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Abstract. The fundamental objective of this paper is twofold. Firstly, to derive the Cox-Ross-Rubinstein

type new formula for risk neutral pricing of European compound call option, where the underlying asset is

also a European call option. Thirdly, to prove that our newly derived CRR risk neutral pricing formula for

compound call option, converges in distribution to the well known, continuous time Black-Scholes formula

for pricing the compound call option on call.

1. Introduction

A compound option is an option that has further an option as the underlying asset. Compound options

were first studied by Geske (1979, [9]), using a partial differential equation method and Fourier integrals.

Afterward, several other approaches were introduced for pricing methods for compound options. For instance,

Lajeri-Chaherli (2002, [15]) used the martingale method and by computing the expectation of truncated

bivariate normal variables, priced the compound options. Agliardi (2003, [1]) priced a generalized time-

dependent compound calls. Gukhal (2004, [12]) proposed a model for valuation of the compound option,

in which the underlying option follows the log-normal jump-diffusion process. Fouque and Han (2005, [13])

employed a perturbation techniques to compute the prices of compound options. Chiarella and Kang (2011,

[5]) and (2014, [4]) evaluated American style compound option with stochastic volatility. Griebsch (2013, [11])
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used FFT (Fast Fourier Transform) to price the European style compound option prices, where volatility

assumed to be stochastic.

Since most studies have been done through continuous time approach so in this paper we emphasize on

pricing the compound option through the discrete time Cox-Ross-Rubinstein (CRR) approach, we refer the

reader to chapter 6 of [7]. They key novelty of the work is the detailed proof that discrete time CRR price

of the compound option converges to the continuous time pricing formula of the compound option. We now

give a brief description of all sections of this paper.

Section 1 is running introduction. The section 2 gives A short introduction to mechanics of the compound

option and its continuous time formula. Section 3 has been devoted to deriving, in a greater detail, the

CRR formula for the risk-neutral pricing the European-style compound option on European call option. In

Section 4, we have given the proof that the CRR price of compound option converges to the well-known

continuous time pricing formula, in distribution. options. section 6 comprises of conclusion.

2. CRR Formula for Pricing Compound Options

This section comprises of a brief introduction to compound option and our new result on the derivation

of its CRR premium of European call option when the underlying asset is a European call option on stock.

2.1. Introduction to Compound Option. Here we briefly illustrate a compound op-

tion which is a particular type of exotic option. To do that we need a brief time line

here.

T0 T1 T2

Today is time zero, T1 is the point time in future and T2 will be even later than that. If today at T = 0 we

purchase a call option we are buying a right to exercise a price of K1 and exchange for that we will receive

a call option. So in this case we are purchasing a call option on a call option. Mainly, there can be four

possible variations of compound options.

1. Call with underlying Call.

2. Call with underlying Put.

3. Put with underlying Call.

4. Put with underlying Put.

So today at T = 0 when we purchase a compound option it gives us a right to going forward to exercise

that compound option. So let’s just say that stock increases little bit here at T = 1 and we exercise compound

option. We pay the strike price of K1 and get the option not the stock. So we only do that if the value at

T = 1 of call option is greater than the strike price C > K1. So after having exercise the compound, we now

in fact own the more familiar plain vanilla call option on stock and we do need another strike price K2. The
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compound option has two strike prices, first only to purchase a compound option which is K1 the price we

pay in order to exercise initially to purchase a call option and that call option has K2 its own strike price.

If we go forward in time, say stock move in our favor such that at T1 , there is an intrinsic value in that call

option and if S > K2 then we exercise the underlying option by paying the strike price K2 and receiving the

underlying asset (in this case it’s a stock).

When assumption of geometric Brownian motion is made, European style compound option can analyt-

ically be valued in terms of integral of bivariate normal distribution. The value of European call on call

option at T = 0 is

C = SN

(
a1, b1;

√
T1
T2

)
− e−rT2K2N

(
a2, b2;

√
T1
T2

)
− e−rT1K1N (a2) (2.1a)

where

a1 =
ln
(
S0

S∗

)
+
(
r − σ2

2

)
T1

σ
√
T1

; a2 = a1 + σ
√
T1

b1 =
ln
(
S0

K2

)
+
(
r − σ2

2

)
T2

σ
√
T2

; b2 = b1 + σ
√
T2

N = cumulative bivariate normal distribution function.

S∗ = critical stock price at T1 such that compound option is in the money. We refer to [14] for further

details.

3. Derivation of CRR compound Option Formula

Now we move towards the key objective of the paper i.e. pricing the compound option through binomial

approach. We aim to construct a CRR formula for the compound options. Let me state the key theorem of

the section.

