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GENERALIZED ULAM-HYERS STABILITY OF THE

HARMONIC MEAN FUNCTIONAL EQUATION IN TWO

VARIABLES

K. RAVI1,∗, J.M. RASSIAS2 AND B.V. SENTHIL KUMAR3

Abstract. In this paper, we find the solution and prove the generalized Ulam-

Hyers stability of the harmonic mean functional equation in two variables. We

also provide counterexamples for singular cases.

1. INTRODUCTION

In 1940, S.M. Ulam [47] raised the following question concerning the stability

of group homomorphisms:

“Let G be a group and H be a metric group with metric d(., .). Given ε > 0,

does there exist a δ > 0 such that if a function f : G→ H satisfies

d(f(xy), f(x)f(y)) < δ

for all x, y ∈ G, then there exists a homomorphism a : G→ H with d(f(x), a(x)) <

ε for all x ∈ G?”

In 1941, D.H. Hyers [20] gave an answer to the Ulam’s stability problem. He

proved the following celebrated theorem.

Theorem 1.1. [D.H. Hyers] Let X,Y be Banach spaces and let f : X → Y be a

mapping satisfying

(1.1) ‖f(x+ y)− f(x)− f(y)‖ ≤ ε
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for all x, y ∈ X. Then the limit

(1.2) a(x) = lim
n→∞

f(2nx)

2n

exists for all x ∈ X and a : X → Y is the unique additive mapping satisfying

(1.3) ‖f(x)− a(x)‖ ≤ ε

for all x ∈ X.

In 1950, Aoki [2] generalized the Hyers theorem for additive mappings. In

1978, Th.M. Rassias [43] provided a generalized version of the theorem of Hyers

which permitted the cauchy difference to become unbounded. Th.M. Rassias proved

the following theorem for sum of powers of norms.

Theorem 1.2. [Th.M. Rassias] Let X and Y be two Banach spaces. Let θ ∈

[0,∞) and let p ∈ [0, 1). If a function f : X → Y satisfies the inequality

(1.4) ‖f(x+ y)− f(x)− f(y)‖ ≤ θ(‖x‖p + ‖y‖p)

for all x, y ∈ X. Then there exists a unique linear mapping T : X → Y such that

(1.5) ‖f(x)− T (x)‖ ≤ 2θ

2− 2p
‖x‖p

for all x ∈ X. Moreover, if f(tx) is continuous in t for each fixed x ∈ X, then the

function T is linear.

The theorem of Th.M. Rassias was later extended for all p 6= 1. The stability

phenomenon that was presented by Th.M. Rassias is called the generalized Hyers-

Ulam stability. In 1982, J.M. Rassias [33] gave a further generalization of the result

of D.H. Hyers and proved the following theorem using weaker conditions controlled

by a product of powers of norms.

Theorem 1.3. [J.M. Rassias] Let f : E → E′ be a mapping from a normed

vector space E into a Banach space E′ subject to the inequality

(1.6) ‖f(x+ y)− f(x)− f(y)‖ ≤ ε ‖x‖p ‖y‖p
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for all x,∈ E, where ε and p are constants with ε > 0 and 0 ≤ p < 1
2 . Then the

limit

(1.7) L(x) = lim
n→∞

f(2nx)

2n

exists for all x ∈ E and L : E → E′ is the unique additive mapping which satisfies

(1.8) ‖f(x)− L(x)‖ ≤ ε

2− 22p
‖x‖2p

for all x ∈ E. Moreover, if f(tx) is continuous in t for each fixed x of X, then the

function L is linear.

The above mentioned stability involving a product of powers of norms is called

Ulam-Gavruta-Rassias stability by various authors ([4], [5], [6], [9], [11], [18], [19],

[30], [31], [37], [38], [41], [45], [46]). Very recently, J.M. Rassias introduced mixed

type product sum of powers of norms in [38]. The investigation of stability of

functional equations involving with the mixed type product sum of powers of norms

is known as J.M. Rassias stability. Several functional equations and its J.M. Rassias

stability were investigated by many mathematicians ([5], [6], [18], [19], [39], [41],

[45]).

