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ABSTRACT. We describe in this paper a significant spectral reduction method for Born-Oppenheimer oper-
ators with regular potentials, which leads to an adaptable Birkhoff normal form theorem for the associated
effective Hamiltonians. As illustration of the established results, we compute the Birkhoff normal form in

Fermi resonance.

1. INTRODUCTION

For a molecular system with N electrons and N’ nuclei, the Hamiltonian, under the Born-Oppenheimer

approximation, can be written as:
P(h) = —h*A, +Q(x) , Q(x) = —Ay +V (2,9)

on L*(R} x RP) where n = 3N and p = 3N’ and where h > 0 is a small parameter playing the role of
the semi-classical parameter. A, (resp. A,) is the Laplace operator with respect to z (resp. y), € R” and

y € RP, N N’ > 1, V is the interaction potential between particles. P(h) is called the Born-Oppenheimer
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Hamiltonian. Q(z) is the electronic Hamiltonian defined on L*(R?). It is well known that if V(x,y) is smooth

verifying suitable assumptions, then
z € 0(P(h)) < z € o(F(z))

where F'(2) is a semiclassical analytic pseudodifferential operator on L? (R”) and o stands for the spectrum,
(see e.g. [10], [11], [3]), the main idea, due to Born and Oppenheimer in [5], is to replace, for fixed x, the
operator Q(z) by its eigenvalues. This reduction is possible thanks to the pseudodifferential calculus with
operator valued symbols. Then we are led to consider, the reduced operator (called the effective Hamiltonian

in the Born-Oppenheimer approximation):
Poys(h) = —h2A, + Ay(a)

where Aj(x) is the lowest eigenvalue of Q(x), by the minimax principle A\;(z) is simple and analytic if
V' is sufficiently smooth. Motivated by various physical questions we consider the connected problems in
the asymptotic h — 07, note that through standard semiclassical analysis P.f¢(h) can explain the complete
spectral picture of P(h) modulo errors in h.

We wish to describe the Birkhoff normal form near an equilibrium point of P(h). It is well known that
a more precise description of the vibrational energies of a molecule is given by the harmonic oscillator, our
approach here is to replace Q(z) in the Born-Oppenheimer Hamitonian P(h) by its lowest eigenvalue A\ (z)
and thus, we are reduced to an effective h-pseudodifferential operator Op(ey), with symbol ey depending
only on (z,£). The normal forms in the Born-Oppenheimer approximation, are introduced here as being
those of the Schrédinger effective operator P.j¢(h) on L? (R?). Birkhoff normal form is one of the basic
tools in quantum and semiclassical mechanics (see e.g. [7], [8]), it has already been used by Birkhoff [4] to
study some problems of dynamical systems.

Precisely, the goal of this paper is to analyze the notion of the Birkhoff normal form near an equilibrium
point and discuss the dynamical consequences for the Schrédinger Hamiltonian P(h). Suppose 0 is a non-
degenerate local minimum of A;(z), by applying semiclassical techniques especially the pseudodifferential
calculus with operator valued symbols and the classical quantum formal Birkhoff normal form theorem,
we show that we can find a canonical transformation putting P(h) as a reasonable perturbation of —A, +
1 (M (0)z, ) modulo O(h?). Our approach is natural, it consists in computing the normal form of the effective
Hamiltonian —h%A, + A\;(z) after reduction of the operator P(h) to P.ss(h). To our knowledge this is the
first attempt to determine the Birkoff normal forms for the Born-Oppenheimer Hamiltonians.

In Section 2, we recall some results on pseudodifferential operators with operator valued symbols. Then,
we give a representation of the effective Hamiltonian and obtain WKB solutions of the Hamiltonian P(h).

In section 3, we investigate the theorem of Birkhoff normal form near an equilibrium point in infinite



Int. J. Anal. Appl. 18 (2) (2020) 185

dimension in the Born-Oppenheimer approximation for P(h) via the effective Hamiltonian P.ss(h). In the

fourth section we compute the Birkhoff normal form of P.s¢(h) in the Fermi resonance.