Theorem 3.1. In a viable Cox-Ross-Rubinstein model with parameters S0, T, r, u and d the fair price at

time 0 of a European compound call option with expiry m and strike K1, contingent upon a European call

option with expiry n and strike K2, can be given as:

C = S0B (a, b; p′;n, n−m)− (1 + r)−(n−m)K2B (a, b; p′, p;n, n−m) (3.1)

−(1 + r)−mK1ψ (a;m, p)

where p = r−u
u−d , p

′ = pu
(1+r) , a =

[
ln S∗

S0
−m ln d

ln(u
d )

]
+ 1 and b =

[
ln

K2
S0
−n ln d

ln(u
d )

]
+ 1, and B(·, · ; ·) is the

complementary distribution function of bi-variate Binomial distribution.
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Proof. Consider the discrete time line,

0 m n

where m,n ∈ N. We aim to price a compound call option where underlying asset is also a call option. The

compound option will be exercised at m (i.e. after m steps/periods) and the underlying call option (whose

value depends on underlying stock prices), will be exercised at n steps/periods. By assuming the absence

of arbitrage opportunities in the binomial model, the price of the underlying call option either moves up

by a factor u or down by a factor d in each period. The probability of an upward movement is p and the

probability of a downward movement is 1− p.

In order to compute the fair premium of the compound option at inception, we will begin by employing

Theorem 5.47 of [7]. The payoff of the compound option can be given as,

payoff = max {Cstd(Sm,K2, n−m)−K1, 0}

where E is the risk neutral expectation, K1 is the strike price for the compound option, and Cstd is the Black-

Scholes price of underlying call option at the maturity of compound option i.e. m. Thus by the Theorem

5.46 of [7], the premium of the compound option can be given as,

C = (1 + r)−mE (max {Cstd(Sm,K2, n−m)−K1, 0})

where Cstd(Sm,K2, n − m) is the price of the underlying option. The expectation can be written more

explicitly as,

C = (1 + r)−m
m∑
i=0

max
(
Cstd(Smu

idm−i,K2, n−m)−K1, 0
) m

i

 pi (1− p)m−i . (3.2)

The compound option will be exercised i.e. its payoff will be nonzero if

Sm > S∗,

where S∗ denotes the worth of the stock such that the underlying option is in the money at time m i.e. S∗

solves the equation

Cstd(Sm,K2, n−m) = K1.

Assume that a is the smallest time period i such that.

Sm > S∗.

Let us try to determine bound on a,. As S0u
adm−a > S∗, it follows that,

a >
ln S∗

S0
−m ln d

ln
(
u
d

) .
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Let us return back to equation (3.2) and write the expectation more explicitly.

C = (1 + r)−m
m∑
i=a

(
Cstd(Smu

idm−i,K2, n−m)uidm−i −K1

) m

i

 pi (1− p)m−i

= (1 + r)−m
m∑
i=a

Cstd(Smu
idm−i,K2, n−m)

 m

i

 pi (1− p)m−i uidm−i

−(1 + r)−m
m∑
i=a

K1

 m

i

 pi (1− p)m−i

C = (1 + r)−m
m∑
i=a

Cstd(Smu
idm−i,K2, n−m)

 m

i

 pi (1− p)m−i uidm−i

−(1 + r)−mK1ψ (a,m, p) (3.3)

where ψ is the complementary Binomial distribution function,

ψ (a,m, p) =

m∑
i=a

 m

i

 pi (1− p)m−i .

We want to further explore the above first term of equation (3.3). Here Cstd(Sm,K2, n−m) represents the

price of an underlying European option and the price is given as:

Cstd(Smu
idm−i,K2, n−m) = (1 + r)−(n−m)E ({max (Sm −K2, 0)})

Cstd(Smu
idm−i,K2, n−m) = (1 + r)−(n−m)

n∑
j=m

max
(
(Smu

idm−i)ujdn−j −K2, 0
)
×

 n−m

j

 pj (1− p)n−m−j .

Assume that b < n in first instant such that

b = min
{
a : Smu

jdn−j
}
> K2.

Let us try to find bound on b. By definition Smu
jdn−j > K2, therefore it follows that

b >
ln K2

Sm
− n ln d

ln
(
u
d

) .