Theorem 1.4. [42] Let (E,⊥) be an orthogonality normed space with norm ‖.‖E
and (F, ‖.‖F ) be a Banach space. Let f : E → F be a mapping which satisfies the

inequality∥∥f(mx+ y) + f(mx− y)− 2f(x+ y)− 2f(x− y)− 2(m2 − 2)f(x) + 2f(y)
∥∥
F

≤ ε
{
‖x‖pE ‖y‖

p
E +

(
‖x‖2pE + ‖y‖2pE

)}
for all x, y ∈ E with x⊥y, where ε and p are constants with ε, p > 0 and either

m > 1; p < 1 or m < 1; p > 1 with m 6= 0;m 6= ±1; m 6= ±
√

2 and −1 6= |m|p−1 < 1.

Then the limit

Q(x) = lim
n→∞

f(mnx)

m2n

exists for all x ∈ E and Q : E → F is the unique orthogonally Euler-Lagrange

quadratic mapping such that

‖f(x)−Q(x)‖F ≤
ε

2 |m2 −m2p|
‖x‖2pE

for all x ∈ E.
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In the last two decades, several form of quadratic, cubic and quartic functional

equations and its Hyers-Ulam-Rassias stability were discussed by various authors

([3], [7], [12], [21], [24], [27], [29], [32], [34], [35]). Recently, the mixed type of

functional equations that is having additive and quadratic, quadratic and quartic,

additive and cubic, additive, quadratic, cubic and quartic property were investi-

gated in the literature ([8], [13], [14], [15], [16], [17], [18], [22], [26], [28], [36], [41],

[42], [44]). Very recently, we find that the functional equations are dealt in vari-

ous spaces like fuzzy normed spaces, random normed spaces, quasi-Banach spaces,

quasi-normed linear spaces by various authors, one can refer to ([10], [15], [16],

[17], [18], [23], [25], [26], [42], [44]). But, not many papers are available in the

reciprocal functional equation (RFE) and Reciprocal difference functional equation

(RDFE). K. Ravi and B.V. Senthil Kumar [39] introduced and investigated a new

2-dimensional reciprocal functional equation (RFE)

(1.9) f(x+ y) =
f(x)f(y)

f(x) + f(y)

and obtained some interesting results on the Ulam-Gavruta-Rassias stability for

the equation (1.9). In 2009, J.M. Rassias introduced the Reciprocal Difference

Functional equation (RDF equation)

(1.10) r

(
x+ y

2

)
− r(x+ y) =

r(x)r(y)

r(x) + r(y)

and the Reciprocal Adjoint Functional equation (RAF equation)

(1.11) r

(
x+ y

2

)
+ r(x+ y) =

3r(x)r(y)

r(x) + r(y)
.

and discussed Ulam stability problem as well as the extended Ulam stability prob-

lem for the equation (1.10) and (1.11) in [40].

In this paper, we obtain the solution and generalized Ulam-Hyers stability of

the harmonic mean functional equation in two variables of the form

(1.12) H
( xu

x+ u
,
yv

y + v

)
=

H(x, y)H(u, v)

H(x, y) +H(u, v)

which is originating from the harmonic mean of two positive real numbers x and

y. The function H(x, y) = 2xy
x+y is a solution of the functional equation (1.12). The

above function H(x, y) represents the harmonic mean of x and y. We also provide

counterexamples for singular cases.
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Before we proceed to the main theorem, we present some definitions, which

will be useful to prove our theorems.

Definition 1.5. The harmonic mean of two positive real numbers x and y is the

reciprocal of arithmetic mean of the reciprocals of x and y. Thus, harmonic mean

of x and y is

Harmonic mean =
2

1
x + 1

y

=
2xy

x+ y
.

Definition 1.6. A mapping a : X → Y between Banach spaces is called additive

if a satisfies the functional equation

(1.13) a(x+ y) = a(x) + a(y).

The function a(x) = cx is a solution of the functional equation (1.13).

Definition 1.7. A function r : X → Y between sets of non-zero real numbers is

called reciprocal if r satisfies the functional equation (1.9). The function r(x) = c
x

is a solution of the functional equation (1.9).

Definition 1.8. Let X be set of positive real numbers. A function H : X×X → R

be such that H(x, y) = 2xy
x+y is called harmonic mean function if it satisfies the

functional equation (1.12). The functional equation (1.12) is called harmonic mean

functional equation.

Throughout this paper, let X be set of positive real numbers.

