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Abstract. Given a permutational wreath product sequence of cyclic groups, we investigate its minimal

generating set, the minimal generating set for its commutator and some properties of its commutator sub-

group. We generalize the result presented in the book of J. Meldrum [11] also the results of A. Woryna [4].

The quotient group of the restricted and unrestricted wreath product by its commutator is found. The

generic sets of commutator of wreath product were investigated. The structure of wreath product with

non-faithful group action is investigated. We strengthen the results from the author [17, 19] and construct

the minimal generating set for the wreath product of both finite and infinite cyclic groups, in addition to

the direct product of such groups. We generalise the results of Meldrum J. [11] about commutator subgroup

of wreath products since, as well as considering regular wreath products, we consider those which are not

regular (in the sense that the active group A does not have to act faithfully). The commutator of such a

group, its minimal generating set and the center of such products has been investigated here. The minimal

generating sets for new class of wreath-cyclic geometrical groups and for the commutator of the wreath

product are found.
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1. Introduction

The form of commutator presentation [11] has been given here in the form of wreath recursion [10] and

additionally, its commutator width has been studied. The results about commutators’s structure given in [11]

were improved.

Lucchini A. [6] previously investigated a case of the generating set of Cn−1p oG, where G denotes a finite

n-generated group, p is a prime which does not divide the order |G| and Cp denotes the cyclic group of order

p. The results of Lucchini A. [6] tell us that the wreath product Cn−1p o G is also n-generated. We firstly

consider the active group G which is cyclic and then generalize this wreath product for both iterated wreath

products and for the direct product of iterated wreath products of cyclic groups. It should be noted that

to some extent a similar question for iterated wreath product was studied was studied by Bondarenko I [3].

One of the goal of our research is to study the center and commutator subgroup of wreath product with

non-faithful action of active group on the set. Also as the goal of our paper is the minimal generating set

and upper bound of minimal size of the generating set of the commutator subgroup of such class of group.

The structure of center and quotient group by its commutator subgroup for a of such non-regular wreath

product were still not investigated.

2. Prelimenaries

Let G be a group. We denote by d(G) the minimal number of generators of the group G [3, 6]. The

commutator width of G [14], denoted cw(G), is defined to be the least integer n, such that every element of

G′ is a product of at most n commutators if such an integer exists, and otherwise is cw(G) =∞.

The estimations of the upper bound of generating set of commutator subgroup were given by [14]. The

property of commutator widths for groups and elements has proven to be important and in particular, its

connections with stable commutator length and bounded cohomology has become significant.

Meldrum J. [11] briefly considered one form of commutators of the wreath product A o B. In order to

obtain a more detailed description of this form, we take into account the commutator width (cw(G)) as

presented in work of Muranov A. [12].

The form of commutator presentation [11] has been given here in the form of wreath recursion [10] and

additionally, its commutator width has been studied.

The subtree of X∗ (or T) which is induced by the set of vertices ∪ki=0X
i is denoted by X [k] (or Tk).

Denote the restriction of the action of an automorphism g ∈ AutX∗ to the subtree X [l] by g(v)|X[l] . It should

be noted that a restriction g(v)|X[1] is called the vertex permutation (v.p) of g in a vertex v.
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3. Minimal generating set of direct product of wreath products of cyclic groups

This work strengthens previous results by the author [17] and will additionally consider a new class of

groups. This class is precisely the wreath-cyclic groups and will be denoted by =. Let G ∈ =, then this class

is constructed by formula:

G = (
n0

o
j0=0

Ckj0 )× (
n1

o
j1=0

Ckj1 )× · · · × (
nl
o

jl=0
Ckjl ), 1 ≤ kji <∞, ni <∞,

where the orders of Cij are denoted by ij .

It should be noted that at the end of this product, a semidirect product could arise with a given homo-

morphism φ, which is defined by a free action on the set Z. In other words, one would obtain a group of the

form

(
k∏
i=1

Gi

)n
nφZ.

