.6).
The next result gives another property of My, but a similar result can also be stated for M.

Theorem 3.2. Let ¢ : [0,00) — [0,00) be a concave function. Suppose Uy and Uz are nonnegative functions

such that
polUn, @olpa, wo(aly+(1-a)Up)

are A-integrable for o € [0,1]. If p > 1, then
Mi(po (alin + (1 = a)Ui2)) = aMi(p o Un) + (1 — a)Mi(p o Uz),

and if 0 < p < 1, then the above inequality is reversed.
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Proof. We show this only for p > 1 as the other case follows similarly. Since ¢ is concave, we have
plaln + (1 = a)Us)) = ap(Un) + (1 — a)p(Usz).
Now, from (3.1) and (3.3), we have
Mi(p o (alUn + (1 = a)Us2)) 2 Mi(a(p o Un) + (1 — a)(p o Ui))

> Mi(alp o Un)) +Mi((1 = @) (¢ o Us2))

= aMi(poUn) + (1 = )My (p o U2),
and the proof is established. O

Let Fy, U; and V,, be fixed functions satisfying the assumptions of Theorem 2.1. Let us define functionals

M3 and My by
Ma(a) = | [ ( /. F;f(say)Ul(x)duA(x))'l’vm<y>duA<y>r / ( / Fk<x,y>vm<y>dm<y>>pUz<x>dmm>
and

=

wie) = [ ([ Ff(x,ywl(z)dmsc));vm<y>dm<y>—[ [/ Fk<x7y>vm<y>dmy>)pUAx)duA(xﬂ ,

where AC X and BCY.

The following theorem establishes superadditivity and monotonicity of the mappings M3 and My.

Theorem 3.3. (i) Suppose A1,A3 C X and AyNAs=0. Ifp>1 orp<0, then
M3(A; U Az) > M3(A;) + M3(A2),

and if 0 < p < 1, then the above inequality is reversed.

(ii) Suppose A1, Ay C X and Ay C Ay. If p>1 orp <0, then
M3(A1) < M3(As),

and if 0 < p < 1, then the above inequality is reversed.
(iii) Suppose B1,B; CY and BN By = 0. If p> 1, then

M4 (B1 U By) > My(By) + My(Ba),

and if p <1 and p # 0, then the above inequality is reversed.
(iv) Suppose B, By CY and By C By. If p > 1, then

My (B1) < My(B2),

and if p <1 and p # 0, then the above inequality is reversed.
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The proof of Theorem 3.3 is omitted as it is similar to the proof of Theorem 3.1.

Remark 3.3. For p > 1, if S, is a subset of Y with m elements and if Sy, 2 Spm—1 2 ... 2 Sa, then we

have

M4(Sm) > My(Spm—1) > ... > My(S2) >0

and M4(Sy,) > max{M4(S2) : Sy is any subset of S, with 2 elements}.

4. BECKENBACH—DRESHER INEQUALITIES

Let U;, Vi, Fy be defined as in (4.1). Let F,,(z1,22,...,%pn), Ge(21,22,...,2¢) are real valued functions
of n, and ¢t variables, respectively. Let (X, M, ua), (X, M, a) and (Y, L, va) be time scale measure spaces.

Then, throughout in the following sections, we use the following notations:
Wi = Wi (z) = Wh(wi(x), wa(z),. .., w,()), (4.1)
gt = gt(xa y) = gt(gl(xv y)a gg({E, y)7 s agt(:c’ y))?

where U; and W,, are nonnegative functions on X, V;,, is a nonnegative function on Y, Fj, is a nonnegative
function on X x Y with respect to the measure (ua X va), and G; is a nonnegative function on X x Y with

respect to the measure (Aa X va). In the sequel, we assume that all occurring integrals are finite.

Theorem 4.1. If

or

then

[ Uy Fr(,9)Vin(y)dva ()" Un(z)dpa ()] 7

s—1

Lx (Jy Ge(@, ) Vi (y)dva(y))* Wa(z)dra ()] ©

<

Vi (y)dva(y) (44)

/ (Jx FF () Ui(2)dpa ()
Y ([x G, y)Wa(z)da(z)) ©

provided all occurring integrals in (4.4) exist. If
0<s<1l, p=>1, ¢g<1, and q#0, (4.5)

then (4.4) is reversed.
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Proof. Assume (4.2) or (4.3). By using the integral Minkowski inequality (2.2) and Holder’s inequality (1.2),

we have

S|

[y Uy Fil x,y>vm< Jdvay >)”Uz< Jdua ()]
UX (fy Gi(z,y) Vi (y)dvaly ) z)dAA( )]T
[y U FE @)U (@)dpia (o >) w()dvay)]

[y (e G2 )W) Aa @) Vinloa )]

[/Y / FY(x, y)Uz(:r)d/iA(x)> ;> % Vm(y)dI/A(y)]

X [/Y <(/X e y)Wn(m)d)\A(w)> ) s
([ #te v ) ([ stenm@ans@) " vwas).