2. RELATION BETWEEN (1.9) AND (1.12)

Theorem 2.1. Let r : X → R be a mapping satisfying r(x) = c
x where c ∈ R−{0}.

If H : X ×X → R is a mapping given by

(2.1) H(x, y) =
2

r(x) + r(y)

for all x, y ∈ X, then H satisfies (1.12).
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Proof. From (2.1), we have

H
( xu

x+ u
,
yv

y + v

)
=

2

r
(
xu
x+u

)
+ r
(
yv
y+v

)
=

2

c
[
x+u
xu

]
+ c
[
y+v
yv

]
=

2/c
1
x + 1

u + 1
y + 1

v

(2.2)

and
H(x, y)H(u, v)

H(x, y) +H(u, v)
=

2
r(x)+r(y)

2
r(u)+r(v)

2
r(x)+r(y) + 2

r(u)+r(v)

=
2

r(x) + r(u) + r(y) + r(v)

=
2/c

1
x + 1

u + 1
y + 1

v

.(2.3)

From (2.2) and (2.3), we see that H satisfies (1.12). �

3. SOLUTION OF FUNCTIONAL EQUATION (1.12)

Theorem 3.1. A mapping H : X × X → R satisfies (1.12) if and only if there

exists an additive mapping A : X → R such that

H(x, y) =
2cA(x)A(y)

A(x) +A(y)

for all x, y ∈ X, where c ∈ R− {0}.

Proof. Let H(x, y) be a solution of (1.12). Then by Theorem 2.1, H will be of

the form (2.1). That is, H(x, y) = 2
r(x)+r(y) , for all x, y ∈ X. In particular,

H(x, x) = 2
r(x)+r(x) = x

c , for all x ∈ X. Now, we define a mapping A : X → R

be such that A(x) = H(x, x) = x
c , for all x ∈ X. Then, clearly A is an additive

mapping. Further,

2cA(x)A(y)

A(x) +A(y)
=

2cxc
y
c

x
c + y

c

=
2xy

x+ y

= H(x, y), for all x, y ∈ X.
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Conversely, if there exists an additive mapping A : X → R such that H(x, y) =
2cA(x)A(y)
A(x)+A(y) , for all x, y ∈ X, then

H
( xu

x+ u
,
yv

y + v

)
=

2cA
(
xu
x+u

)
A
(
yv
y+v

)
A
(
xu
x+u

)
+A

(
yv
y+v

)

=
2 xy
x+y

uv
u+v

xy
x+y + uv

u+v

=
2
(
c

x
c
y
c

x
c+

y
c

)(
c

u
c
v
c

u
c+

v
c

)
(
c

x
c
y
c

x
c+

y
c

)
+
(
c

u
c
v
c

u
c+

v
c

)
=

[
2cA(x)A(y)
A(x)+A(y)

][
2cA(u)A(v)
A(u)+A(v)

]
[
2cA(x)A(y)
A(x)+A(y)

]
+
[
2cA(u)A(v)
A(u)+A(v)

]
=

H(x, y)H(u, v)

H(x, y) +H(u, v)

for all x, u, y, v ∈ X. �

4. GENERALIZED ULAM-HYERS STABILITY OF FUNCTIONAL

EQUATION (1.12)

Theorem 4.1. Let H : X×X → R be a mapping for which there exists a function

ϕ : X ×X ×X ×X → R with the condition

(4.1) lim
n→∞

2nϕ(2−nx, 2−nx, 2−ny, 2−ny) = 0

such that the functional inequality

(4.2)
∣∣∣H( xu

x+ u
,
yv

y + v

)
− H(x, y)H(u, v)

H(x, y) +H(u, v)

∣∣∣ ≤ ϕ(x, u, y, v)

holds for all x, u, y, v ∈ X. Then there exists a unique harmonic mean mapping

M : X ×X → R satisfying the functional equation (1.12) and

(4.3) |M(x, y)−H(x, y)| ≤
∞∑
i=0

2i+1ϕ(2−ix, 2−ix, 2−iy, 2−iy)

for all x, y ∈ X. The mapping M(x, y) is defined by

M(x, y) = lim
n→∞

2nH(2−nx, 2−ny)

for all x, y ∈ X.
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Proof. Replacing (x, u, y, v) by (x, x, y, y) in (4.2) and multiplying by 2, we obtain

(4.4)
∣∣∣2H(x

2
,
y

2

)
−H(x, y)

∣∣∣ ≤ 2ϕ(x, x, y, y).