Note that the last group here is isomorphic to one of the fundamental orbital groups Of (f) of the Morse

function f . Namely, we have π0 (S, f |∂M ) [21].

Consider now the group H =
n

o
j=1

Cij , whose orders ij for all Cij are mutually coprime for all j > 1 and

whose number of cyclic factors in the wreath product is finite. We will call such group H wreath-cyclic.

Note that the multiplication rule of automorphisms g, h which are presented in the form of wreath

recursion [13] g = (g(1), g(2), . . . , g(d))σg, h = (h(1), h(2), . . . , h(d))σh, is given precisely by the formula:

g · h = (g1hσg(1), g2hσg(2), . . . , gdhσg(d))σgσh.

In the general case, if an active group is not cyclic, then the cycle decomposition of an n-tuple for

automorphism sections will induce the corresponding decomposition of the σg. If σ is v.p of automorphism

g at vij and all the vertex permutations below vij are trivial, then we do not distinguish σ from the section

gvij of g which is defined by it. That is to say, we can write gvij = σ = (vij)g as proposed by Bartholdi L.,

Grigorchuk R. and Šuni Z. [1].

We now make use of both rooted and directed automorphisms as introduced by Bartholdi L., Grigorchuk

R. and Šuni Z. [1]. Recall that we denote a truncated tree by T.

Definition 3.1. An automorphism of T is said to be rooted if all of its vertex permutations corresponding

to non-empty words are trivial.

Let l = x1x2x3 · · · be an infinite ray in T.

Definition 3.2. The automorphism g of T is said to be directed along the infinite ray l if all vertex permu-

tations along l and all vertex permutations corresponding to vertices whose distance to the ray l is at least

two are trivial. In such case, we say that l is the spine of g (as exemplified in Figure 1).

It should be noted that because we consider only truncated trees and truncated automorphisms here and

for convenience, we will say rooted automorphism instead of truncated rooted automorphism.
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We reformulate and generalize the result of A. Woryna [4] about a minimal generating set of iterated

wreath product. Also we make the statement more general after this theorem.

…1,1 1,2 1,k

…

2,1 2,2 2,n

…

2,n+1 2,n+2 2,2n

3,nm+1 3,nm+2

…

2,k(n-1)+1 2,kn

…

3,nm+m+1 3,nm+2m

…

4,nml+ml+1

…

4, nml+ml+l

Ø

…1,1 1,2 1,k

Ø

…

2,12,2 2,n

…

2,kn

…

2,n+1 2,2n

Fig. 1. Directed automorphism Fig. 2. Rooted automorhism

Theorem 3.1. If orders of cyclic groups Cni , Cnj are mutually coprime i 6= j, then the group G = Ci1 o

Ci2 o · · · o Cim admits two generators, namely β0, β1.

Proof. Construct the generators of
n

o
j=0

Cij as a rooted automorphism β0 (Figure 2) and a directed automor-

phism β1 [1] along a path l (Figure 1) on a rooted labeled truncated tree TX .

We consider the group G = Ci1 oCi2 o · · · oCim . Construct the generating set of Ci1 oCi2 o · · · oCim , where the

active group is on the left. Denote by lcm1 = lcm(i2, i3, . . . , im) the least common multiplier of the orders

by i2, i3, . . . , im. In a similar fashion, we denote

lcmk = lcm(i1, i2, . . . , ik−1, ik+1, . . . , im)

similarly.

We utilise a presentation of those wreath product elements from a tableaux of Kaloujnine L. [9] which has

the form σ = [a1, a2(x), a3 (x1, x2) , . . .]. Additionally, we use a subgroup of tableau with length n which

has the form

σ(n) = [a1, a2(x1), . . . an(x1, . . . , xn)] .

The tableaux which has first n trivial coordinates was denoted in [20] by

(n)σ = [e, . . . , e, αn+1(x1, . . . , xn), αn+1(x1, . . . , xn+1), . . .] .