Now

Cstd(Smu
idm−i,K2, n−m) = (1 + r)−(n−m)

n∑
j=b

Sm

 n−m

j

 pj (1− p)n−m−j ujdn−m−j

−(1 + r)−(n−m)K2

n∑
j=b

 n−m

j

 pj (1− p)n−m−j .
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Substitute the above equation in equation (3.3), we infer that,

C = (1 + r)−m
m∑
i=a


(1 + r)−(n−m)

n∑
j=b

Sm

 n−m

j

 pj (1− p)n−m−j ujdn−m−j

−(1 + r)−(n−m)K2

n∑
j=b

 n−m

j

 pj (1− p)n−m−j



·

 m

i

 pi (1− p)m−i uidm−i − (1 + r)−mK1ψ (a,m, p) .

C = (1 + r)−n
m∑
i=a

n∑
j=b

Sm

 m

i

 n−m

j

 pi+j (1− p)n−(i+j) ui+jdn−(i+j)

−(1 + r)−nK2

m∑
i=a

n∑
j=b

 m

i

 n−m

j

 pi+j (1− p)n−(i+j) uidm−i

−K1ψ
(
a,m, p

′
)

=

m∑
i=a

n∑
j=b

S0

 m

i

 n−m

j

( pu

(1 + r)

)i+j (
(1− p) d
(1 + r)

)n−(i+j)

−(1 + r)−(n−m)K2

m∑
i=a

n∑
j=b

 m

i

 n−m

j

( pu

(1 + r)−(n−m)

)i
(

(1− p) d
(1 + r)−(n−m)

)m−i
pj (1− p)n−j − (1 + r)−(n−m)K1ψ (a,m, p) ,

where

 m

i

 = m!
i!(m−i)! and

 n−m

j

 = (n−m)!
j!(n−m−j)! . One can see that the first two terms in the last

equation represent the cumulative distributive function of bivariate binomial distribution. Thus

C = S0B (a, b; p′;n, n−m)− (1 + r)−(n−m)K2B (a, b; p′, p;n, n−m)− (1 + r)−mK1ψ (a,m, p) (3.4)

where p′ = pu
(1+r) , a =

[
ln S∗

S0
−m ln d

ln(u
d )

]
+ 1 and b =

[
ln

K2
S0
−n ln d

ln(u
d )

]
+ 1, and ψ(·, ·; ·) is the complementary

distribution function of bi-variate Binomial distribution. The formula above gives us the CRR premium of

the compound European call on European call option. �

4. Convergence of Empirical Means and Volatilities of Log Returns to Actual Means

and Volatilities

Following is the key theorem that we intend to prove in this section.

Theorem 4.1. Assume that we are in the framework of Theorem 3.1. Then following holds:

i) If S∗ stock price at time T1 (i.e. maturity time for compound option) such that the compound option in
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the money then the empirical mean µ̂pm and variance of σ̂2
pm of log returns ln

(
S∗

S0

)
converges, respectively,

to µT1 and σ2T1.

ii) Let T be an instant between T1 and T2 and ST be the stock price at time T . Then the empirical mean

µ̂p(n−m) and variance of σ̂2
p(n−m) of log returns ln

(
ST

S0

)
converges, respectively, to µT2 and σ2T2.

Proof. of the compound option given by formula 2.1a. Let S∗ be the stock price at T1 such that. the price

of compound option is in the money. So

S∗ = S0U
iDm−i

ln

(
S∗

S0

)
= ln (U)

i
+ ln (D)

m−i

ln

(
S∗

S0

)
= i lnU + (m− i) lnD = i ln

(
U

D

)
+m lnD. (4.1)

Here i is the binomial random variable with mean E [i] = mp and variance V ar [i] = mp (1− p) . As m→∞

E
[
ln

(
S∗

S0

)]
= E

[
i ln

(
U

D

)]
+ E [m lnD] .

The expectation of constant remains same , So

E
[
ln

(
S∗

S0

)]
= E [i]

[
ln

(
U

D

)]
+ [m lnD]

= mp

[
ln

(
U

D

)]
+ [m lnD]

=

[
p ln

(
U

D

)
+ lnD

]
m.

We suppose that the empirical mean value of ln
(
S∗

S0

)
is µ̂pm and represent it as:

µ̂pm =

[
p ln

(
U

D

)
+ lnD

]
m (4.2)

and

Var

[
ln

(
S∗

S0

)]
= Var

[
i ln

(
U

D

)]
+ Var [m lnD] .

The variance of (aX + b) is a2V arX, hence

Var

[
ln

(
S∗

S0

)]
=

[
ln

(
U

D

)]2
V ar [i]

= mp(1− p)
[
ln

(
U

D

)]2
.