2. REDUCTION TO AN EFFECTIVE OPERATOR

In this section we explain the construction of WKB solutions for the Hamiltonian P(h) and several
mathematical results concerning the pseudodifferential calculus with operator valued symbols of the Born-
Oppenheimer approximation. For further informations about the pseudodifferential calculus and BKW
method we refer the reader to the works of Balazard-Konlein [2], Messirdi [10], Baklouti [1] and other

authors.

2.1. Pseudodifferential calculus with operator valued symbols. For m € R, 2 a bounded open subset
of R? and H a complex Hilbert space, consider the space of formal power series:

S™(Q,H) = thm“ﬂsj(m) 15, € C*(Q, H)
5=0

where C*(Q, H) is the space of C*°-functions mapping {2 into H.
Given ¢ € C*°(Q,R) and U a neighborhood of 0 in R?, we set:

O ={(2,8) € AxC": £ —iVY(z) e U}

and

SO L(H,K)) = ihjaj(x,f) ta; € C°(Q, L(H,K))
j=0
where K is Hilbert space and L£(H, K) is the algebra of all continuous linear operators from H into K.
The operator valued functions in S°(Q*, L(H, K)) are called symbols.
For any symbol a = a(z,&h) in SO(Q*, L(H, K)), by analogy with the action of differential oper-
ators on the space e ¥@/"8™(Q H), one can define an operator Op(a) from e~*®)/hS™(Q H) into
e~ ¥@)/hgm(Q K) by the formula:

Op(a) (e*w(I)/hs(x, h)) =

(e ol , . (2.1)
e~ ¥@)/h eZNn J‘a‘alaga(ac,sz(m);h)@; (s(y,h)eX("L’y)/h)y:m
X, y) = (y) = (@) — (y - 2).Vo(2) = O (le —y*) , s € S™(, H).
Op(a) is called h-pseudodifferential operator with operator valued symbol a(x,&;h) = > hfaj(x,€). The
j=0

function ag(z, &) (coefficient of h°) is called principal symbol of the h-pseudodifferential operator Op(a).

Furthermore, such operators verify:

@/ Op(a) (efw(””)/hs(m,h)> e S™(Q, H)
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and can be composed using the formula:
Op(b) © Op(a) = Op(bfa)

where a € S°(Q*, L(H,K)), b € S°(Q*,L(K,L)) (L is a third Hilbert space), the range of Op(a) is
contained in the domain of Op(b), and

||
b, &) = 3 %wagb(m,g;h)aga(x,g;h) € SO(Q*, £(H, L)). (2.2)

a€eN
This formula makes it possible to inverse asymptotically operators Op(a) whose principal symbol ag(z, &)

is invertible as a linear operator from H into K.

2.2. BKW solutions (scalar case). Let us take H = C and recall the following result:

Theorem 2.1. ( [9]) Let a(x,&h) = > hla;(z,€) € S°(Q*,C) be such that ag(z,£) = £ + \(z) where
3=0

A€ C®(Q,R), A >0, A71(0) = {0}, N(0) = 0 and \'(0) > 0. Let Cy > 0 and Ny be the number of

eigenvalues of

1
A, + 3 \'(0)z, z)

in the compact interval [0, Cy]. Denote by eq, ..., en, these eigenvalues. Then there are formal series:

Ei(h) =exh+ Zek)jh”j/z and ag(z,h) € S™(Q,C),

j=1
ek, mp € R, ke {l,...,No}, such that

(Op(a) — Ex(h)) (e_w(r)/hak) =0 in e ¥@/hgme(Q C)

where (x) is the Agmon distance associated to the metric A(x)dxz®. The functions e=¥@)/hay (2, h) are

called the BKW solutions.

2.3. BKW solutions (general case). Let V € C>(Q, L(H?(R?), L*(R?))) be A-compact:
V(z,y) (=8, +1)7 € O%(Q, LILA(RY)))

where Q is a bounded open subset of R}. Thus, P(h) is selfadjoint on L?(R} xRP) with domain H?(RZ xR?)

as well as the operator Q(z) on L*(R?) with domain H*(RP). Denote

Ai(z) = inf(o(Q(x)))

the lowest energy level (ground state) of operator Q(z). Suppose that Aj(x) is an isolated eigenvalue of

finite multiplicity of Q(x), having unique and non-degenerate minimum at 0 :