Int. J. Anal. Appl. 18 (1) (2020) 108

The canonical set of generators for the wreath product of Cp o · · · o Cp o Cp was used by Dmitruk Y. and

Sushchanskii V. [7] and additionally utilized by the author [16]. This set has form

σ′1 = [π1, e, e, . . . , e] , σ
′
2 = [e1, π2, e, . . . , e] , . . . , σ

′
n = [e1, e, . . . , e, πn] . (3.1)

We split such a tableau into sections with respect to (3.1), where the i-th section corresponds to portrait

of α at i-th level. The first section corresponds to an active group and the crown of wreath product G, the

second section is separated with a semicolon to a base of the wreath product. The sections of the base of

wreath product are divided into parts by semicolon and these parts correspond to groups Cij which form

the base of wreath product. The l-th section of of a tableau presentation of automorphism β1 corresponds

to portrait of automorphism β1 on level X l.

The portrait of automorphisms β1 on level X l is characterised by the sequence (e, . . . , e, πl, e, . . . , e), where

coordinate πl is the vertex number of unique non trivial v.p on X l, the sequence has i0i1 . . . il−1 coordinates.

Therefore, our first generator has the form β0 = [π1, e, e, . . . , e], which is the rooted automorphism. The

second generator has the form

β1 =

e;π2, e, e, . . . , e︸ ︷︷ ︸
i1

;

i1i2︷ ︸︸ ︷
e, e, . . . , e︸ ︷︷ ︸

i2

, π3, e, . . . , e;

i2i3+i3︷ ︸︸ ︷
e, . . . , e, π4, e, . . . , e︸ ︷︷ ︸

i1i2i3

; e, . . . , e

 ,
It should be noted that after the last (fourth) semicolon (or in other words before π5) there are i2i3i4 +

i3i4 + i4 trivial coordinates. There are i2i3i4i5 + i3i4i5 + i4i5 + i5 trivial coordinates before π6 (or in other

words after the fifth semicolon but before π6). In a section after k − 1 semicolon the coordinate of a non-

trivial element πk is calculated in a similar way. We know from [20] that β1is generator of (2)G, i.e. 2-base

of G. Recall that (k)G calls k -th base of G. The subgroup (k)G is a subgroup of all tableaux of form (k)u

with u ∈ G.

Let Cn = 〈πn〉 and set σ1 = β0. We have to show that our generating set {β0, β1} generates the whole

canonical generating set. For this, we obtain the second new generator σ2 in form of the tableau

σlcm2
2 = βlcm2

1 =

e;πlcm2
2 , e, e, . . . , e︸ ︷︷ ︸

i1

; e, e, . . . , e︸ ︷︷ ︸
i1i2

; e, e, . . . , e︸ ︷︷ ︸
i1i2i3

; e, . . . , e

 .
Because ord(π1) = i1 and (i1, lcm1) = 1, we find that the element πlcm1

1 is generator of Ci1 since

ord(π1) = ord(πlcm1
1 ). We obtain that

σ2 =
(
βlcm2
1

)lcm−1
2 (mod i2)

,

which corresponds to generator σ2 of canonical generating set (3.1). Observe that b3 = σ−11 β1 is generator

of (3)G, i.e. it is precisely a 3-base of G.
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It is known [20] that the generator σ2 precisely generates the group that is isomorphic to the group [U ]2

for all 2-nd coordinate tableaux. From the same principle, one can obtain that

σ3 = βlcm3
1 =

e; e, e, e, . . . , e︸ ︷︷ ︸
i1

;

i1i2︷ ︸︸ ︷
e, e, . . . , e︸ ︷︷ ︸

i2

, πlcm3
3 , e, . . . , e;

i2i3︷ ︸︸ ︷
e, . . . , e, e, e, . . . , e︸ ︷︷ ︸

i1i2i3

; e . . . e

 .
This generator σ3 generates the group which is isomorphic to the group of all (2i1+2)-th coordinate tableaux,

which is precisely [U ]2i1+2 [20]. Making use of the same principle allows us to express all the σi from our

canonical generating set.