Now, replacing (x, y) by (x2 ,
y
2 ) in (4.4), multiplying by 2 and summing the resulting

inequality with (4.4), we arrive

|22H
(
2−2x, 2−2y

)
−H(x, y)| ≤ 2

1∑
i=0

2iϕ(2−ix, 2−ix, 2−iy, 2−iy).

Using induction on a positive integer n, we get

|2nH
(
2−nx, 2−ny

)
−H(x, y)| ≤ 2

n−1∑
i=0

2iϕ(2−ix, 2−ix, 2−iy, 2−iy)

≤ 2

∞∑
i=0

2iϕ(2−ix, 2−ix, 2−iy, 2−iy)(4.5)

for all x, y ∈ X. In order to prove the convergence of the sequence {2nH(2−nx, 2−ny)},
replacing (x, y) by (2−px, 2−py) in (4.5) and multiplying by 2p, we find that for

n > p > 0

|2n+pH(2−n−px, 2−n−py)− 2pH(2−px, 2−py)|

= 2p|2nH(2−n−px, 2−n−py)−H(2−px, 2−py)|

≤ 2

∞∑
i=0

2p+iϕ(2−p−ix, 2−p−ix, 2−p−iy, 2−p−iy)

→ 0 as p→∞.

This shows that the sequence {2nH(2−nx, 2−ny)} is a Cauchy sequence in (R, |.|).
Since (R, |.|) is complete, the sequence {2nH(2−nx, 2−ny)} converges for all x, y ∈
X. Thus, we can define a functionM : X×X → R byM(x, y) = lim

n→∞
2nH(2−nx, 2−ny).

Allow n → ∞ in (4.5), we arrive (4.3). To show that M satisfies (1.12), replacing

(x, u, y, v) by (2−nx, 2−nu, 2−ny, 2−nv) in (4.2) and multiplying by 2n, we obtain

2n
∣∣∣H( 2−nx2−nu

2−nx+ 2−nu
,

2−ny2−nv

2−ny + 2−nv

)
− H(2−nx, 2−ny)H(2−nu, 2−nv)

H(2−nx, 2−ny) +H(2−nu, 2−nv)

∣∣∣
= 2n

∣∣∣H(2−n
( xu

x+ u

)
, 2−n

( yv

y + v

))
− H(2−nx, 2−ny)H(2−nu, 2−nv)

H(2−nx, 2−ny) +H(2−nu, 2−nv)

∣∣∣
≤ 2nϕ(2−nx, 2−nu, 2−ny, 2−nv).

(4.6)
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Allow n→∞ in (4.6), we see that M satisfies (1.12) for all x, u, y, v ∈ X. To prove

M is unique mapping satisfying (1.12), let N : X × X → R be another mapping

which satisfies (1.12) and the inequality (4.3). Clearly N and M satisfy (1.12) and

using (4.3), we arrive

|N(x, y)−M(x, y)|

= 2n|N(2−nx, 2−ny)−M(2−nx, 2−ny)|

≤ 2n
(
|N(2−nx, 2−ny)−H(2−nx, 2−ny)|+ |H(2−nx, 2−ny)−M(2−nx, 2−ny)|

)

≤ 4

∞∑
i=0

2n+iϕ(2−n−ix, 2−n−ix, 2−n−iy, 2−n−iy)

(4.7)

for all x, y ∈ X. Allow n → ∞ in (4.7) and using (4.1), we find that M is unique.

This completes the proof of Theorem 4.1. �

Theorem 4.2. Let H : X×X → R be a mapping satisfying (4.2) for all x, u, y, v ∈
X. Then there exists a unique harmonic mapping M : X ×X → R satisfying the

functional equation (1.12) and

(4.8) |H(x, y)−M(x, y)| ≤
∞∑
i=0

2−iϕ(2i+1x, 2i+1x, 2i+1y, 2i+1y)

for all x, y ∈ X. The mapping M(x, y) is defined by

M(x, y) = lim
n→∞

2−nH(2nx, 2ny)

for all x, y ∈ X, where ϕ : X ×X ×X ×X → R is a function.