Ai(x) >0, A7H0) = {0}, N;(0) =0, X/(0) >0, (2.3)
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and that A\j(x) is separated from the rest of the spectrum o(Q(z)), i.e.,

inf (inf (o(Q(x)\ {a(2)}) > 0. (2.4)

z€
We also denote by wuq(z,y) the first eigenfunction of Q(x) associated with A;(x) and normalized by
||u (2, .)HLZ(R;) =1 for all z € R™. It can be shown that A\; € C*°(Q,R) and u; € C* (2, H*(RE)) (cf. [10]).
In particular, the assumption (2.4) implies that the orthogonal projection II(x) on the subspace of LQ(RZ)
spanned by uq(z,.), x € Q, is C?-regular with respect to z (see [6]). To construct BKW solutions of P(h),
the idea here is to use the pseudodifferential calculus with operator valued symbols developed in subsection
2.1.
Consider, for A € C, the following symbol:

ar(z;6) = ftw;” ") e s, LU R @ C AR 6 ),
.,uly 0

where (.,u1), is the inner product in L?(RP). It follows from the assumptions and (2.1) that:

P(h) =\ u
<.,U1>y 0

Op(ax) =

is h-pseudodifferential operator from e~¥(®/hS™(Q H2(RP)) into e~¥(@/"hS™(Q, L2(RP)), with operator
valued symbol ay, where 9 (z) is the Agmon distance associated to the metric A (z)dz?.
We now describe a method for finding the inverse of Op(ay). Using the fact that (V)?(x) = A\i(z) and

the gap assumption (2.4), one can easily show that for |A| small enough and ¢ close enough to iVi(x),
Re (ﬁ(x)Q(x)ﬁ(x) - A) >0

and a) is invertible with inverse:
bO (il?, 5; )‘) =

where II(z) = 1 — II(z) (sec e.g. [3]).
In particular,

bo(x,&;0) € 5°(Q*, L(L*(RY) & C, H*(RY) @ C)).
Then using the composition formula (2.2), it is easy to construct a symbol:

baa,Gh) € SUQLLARY) @ C, HY(RY) & C)),
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such that

[
-

axtba(z, & h)
Op(ax) o Op(by) = [
I is the identity operator on e~ ¥®)/2§™(Q, L2 (RP) @ C). Let us pose:

BN By
E-(\) Ez(\)

Op(by) =

By Lemma 3.1 in [3], we also know that E+(\) = Op(ex(z,&; A)) is h-pseudodifferential operator with
symbol ey (x,&; \) € S°(Q2*, C) and its principal symbol is eg(z, &5 0) = A — €2 — A1 (2). In particular, F(\) =
A — E+()) is a scalar h-pseudodifferential operator with principal symbol €2 4+ A (z). Moreover, we have the

following fundamental spectral reduction:
A€ o(P(h)) < A€ a(F(N)).

Hence, the spectral study of the Hamiltonian P(h) on L?(R} x RE) is reduced to that of the h-
pseudodifferential operator F(\) on L?(R?) so-called effective Hamiltonian of P(h). Now use Theorem 2.1
with F'(X), |A| small enough, we find BKW solutions of P(h) as formal series Fy(h) = exh + i e, jh1ti/?
and aj € S™+(Q,C), such that: =

(F(E(h) = Be(0) (7@ a) = 0

in the exponentially weighted symbol space e~%(®)/2 8™ (Q, C).

In fact, one can show in many situations that F(\) = P.s¢(h) + O(h?), which makes it easy to compare
(using, for example, the maximum principle) the eigenvalues of P(h) and those of P.s(h), and then identify
them when h decays to zero fast enough [6]. This reduction will justify in the next section our definition of

the normal Birkhoff forms of P(h) as those of the effective Hamiltonian Pes¢(h).

3. REDUCTION TO BIRKHOFF NORMAL FORM FOR THE EFFECTIVE HAMILTONIAN

There exists a very convenient way of constructing a canonical transformation such that we conserve the

Hamiltonian structure of P(h) by using the Birkhoff normal form theorem via the effective Hamiltonian

Peys(h).

Definition 3.1. We call normal forms of the semi-classical operator P(h), the Birkhoff normal forms of the

associated effective Hamiltonian Pey¢(h).