Note that if it were a self-similar group, then it would be more useful to present it in terms of wreath

recursion, as the set where β0 is the rooted automorphism. Given a permutational representation of Cij we

can present our group by wreath recursion. We present β1 by wreath recursion as β1 = (π2, β2, e, e, . . . , e).

It would be written in form σlcm2
1 = β1

lcm2 = (π2
lcm2 , β2

lcm2 , e, e, . . . , e) = (π2
lcm(2), e, e, . . . , e), since

ord(π2) = i2 and (i2, lcm2) = 1 then the element πlcm2
2 is generator of Ci2 too, because ord(π2) = ord(πlcm2

2 ).

We then obtain the second generator σ2 of canonical generating set by exponentiation(
βlcm2
1

)lcm−1
2 (mod i2)

= (π2, e, . . . , e). Since we have obtained σ2 = (π2, e, . . . , e), we can express σ−12 =(
π−12 , e, . . . , e

)
, where π2 is a state of σ2.

Consider an alternative recursive constructed generating set which consists of nested automorphism β1

states which are β2, β3,. . . ,βm and the automorphism β0. The state β2 is expressed as follows σ−12 β1 =

(e, β2, e, . . . , e).

It should be noted that a second generator of a recursive generating set could be constructed in an other

way, namely

β′2 = β1
i2 = (π2

i2 , β2
i2 , e, e, . . . , e) = (e, β2

i2 , . . . , e, e),

where β2 is the state in a vertex of the second level X2.

We can then express the next state β2 of β1 by multiplying σ−12 β1 = (e, β2, e, . . . , e). Therefore, by a recur-

sive approach, we obtain β2 = (π3, β3, e, . . . , e) and analogously we obtain βlcm3
2 = σlcm3

3 = (πlcm3
3 , e, . . . , e).

Similarly, we obtain

βlcmkk−1 = σlcmkk =
(
πlcmkk , e, . . . , e

)
and σk =

(
βlcmkk−1

)lcm−1
k (mod ik)

= (πk, e, . . . , e). The k-th generator of the recursive generating set can

therefore be expressed as σ−1k βk−1 = (e, βk, e, . . . , e).

The last generator of our generating set has another structure, namely σm = (πm, e, . . . , e) which concludes

the proof. �

Let
n

o
j=0

Cij be generated by β0 and β1 and
m

o
l=0
Ckl = 〈α0, α1〉. Denote an order of g by |g|.



Int. J. Anal. Appl. 18 (1) (2020) 110

Theorem 3.2. If (|α0|, |β0|) = 1 and (|α1|, |β1|) = 1 or (|α0|, |β1|) = 1 and (|α1|, |β0|) = 1, then there exists

a generating set of 2 elements for the wreath-cyclic group

G = (
n

o
j=0

Cij )× (
m

o
l=0
Ckl),

where ij are orders of Cij .

Proof. The generators α1 and β1 are directed automorphisms, α0, β0 are rooted automorphisms [1]. The

structure of tableaux are described above in Theorem 1. In case (|α0|, |β0|) = 1 are mutually coprime and

(|α1|, |β1|) = 1 are mutually coprime, then we group generator α0 and β0 in vector that is first generator

of direct product (
n

o
j=0

Cij )× (
m

o
l=0
Ckl). Therefore, the first generator of G has form (α0, β0) and the second

generator has form of vector (β1, α1 ). The generator α1 has a similar structure.

In order to express the generator σ2 of the canonical set (3.1) from 〈α0, β1〉 we change the exponent from

β1 to lcm2. Analogously, we obtain σk = β1
lcmk which concludes the proof. �

4. Center and commutator subgroup of wreath product their minimal generating sets

Let us find upper bound of generators number for G′. Let A be a group and B a permutation group, i.e.

a group A acting upon a set X, where the active group A can act not faithfully. Consider the set of all pairs

{(a, f), f : X → h, a ∈ A}. We define a product on this set as

{(a1, f1)(a2, f2) := (a1a2, f1f
a1
2 )},

where fa21 (x) = f1(a2(x)).