Proof. The proof is obtained by replacing (x, u, y, v) by (x, x, y, y) in (4.2) and

proceeding further by similar arguments as in Theorem 4.1. �

Corollary 4.3. Let k1 ≥ 0 be fixed and a > 1 or a < 1. If a mapping H : X×X →
R satisfies the inequality∣∣∣H( xu

x+ u
,
yv

y + v

)
− H(x, y)H(u, v)

H(x, y) +H(u, v)

∣∣∣ ≤ k1(xa + ua + ya + va
)

for all x, u, y, v ∈ X, then there exists a unique harmonic mean mapping M :

X ×X → R satisfying the functional equation (1.12) and

|M(x, y)−H(x, y)| ≤

4k1

(
2a

2a−2

)(
xa + ya

)
for a > 1

4k1

(
2a

2−2a

)(
xa + ya

)
for a < 1



10 K. RAVI, J.M. RASSIAS AND B.V. SENTHIL KUMAR

for all x, y ∈ X.

Proof. Choosing ϕ(x, u, y, v) = k1

(
xa + ua + ya + va

)
, for all x, u, y, v ∈ X in

Theorem 4.1, we arrive

|M(x, y)−H(x, y)| ≤ 4k1

( 2a

2a − 2

)(
xa + ya

)
, for all x, y ∈ X and a > 1

and using Theorem 4.2, we arrive

|M(x, y)−H(x, y)| ≤ 4k1

( 2a

2− 2a

)(
xa + ya

)
, for all x, y ∈ X and a < 1.

�

Corollary 4.4. Let H : X × X → R be a mapping and there exist real numbers

p, q : σ = p+ q > 1
2 or p, q : σ = p+ q < 1

2 . If there exists k2 such that∣∣∣H( xu

x+ u
,
yv

y + v

)
− H(x, y)H(u, v)

H(x, y) +H(u, v)

∣∣∣ ≤ k2xpupyqvq
for all x, u, y, v ∈ X, then there exists a unique harmonic mean mapping M :

X ×X → R satisfying the functional equation (1.12) and

|M(x, y)−H(x, y)| ≤

2k2

(
22σ

22σ−2

)
x2py2q for σ > 1

2

2k2

(
22σ

2−22σ

)
x2py2q for σ < 1

2

for all x, y ∈ X.

Proof. Taking ϕ(x, u, y, v) = k2x
pupyqvq, for all x, u, y, v ∈ X in Theorem 4.1, we

arrive

|M(x, y)−H(x, y)| ≤ 2k2

( 22σ

22σ − 2

)
x2py2q, for all x, y ∈ X and σ >

1

2

and using Theorem 4.2, we arrive

|M(x, y)−H(x, y)| ≤ 2k2

( 22σ

2− 22σ

)
x2py2q, for all x, y ∈ X and σ <

1

2
.

�

Corollary 4.5. Let k3 > 0 and r > 1
4 or r < 1

4 be real numbers, and H : X×X → R

be a mapping satisfying the functional inequality∣∣∣H( xu

x+ u
,
yv

y + v

)
− H(x, y)H(u, v)

H(x, y) +H(u, v)

∣∣∣
≤ k3

(
xruryrvr +

(
x4r + u4r + y4r + v4r

))
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for all x, u, y, v ∈ X. Then there exists a unique harmonic mean mapping M :

X ×X → R satisfying the functional equation (1.12) and

|M(x, y)−H(x, y)| ≤

2k3

(
24r

24r−2

)[
x2ry2r + 2

(
x4r + y4r

)]
for r > 1

4

2k3

(
24r

2−24r

)[
x2ry2r + 2

(
x4r + y4r

)]
for r < 1

4

for all x, y ∈ X.

Proof. Choosing ϕ(x, u, y, v) = k3

(
xruryrvr +

(
x4r + u4r + y4r + v4r

))
, for all

x, u, y, v ∈ X in Theorem 4.1, we arrive

|M(x, y)−H(x, y)|

≤ 2k3

( 24r

24r − 2

)[
x2ry2r + 2

(
x4r + y4r

)]
for all x, y ∈ X and r >

1

4

and using Theorem 4.2, we arrive

|M(x, y)−H(x, y)|

≤ 2k3

( 24r

2− 24r

)[
x2ry2r + 2

(
x4r + y4r

)]
for all x, y ∈ X and r <

1

4
.