The general philosophy will consist in transforming P.ss(h) in such a way that the new Hamiltonian

becomes flg + A where flg is the harmonic oscillator and A is a reasonable perturbation term who commut
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with Ha. We consider here Q = R” and assume that the hessian matrix A/ (0) is diagonal, let (203, ..., 20/2)
be its eigenvalues, with v; > 0 and v = (v1, ..., ). The rescaling x; — | /Vjx;, * = (71, ...,y ), transforms
P(h) as well as P.s¢(h) into:

P.ss(h) = Hy +I'(2)

where Hy is the harmonic oscillator il vj (—hQ% —|—x§> and I'(z) is a smooth function such that
I(z) = O(|z*) as |z| — 0. In general, I{does not commute with Hy, on the other hand we do not have
enough information on this perturbation, for that we will use the Birkhoff normal form of P(h) which is a
transformation of the previous type but more adapted and less restrictive.

Let:
a(z,&h): R x RE x ]0,1] — C, depends smoothly on x and ¢ and
§%(m) =1 foralla € N>, |02, ,a(x,¢; h)’ < Cuhd (1 +lef + |g|2)m/2,
Cy > 0, uniformly with respect z,£ and h

where m,d € R. S¢(m) is called the semiclassical space of symbols of order d and degree m.

For a € S (m) and u € C§°(R?"), we set:

(Au) (z) = (Opn(a)u)(z)

= (2zh)™" / e el 8) g (ac s & h) u(2") dz'd€. (3.1)

2 )
R2n

A is unbounded linear operator on L? (R") with domain C§°(R?*") the space of infinitely differentiable
functions on R?" with compact support, A : C§°(R?") — C°°(R?") is called a semiclassical pseudodifferen-
tial operator with h-Weyl symbol a of order d and degree m. U? (m,R"™) denotes the set of all semiclassical
pseudodifferential operators with symbols in the class S? (m).

Different classes of symbols can also be defined, but for our purpose this class is enough. For example,

the h-Weyl symbol of the harmonic oscillator H, is the polynomial Hy = )" v; (§J2 + xf) .
=1

j:
Now, we introduce the space S to be the set of formal series:

S = > tapar®®htita g € Choralla,eN", L €N
a,feEN™ LeN
where the degree of z*¢°h’ is defined by |a| + |8 + 24, a, B € N™, £ € N, for technical reasons that of h is

double-counted. Let N € N. Let Dy be the finite dimensional vector space:

Dy = Y tapar®®hitap€C, a,8 €N, L €N such that |af + |8 +20=N
a,BEN" LN
and
On = > tapia®®ht it g =0if |of + 8 +20 < N

a,BeEN™ LeN
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Note that, for all N € N, Dy and Oy are subspaces of S and
§=0)D> 01 D,..., [On = {0}.
N
Let (.,.);y be the Weyl bracket defined on S by:
(f.9)w =Fi—3af
where f and g are the h-Weyl quantizations of symbols f and g, respectively. Precisely,

<fT79T>W =ow (<fa9>w) =ow (f§—§f>

where fr and gr are formal Taylor series at the origin of f and ¢ in S, respectively and oy denotes the

h-Weyl symbol. Then, (.,.)y, is antisymmetric satisfying the Jacobi identity:

((frs 9w > hr)w + (b, fr)w » 97)w + 915 b))y s 1)y = 0
and the Leibniz identity:
(fr,grhr)w = (fr,97)w hr + 97 {(f1, h7) Y/ -

Thus, S equipped with the Weyl bracket is a Lie algebra such that:

(hyzj)y = (h,&)y, =0 and (&, 25)y,, = —ih, forall j=1,..,n

Z (mla"'axn) andg: (Ela"'agn) €R™.

For and any S € S, we define a map:

adg : S§— S

P adg(P) = (S, P),y

which is called the adjoint action. S has a representation on itself, the adjoint representation defined via
the map ad.

Let us consider the important special case of this concept, which is the adjoint action adg for S € Dy, and
especially adp,. Let C [z, Z, h] be the C-linear space of polynomials spanned by 2*Z°h¢ of degree |a|+|3|+2¢;
a,f € N* ¢ € N, where z = (z1 + &1, ...,xn +1&,) € C™ and Z is the complex conjugate of z. Then,
B= {z527 2zeC™; B,y € N"} is a natural basis of C|[z,Z, h].