Theorem 4.1. If W = (A, X) o (B, Y ), where |X| = n, |Y | = m and active group A acts on X transitively,

then

d (W ′) ≤ (n− 1)d(B) + d(B′) + d(A′).

Proof. The generators of W ′ in form of tableaux [2]: a′i = (ai; e, e, e, . . . , e), t1 = (e;hj1 , e, e, . . . , cj1), . . .,

tk = (e; e, e, e, . . . , hjk , e, . . . , cjk), tl = (e; e, e, e, . . . , hjl , cjl), where hj , cjl ∈ SB , B = 〈SB〉, ai ∈ SA,

A = 〈SA〉. Note that, on a each coordinate of tableau, that presents a commutator of [a;h1, . . . , hn] and

[b; g1, . . . , gn], a, b ∈ A, hi, gj ∈ B can be product of form a1a2a
−1
1 a−12 ∈ A′ and higa(i)h

−1
ab(i)g

−1
aba−1(i) ∈ B,

according to Corollary 4.9 [11]. This products should satisfy the following condition:

n∏
i∈X

higa(i)h
−1
ab(i)g

−1
aba−1(i) ∈ B

′. (4.1)

That is to say that the product of coordinates of wreath product base is an element of commutator B′. As

it was described above it is subdirect product of B × B × · · · × B︸ ︷︷ ︸
n

with the additional condition (4.1). This
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is the case because not all element of the subdirect product are independent because the elements must be

chosen in such a way that (4.1) holds. We may rearrange the factors in the product in the following way:

n∏
i=1

higa(i)h
−1
ab(i)g

−1
aba−1(i) = (

n∏
i=1

higih
−1
i g−1i )[g, h] ∈ B′.

where [g, h] is a commutator in case cw(B) = 1. We express this element from B′ as commutator [g, h] if

cw(B) = 1. In the general case, we would have
cw(B)∏
j=1

[gj , hj ] instead of this element. This commutator are

formed as product of commutators of rearranged elements of
n∏
i=1

higa(i)h
−1
ab(i)g

−1
aba−1(i). Therefore, we have a

subdirect product of n the copies of the group B which has been equipped by condition (4.1). The multiplier
cw(B)∏
j=1

[gj , hj ] from B′, which has at least d(B′) generators

n∏
i=1

higa(i)h
−1
ab(i)g

−1
aba−1(i) = (

n∏
i=1

higih
−1
i g−1i )

cw(B)∏
j=1

[gj , hj ] ∈ B′.

Since (
n∏
i=1

higih
−1
i g−1i ) = e and the product

cw(B)∏
j=1

[gj , hj ] belongs to B′, then condition (4.1) holds. The

assertion of a theorem on a recursive principle is easily generalized on multiple wreath product of groups.

Thus minimal total amount consists of at least d (B′) generators for n − 1 factors of group B, d (B′)

generators for the dependent factor from B′ and d(A) generators of the group A.

It should be noted that not all the elements of commutator subgroup, that has structure of the subdirect

product, are independent by (4.1), at least one of them must be chosen carefully such that would be (4.1)

satisfied. This implies the estimation d (W ′) ≤ (n− 1)d(B) + d(B′).

Thus minimal total amount consists of at least d (B′) generators for n − 1 factors of group B, d (B′)

generators for the dependent factor from B′ and d(A) generators of the group A which concludes the proof.

�

We shall consider special case when a passive group (B, Y ) of W is a perfect group. Since we obtain

a direct product of n − 1 the copies of the group B then according to Corollary 3.2. of Wiegold J. [22]

d (Bn) ≤ d(B) + n− 1 [22]. More exact upper bound give us Theorem A. [22], which use s a the size of the

smallest simple image of G.

Therefore, in this case our upper bound has the form

d (W ′) ≤ clogsn+ d(B′) + d(A′).