�

Corollary 4.6. Let k4 > 0 and p > 1
2 or p < 1

2be real numbers, and H : X×X → R

be a mapping satisfying the functional inequality∣∣∣∣H ( xu

x+ u
,
yv

y + v

)
− H(x, y)H(u, v)

H(x, y) +H(u, v)

∣∣∣∣ ≤ k4( xpupypvp

xpup + ypvp

)
for all x, u, y, v ∈ X. Then there exists a unique harmonic mean mapping M :

X ×X → R satisfying the functional equation (1.12) and

|M(x, y)−H(x, y)| ≤

2k4

(
22p

22p−2

)(
x2py2p

x2p+y2p

)
for p > 1

2

2k4

(
22p

2−22p

)(
x2py2p

x|2p+y2p

)
for p < 1

2

for all x, y ∈ X.

Proof. Choosing ϕ(x, u, y, v) = k4

(
xpupypvp

xpup+ypvp

)
, for all x, u, y, v ∈ X in Theorem

4.1, we arrive

|M(x, y)−H(x, y)| ≤ 2k4

(
22p

22p − 2

)(
x2py2p

x2p + y2p

)
for all x, y ∈ X and p >

1

2

and using Theorem 4.2, we arrive

|M(x, y)−H(x, y)| ≤ 2k4

(
22p

2− 22p

)(
x2py2p

x2p + y2p

)
for all x, y ∈ X and p <

1

2
.
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�

5. COUNTER-EXAMPLES

Now, we give an example to show that the functional equation (1.12) is not stable

for p = 1
2 in Corollary 4.6.

Let us define a function H : X ×X → R be

H(x, y) =

∞∑
n=0

φ(2nx, 2ny)

2n
,

for all x, y ∈ X where the function φ : X ×X → R is given by

φ(x, y) =


αxy
x+y for x, y ∈ (0, 1)

α otherwise

with α > 0 is a constant. Then the function H satisfies the inequality

(5.1)

∣∣∣∣H ( xu

x+ u
,
yv

y + v

)
− H(x, y)H(u, v)

H(x, y) +H(u, v)

∣∣∣∣ ≤ 6α

(
x

1
2u

1
2 y

1
2 v

1
2

x
1
2u

1
2 + y

1
2 v

1
2

)
for all x, u, y, v ∈ X. Then there does not exist a harmonic mapping M : X×X → R

and a constant λ > 0 such that

(5.2) |H(x, y)−M(x, y)| ≤ λ
(

xy

x+ y

)
for all x, y ∈ X.

Proof. |H(x, y)| ≤
∑∞
n=0

|φ(2nx,2ny)|
|2n| ≤

∑∞
n=0

α
2n = α

(
1− 1

2

)−1
= 2α. Hence H is

bounded by 2α. If x
1
2 u

1
2 y

1
2 v

1
2

x
1
2 u

1
2 +y

1
2 v

1
2
≥ 1, then the left hand side of the inequality (5.1)

is less than 6α. Now, consider the case: 0 < x
1
2 u

1
2 y

1
2 v

1
2

x
1
2 u

1
2 +y

1
2 v

1
2
< 1. Then there exists a

k ∈ N such that

(5.3)
1

2k+1
<

x
1
2u

1
2 y

1
2 v

1
2

x
1
2u

1
2 + y

1
2 v

1
2

<
1

2k
.

Hence x
1
2 u

1
2 y

1
2 v

1
2

x
1
2 u

1
2 +y

1
2 v

1
2
< 1

2k
implies

2kx
1
2u

1
2 y

1
2 v

1
2

x
1
2u

1
2 + y

1
2 v

1
2

< 1

or 2
k
2 x

1
2 2

k
2 u

1
2 2

k
2 y

1
2 2

k
2 v

1
2

2
k
2 x

1
2 2

k
2 u

1
2 +2

k
2 y

1
2 2

k
2 v

1
2
< 1

or 2
k
2 x

1
2 2

k
2 u

1
2 2

k
2 y

1
2 2

k
2 v

1
2 < 2

k
2 x

1
2 2

k
2 u

1
2 + 2

k
2 y

1
2 2

k
2 v

1
2
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or 1 < 2
k
2 x

1
2 2

k
2 u

1
2 +2

k
2 y

1
2 2

k
2 v

1
2

2
k
2 x

1
2 2

k
2 u

1
2 2

k
2 y

1
2 2

k
2 v

1
2

or 1 < 1

2
k
2 x

1
2

1

2
k
2 u

1
2

+ 1

2
k
2 y

1
2

1

2
k
2 v

1
2
.