If (4.5) holds, then the reversed inequality in (4.4) can be proved in a similar way. O

Q=

S

1-s

Vin(y)dva (y)]

IN

5. BECKENBACH-DRESHER FUNCTIONALS
Let Fy, Gi, U;, W, be fixed functions satisfying the assumptions of Theorem 4.1. We define the
Beckenbach—Dresher functional BD(V;,,) by

([ Ff(z,y)Ui(x)dpa(x ))%; Vi (y)dva (y)

BD(V,,) =
/Y ([ G, y)Wy(2)dAa(z)) ©

11

[k Uy Frle,y)Vi(y)dva(y)” Ui(e)dpa ()] ’
[y Uy Ge(@, 9)Vin(y)dva(y)) Wa (z)dAa(2)] ©

where we suppose that all occurring integrals exist.
Theorem 5.1. If (4.2) or (4.3) holds, then
BD(Vin1 + Vinz) = BD(Vin1) + BD(Vi2). (5.1)

If Vm2 Z Vm17 then

BD(Vin1) < BD(Vin2). (5.2)

If Cic >0 and CVyo > Vipr > cVipa, then
CBD(Vyn2) > BD(Vy1) > ¢BD(Vipg). (5.3)

If (4.5) holds, then (5.1), (5.2) and (5.3) are reversed.
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Proof. Assume (4.2) or (4.3). Then we have

BD(le + Vm?) - BD(le) - BD(VmQ)

<l

[y (Jy Fr(z,9)Vour (y)dva(y))” Ui(z)dpa (e )]
[x (Jy G, 9)Vina (y)dva(y)) ! Wa(z)dAa (a )]
[x (Jy Fr(@,9)Vina(y)dva(y))” Ui(= )duA(x)]
[ Uy G, 1) Vi (9)dva (1) Wa(2)dAa (2)] 7
Uy Uy (@, y) Vi (y)dva(y)

UX (fy Gi(z,y)Vin1 (y)dva(y)
Z 07

q

+ [y Fo(@, 9)Vina(y)dva ()" Ui(@)dpa ()] ?
+ [y Ge(@, ) Vina (y)dva (9))* Wa (2)dAa(z)] ©

where in the last inequality we used (4.4) from Theorem 4.1. Using Theorem 4.1 again, V;,5 > V,,1 implies

The proof of (5.3) is similar. If (4.5) holds, then the reversed inequalities of (5.1), (5.2) and (

5.3) can be
proved in a similar way.

O

Let Fy, G, U, Vi, Wi, be fixed functions. We define a functional BD; by

BOA) = / (fX Ff(m?y)Ul(x)duA(x))i Vin (y)dva(y)
A ([ G, y)Wa(x)dAa(@)) ©

_ UX (fA F(, y)VM(y)dVA(y))p Ul(l’)dMA(x)] E_
[fx (L4 Ge(, Y) Vi (y)dva(y))? Wi (z)dAa (2)] =

where A CY.

For BD1, the following result holds.

Theorem 5.2. (i) Suppose A1, A3 CY and Ay N A = 0. If (4.2) or (4.3) holds, then

BDl(Al U AQ) > BDl(Al) + BDl(AQ),

and if (4.5) holds, then the above inequality is reversed.
(ii) Suppose A1, A2 CY and Ay C As. If (4.2) or (4.3) holds, then

BD;(A41) < BD;(As),

and if (4.5) holds, then the above inequality is reversed.

The proof of Theorem 5.2 is omitted as it is similar to the proof of Theorem 5.1
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Remark 5.1. If Sy C X has k elements and if Sy, 2 Syt 2 ... 2 Sa, then (4.2) or (4.3) implies
BD1(Sm) > BD1(Sm—1) > --- > BD1(S2) >0
and BD1(Sy,) > max{BD1(S2) : Sy is any subset of Sy, with 2 elements}, while (4.5) implies the reversed

inequalities with max replaced by min.
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