Now we consider non-regular wreath product, where active group can be both as infinite as finite and

consider a center of such group. We generalize a result of Meldrum J. [11] because we consider not only the

permutation wreath product groups, but the group A does not have to act on the set X faithfully, hence
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(A, X) o B is not regular wreath product, where B is a passive group. Recall that an action is said to be

faithful if for every g ∈ G, there exists x from G-space X such that xg 6= x.

Let X = {x1, x2, . . . , xn} be A-space. If an non faithfully action by conjugation determines a shift of

copies of B from direct product Bn then we have not standard wreath product (A, X) o B that is semidirect

product of A and
∏

xi∈X
B that is Anϕ(B)

n
and the following Proposition holds. Let K = ker(A, X) that is

subgroup of A that acts on X as a pointwise stabilizer, that is kernel of action of A on X.

Denote by Z(4̃(B)) the subgroup of diagonal [5] Fun(X,Z(B)) of functions f : X → Z(B) which are

constant on each orbit of action of A on X for unrestricted wreath product, and denote by Z(4(Bn)) the

subgroup of diagonal Fun(X,Z(Bn)) of functions with the same property for restricted wreath product,

where n is number of non-trivial coordinates in base of wreath product.

Proposition 4.1. A center of the group (A, X) o B is direct product of normal closure of center of diagonal

of Z(Bn) i.e. (E × Z(4(Bn))), trivial an element, and intersection of (K)× E with Z(A). In other words,

Z((A, X) o B) = 〈(1; h, h, . . . , h︸ ︷︷ ︸
n

), e, Z(K, X) o E〉 ' 〈Z(A) ∩ K)× Z(4(Bn)〉,

where h ∈ Z(B), |X| = n.

For restricted wreath product with n non-trivial coordinate: Z((A, X) o B) =

〈(1; . . . , h, h, . . . , h, . . .), e, Z(K, X) o E〉 ' (Z(A) ∩ K)× Z(4(Bn)).

In case of unrestricted wreath product we have: Z((A, X) o B) =

〈(1; . . . , h−1, h0, h1, . . . , hi, hi+1, . . . , ), e, Z(K, X) o E〉 ' (Z(A) ∩ K)× Z(4̃(B)).

Proof. The elements of center subgroup have to satisfy the condition: f : X → B such is constant on each

orbit Oj of action A on X i.e. f(x) = bi for any x ∈ Oj . Also every bx: bx ∈ Z(B). Indeed the elements

of form (1; h, h, . . . , h︸ ︷︷ ︸
n

) will not be changed by action of conjugation of any element from A because any

permutation elements coordinate of diagonal of Bn does not change it. Also h commutes with any element

of base of (A, X) o B because h from centre of B. Since the action is defined by shift on finite set X, |X| = n

is not faithfully, then its kernel K 6= E which confirms the proposition. Also elements of subgroup (A, X) o E)

belongs to Z((A, X) o B) iff it acts trivial on X. �

This is generalization of Theorem 4.2 from the book [11] because action of A is not faithfully.

Example 4.1. If A = Z then a centre Z((Z, X) o B) =

〈(1; h, h, . . . , h︸ ︷︷ ︸
n

), e, nZnE : h ∈ Z(4(Bn))〉. Since the action defined by shift on finite set X is not faithfully,

and its kernel is isomorphic to nZ because cyclic shift on n coordinates is invariant on X.
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Generating set for commutator subgroup (Zn o Zm)
′
, where Zn, Zm have presentation in additive form, is

the following:

h1 = (0; 1, 0, . . . ,m− 1) ,

h2 = (0; 0, 1, 0, . . . ,m− 1) ,

...

hn−1 = (0; 0, . . . , 1,m− 1) .

Thus, it consist of n tableaux of form hi = (hi1, . . . , him) and relations for coordinate of any tableau hi, i ∈

{1, . . . , n− 1} is

hi1 + · · ·+ hin−1 ≡ 0(mod m).