The next proposition gives some important properties and results on adg, .

Proposition 3.1. ([7]) 1) ih~tady, (P) = {Ha2, P}, where {Ha, P} = 5 %—Igf% - %71;;% is the classical
j=1

Poisson bracket.

2) adp, is diagonal on B, in the sense that ady, (:°27) = h{y — B,v)2"Z".
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The assumption (2.3) implies that A;(x) € O3, and since Hy + A1 (x) € Da, the quantum Birkhoff normal

form theorem for P.s(h) can now be formulated as follows:

Theorem 3.1. For R € O3, there exist S and T in the subspace O3 with real coefficients such that:
eihflads (HQ + R) = H2 + T
where T =T34+ Ty + ... and T; € D; commutes with Hy : (Hy,T)y, = 0.

This result is a direct consequence of the Birkoff normal form theorem shown for example in the article
by Ghomari and Messirdi [7].

We gain, compared with the BKW constructions developed in the second section, the commutative prop-
erty for Weyl product between the harmonic oscillator and the rest of reduction in Birkhoff normal form of
the Hamiltonian. The Birkhoff normal form is a more usable semi-classical reduction involving other inter-
esting spectral properties, especially it conserve the Hamiltonian structure and contains enough informations

to study the quantum resonances.

4. BIRKHOFF NORMAL FORM FOR P(h) IN FERMI RESONANCE

It has been established in the previous sections that P(h) can be reduced to the effective Hamiltonian
P.¢f(h) modulo O(h?). Thus, it is natural to define the Birkhoff normal forms of P(h) as those of P.sf(h)
modulo O(h?).

Let us recall the definitions of the different relations of resonances for the frequencies (vy,...,v,) of H,
associated with the eigenvalues of the matrix A/ (0). We say that the frequencies (v1, ..., v,) are resonant if
they are dependent over Z, i.e., there exist integers d, ..., d,, € Z, not all zero, such that dyv1 +... +d,v, = 0.
The number d = i |d;| is called the degree of resonance of P.sf(h). In the particular resonant case where
v; = v.d; for all j]::1 1,...,n with v, > 0 and dy, ...,d, € N, (Vj)j are said to be completely resonant.

As an application we study the structure of Birkhoff normal form in Fermi resonance (v;,2v;). We
compute the Birkhoff normal form of P.;¢(h) in the case of 1 : 2 resonance. Fermi resonances provide an
essential mechanism for intramolecular vibrational energy flow and often dominate the vibrational dynamics
in highly excited molecules. First discovered for the CO2 molecule, Fermi resonances are seen for many
molecules.

Fermi resonance. The harmonic oscillator in Fermi resonance is given by:

o, — _h2i2+ 2) 49 _hQiQ_F 2 4.1
2T ox? “ 3 2 (4.1)
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with symbol Hy = |z1]*+2 |22|* where z; = xj+i€;, j = 1,2. We construct K3 € D3 such that (Hs, K3)y, = 0,

SO

Ky = Z htzozP
20+ || +]8]=3

with (v, 3 — a) = 0. Thus, K3 is generated by the monomials 22%Z, and 29%% and since K3 is real, we can

write:
K3 = pRe(2373), p € R.
Consequently, the Birkhoff normal form of the effective hamiltonian P.;¢(h) in the Fermi resonance,
Hy + W is equal to Hy + K3 + Oy, with

1w 0)

see [8]. The Weyl quantization K3 of K3 is given by:
Ks = pOpy (Re(21%2)) = pOpy, (2722 + 2316162 — E122)

0? 0? 0
_ 2 o h2 Ipy ————— & v
P [wle < N 0w, 2 0x? * 83:2)]

and finally,
77 7> 2 o? 2 2 o” 2
Hy+ Kz = |-h"o— —h o 4.
2+ K3 ( h@x%+x1>+2( h6x§+x2) (4.2)
02 02 0
200 — W2 (20— — 20— + — | |.
P [lez 1 0x10xs T2 0z + 0xs
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