Therefore,
1

2
k
2 x

1
2

1

2
k
2 u

1
2

+
1

2
k
2 y

1
2

1

2
k
2 v

1
2

> 1.

Hence
1

2
k
2 x

1
2

> 1,
1

2
k
2 u

1
2

> 1,
1

2
k
2 y

1
2

> 1,
1

2
k
2 v

1
2

> 1

which implies

2
k
2 x

1
2 < 1, 2

k
2 u

1
2 < 1, 2

k
2 y

1
2 < 1, 2

k
2 v

1
2 < 1

so that

2
k−1
2 x

1
2 <

1√
2
, 2

k−1
2 u

1
2 <

1√
2
, 2

k−1
2 y

1
2 <

1√
2
, 2

k−1
2 v

1
2 <

1√
2
,

2
k−1
2

(
xu

x+ u

) 1
2

<
1√
2
, 2

k−1
2

(
yv

y + v

) 1
2

<
1√
2

and consequently

2k−1(x), 2k−1(u), 2k−1(y), 2k−1(v), 2k−1
(

xu

x+ u

)
, 2k−1

(
yv

y + v

)
∈ (0, 1).

Therefore, for each n = 0, 1, 2, . . . , k − 1, we have

2n(x), 2n(u), 2n(y), 2n(v), 2n
(

xu

x+ u

)
, 2n

(
yv

y + v

)
∈ (0, 1)

and

φ

(
2n
(

xu

x+ u

)
, 2n

(
yv

y + v

))
− φ (2n(x), 2n(y))φ (2n(u), 2n(v))

φ (2n(x), 2n(y)) + φ (2n(u), 2n(v))
= 0

for n = 0, 1, 2, . . . , k − 1. Using (5.3) and definition of H, we obtain∣∣∣∣H ( xu

x+ u
,
yv

y + v

)
− H(x, y)H(u, v)

H(x, y) +H(u, v)

∣∣∣∣
≤
∞∑
n=0

1

2n

∣∣∣∣φ(2n
(

xu

x+ u

)
, 2n

(
yv

y + v

))
− φ (2n(x), 2n(y))φ (2n(u), 2n(v))

φ (2n(x), 2n(y)) + φ (2n(u), 2n(v))

∣∣∣∣
≤
∞∑
n=k

1

2n

∣∣∣∣φ(2n
(

xu

x+ u

)
, 2n

(
yv

y + v

))
− φ (2n(x), 2n(y))φ (2n(u), 2n(v))

φ (2n(x), 2n(y)) + φ (2n(u), 2n(v))

∣∣∣∣
≤
∞∑
n=k

1

2n
3

2
α

≤ 6α

2k+1
≤ 6α

(
x

1
2u

1
2 y

1
2 v

1
2

x
1
2u

1
2 + y

1
2 v

1
2

)
,
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that is the inequality (5.1) holds true.

We claim that the harmonic mean functional equation (1.12) is not stable for

p = 1
2 in Corollary 4.6.

Assume that there exists a harmonic mean mapping M : X ×X → R satisfying

(5.2). Therefore, we have

(5.4) |H(x, y)| ≤ (λ+ 2)

(
xy

x+ y

)
.

But we can choose a positive integer m with mα > λ+ 2. If x ∈
(
0, 21−m

)
, then

2nx ∈ (0, 1) for all n = 0, 1, 2, . . . ,m− 1. For this x, we get

H(x, y) =

∞∑
n=0

φ(2nx, 2ny)

2n

≥
m−1∑
n=0

α
(

2nxy
xy

)
2n

= mα

(
xy

x+ y

)
> (λ+ 2)

(
xy

x+ y

)
which in comparison with (5.4) is a contradiction. Therefore, the harmonic mean

functional equation (1.12) is not stable if p = 1
2 in Corollary 4.6. �
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