According to Theorem 3, for wreath product of abelian groups presented in multiplicative form, this relation

has the form

n∏
i=1

hifiπah
−1
iπaπb

f−1i
πaπbπ

−1
a

[h, f ] =

n∏
i=1

(hifiπah
−1
iπaπb

f−1i
πaπbπ

−1
a

i+2∏
j=i+1

[
hj , fjπa

]
) = e.

Example 4.2. If G = Zn o Zm is standard wreath product, then d(G′) = n− 1.

Let G = Z oX Z and G = A oX B be a restricted wreath product, where only n non-trivial elements in

coordinates of base of wreath product which are indexed by elements from X, in degenerated case | X |= n.

Z acts on X by left shift. Also A acts transitively from left.

Remark 4.1. The quotient group of a restricted wreath products G = Z oX Z by a commutator subgroup is

isomorphic to Z×Z. In previous conditions if G = A oXB then, G/G′ = A/A′×B/B′. If G = Zn oZm, where

(m, n) = 1, then d(G/G′) = 1. If G = Z oZ is an unrestricted regular wreath product then G/G′ ' Z×E ' Z.

Proof. Consider the element of G = A oX B, where A can be Z which acts on X by left shift, then elements

of commutator subgroup has form:

[e; . . . , h−n, . . . , h0, h1, . . . , hn, . . . , ], where hi ∈ B. According to Corollary 4.9 [11] the commutator of

elements h = [a;h1, . . . , hn], g = [b; g1, . . . , gn], g, h ∈ G satisfies the condition (4.1), which for case where

B is abelian such:
n∏
i=1

higa(i)h
−1
ab(i)g

−1
aba−1(i) = e, where gi, hi are non trivial coordinates from base of group,

a, b ∈ A, gi, hj ∈ B. The commutator with the shifted coordinate higa(i)h
−1
ab(i)g

−1
aba−1(i) appears within the

i-th coordinate position due to action of A. According to Corollary 4.9 [11] the set of elements satisfying

condition (4.1) forms a commutator. Also the equivalent condition can be formulated:

n∏
i=1

higih
−1
i g−1i ∈ B′, (4.2)
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Therefore, if B is abelian an element h of G belongs to G′ iff h satisfy a condition:
n∏
i=1

hi = e.

For unrestricted wreath product to show that all base of wreath product is in the commutator subgroup we

choose an element [e; . . . , h−1, h0, h1, . . .], where hi is variable, and form a commutator which is an arbitrary

element [e; . . . , g−1, g0, g1, . . .] of wreath product base:

[e; . . . , h−1, h0, h1, . . .][σ; e, e, . . . , e][e; . . . , h−1−1, h
−1
0 , h−11 , . . .][σ−1; e, e, . . . , e] =

= [e; . . . , g−1, g0, g1, . . .]. For convenience we present Z in additive form. Then to previous equality holds

the following equations have to be satisfied: h0 − h1 = g0, h1 − h2 = 0, h2 − h3 = 0, .... it implies that

h1 = h0 − 1, h2 = h1, h3 = h2, ... hi + 1 = hi. Therefore hi = 0, i ≥ 1. From other side we have

h−1 − h0 = g0, h−1 − h−2 = 0, h−2 − h−3 = 0, .... so h−i = g0, for all i < 0. That is impossible in the

restricted case but possible in the unrestricted. As a corollary G/G′ ' Z × Z for restricted case. Thus, for

unrestricted case all base of G is in G′ as a corollary G/G′ ' Z × E.

Thus, this group is a subdirect product of B ×B × · · · ×B︸ ︷︷ ︸
n

with the additional condition (4.2) where,

because for any element of the subgroup of coordinates there exists a surjective homomorphism acting upon

B, we can conclude that G′ must be a subdirect product. The commutator subgroup is the kernel of

homomorphism ϕ : G� G/G′. More precisely,

G = (Z,X) o (Z, Y ) � G/G′ ' Z/Z ′ × Z/Z ′ = Z× Z.

In case G = A o B the kerϕ has the same structure, the homomorphism ϕ maps those elements of Bn, as

base of G, which satisfy
n∏
i=1

hi = e, i.e. the elements of B′ in e of the group G/G′. Thus, kerϕ = G′. To

show that the properties of injectivity and surjectivity hold for this homomorphism, we chose the elements

from G which have the form [e; e, . . . e, h, e, . . . , e] that can be generator in canonical form of generating set of

wreath product (3.1), where h /∈ G′, corresponding to a a specimen from the quotient group B/B′. Also we

chose independently, an element of the form [a; e, . . . , e, . . . , e] corresponding to a specimen of the quotient

group A/A′. Therefore, we must have a one-to-one correspondence between G/G′ and A/A′×B/B′. In this

case, we obtain G/G′ '
[
A/A′ × B/B′

]
. The basic property of homomorphism for generators in canonical

form (3.1) is obviously accomplished.

In the scenario when the action of Z upon the n elements from the set is isomorphic to the action of Zn

elements on the set or the action of the Zn elements on itself. In case G = Z o Z we have G/G′ ' [Z× Z].

For the group G = Zn oZm the same is true with G/G′ ' [Zn × Zm] and dependently of fact of (m,n) = 1

or not can admits one or two generators. �

Let f : M → R now be a C∞ Morse function. Let D(M) be a group of diffeomorphisms which preserve

the Morse function [21] f on M (Möbius). Consider a group H of automorphisms of critical sets Xi on M

which are induced by the action of diffeomorphisms h of a group D(M) which preserve the Morse function f .
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In other words, the h here are from the stabilizer S (f)/D(M). We note that the generators with stabilizers

with the right action by diffeomorphisms π0S(f |Xi,∂Xi) are τi. The generators of the cyclic group Z which

define a shift are ρ. Since the group action is continuous, this implies that the ρ can realize only cyclic shifts,

else one would change the domains of of simple connectedness Xi (critical sets) order.

The group H ' Zn(Z)
n

= 〈ρ, τ〉 with defined above homomorphism in AutZn has two generators and

non trivial relations [18]〈
ρ, τ1, . . . , τn

∣∣ρτi(mod n)ρ
−1 = τi+1(mod n) , τiτj = τjτi, i, j ≤ n

〉
.

Corollary 4.1. A center of the group H = Znϕ(Z)
n

is a normal closure of sets: diagonal of Zn, trivial an

element and subgroup that is kernel of action by conjugation of elements of Zn that is (〈ρ2n〉 ' 2nZ). In

other words,

Z(H) = 〈(1; h, h, . . . , h︸ ︷︷ ︸
n

), e, 2nZ n E ' 2nZ× Z.〉,

where h, g ∈ Z.

Proof. Since the action is defined by conjugation and relation ρ2nτiρ
−2n = τi holds then the element (ρ2n, e)

commutates with every (e, τi). The stabilizer of such an action over the Z-space X = {x1, x2, . . . , x2n} is the

subgroup 2nZ.

So subgroup stabilize all xi of Z-space M . Other words subgroup 〈ρ2n〉 belongs to kernel of action φ.

Besides the element (1; h, h, . . . , h︸ ︷︷ ︸
n

) will not be changed by action of conjugation of any element from H

because any permutation elements coordinate of diagonal of Zn does not change it.

Thus, Z(H) ' 2nZ× Z. �

Corollary 4.2. The centre of a group of the form Znφ(B)
n ' (Z, X) o B generates, by normal closure of:

center of diagonal of Bn, trivial an element, and nZ o
X
E.

5. Conclusion

The minimal generating set for wreath-cyclic groups have been constructed. The investigation of structure

of wreath product that described in book of Meldrum [11] was generalized on case of non-faithful group

action of an active group. The center of wreath product, where active group action is non-faithfully. New

estimations of the upper bound of generating set of commutator subgroup was obtained.
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