We suppose that the empirical variance value of ln
(
S∗

S0

)
is σ̂2

pm and represent it as

σ̂2
pm = p(1− p)

[
ln

(
U

D

)]2
m. (4.3)
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If µT1 = E
[
ln
(
S∗

S0

)]
and σT = Var

[
ln
(
S∗

S0

)]
represent the values of actual mean and variance, we want

µ̂pm converges to µT1 and σ̂2
pm approaches to σT1 as m→∞ :

lim
m→∞

mp ln

(
U

D

)
+ lnD = µT1, (4.4)

and

lim
m→∞

mp(1− p)
[
ln

(
U

D

)]2
= σ2T1. (4.5)

Also keep in view the following relation between U and D,

U =
1

D
. (4.6)

To have these convergence we need to choose the parameters U,D and p, which satisfies last three limiting

equations. To do so let solve the system of nonlinear equations (4.4), (4.5) and (4.6 ), for U, D and p. Ignore

the limits in the mentioned equations. Using equation (4.6) into (4.4), we may infer that

p ln
(
U2
)

+ ln
1

U
=

µT1
m

lnU =
µT1

m(2p− 1)
. (4.7)

Using equation (4.6) into (4.5) we infer,

p(1− p)
[
ln
(
U2
)]2

=
σT1
m

[lnU ]
2

=
σT1

4p(1− p)m
.

Substituting the equation (4.7) into last equation we get,(
µT1

m(2p− 1)

)2

=
σT1

4p(1− p)m
.

On solving the above quadratic equation for p we get,

p =
1

2
+

1

2

µ

σ

√
T1
m
. (4.8)

Now substituting the value of p from (4.8) into getting the value of U by using equation (4.7)

lnU =
µT1
m
· 1(

2

(
1
2 + 1

2
µ
σ

√
T1

m

)
− 1

)
lnU = σ

√
T1
m

U = eσ
√

T1
m . (4.9)
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As D = 1
U , then the value of D is

D = e−σ
√

T1
m . (4.10)

After plugging the calculated values of U,D and p in equations of µ̂pm and σ̂2
pm, we see how these

empirical values approaches to the actual values of mean and variance.

µ̂pm =

[
p ln

(
U

D

)
+ lnD

]
m.

Note that ln
(
U
D

)
= lnU − lnD = σ

√
T1

m + σ
√

T1

m = 2σ
√

T1

m . Now

µ̂pm =

{[
1

2
+

1

2

µ

σ

√
T1
m

][
2σ

√
T1
m

]
− σ

√
T1
m
m

}

=

[
σ

√
T1
m

+ µ

(
T1
m

)
− σ

√
T1
m

]
m

lim
m→∞

µ̂pm = µT1.

Next

σ̂2
pm = p(1− p)

[
ln

(
U

D

)]2
m

=

[
1

2
+

1

2

µ

σ

√
T1
m

][
1−

{
1

2
+

1

2

µ

σ

√
T1
m

}][
2σ

√
T1
m

]2
m

=

(
1

4
− 1

4

µ2

σ2

T1
m

)
4σ2T1

lim
m→∞

σ̂2
pm = σ2T1. (4.11)

Now, at the second expiry of underlying stock: ST = S0U
jD(n−m)−j

ln

(
ST
S0

)
= ln (U)

j
+ (D)

(n−m)−j

ln

(
ST
S0

)
= j lnU +(n−m)−j lnD = j ln

(
U

D

)
+ (n−m) lnD.

Here j is the binomial random variable with mean E [j] = (n−m) p and variance V ar [j] = (n−m) (1− p) p.

As (n−m)→∞

E
[
ln

(
ST
S0

)]
= E

[
j ln

(
U

D

)]
+ E [(n−m) lnD] .
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The expectation of constant remains same , so

E
[
ln

(
ST
S0

)]
= E [j]

[
ln

(
U

D

)]
+ [(n−m) lnD]

= (n−m) p

[
ln

(
U

D

)]
+ [(n−m) lnD]

=

[
p ln

(
U

D

)
+ lnD

]
(n−m) .

We suppose that the empirical mean value of ln
(
ST

S0

)
is µ̂p(n−m) and represent it as:

µ̂p(n−m) =

[
p ln

(
U

D

)
+ lnD

]
(n−m)

and

Var

[
ln

(
ST
S0

)]
= Var

[
j ln

(
U

D

)]
+ Var [(n−m) lnD] .

Recall the fact that the V ar (aX + b) = a2V arX. By using this,

Var

[
ln

(
ST
S0

)]
=

[
ln

(
U

D

)]2
V ar [j]

= (n−m) p(1− p)
[
ln

(
U

D

)]2
.

We suppose that the empirical variance value of ln
(
S∗

S0

)
is σ̂2

p (n−m) and represent it as:

σ̂2
p (n−m) = p(1− p)

[
ln

(
U

D

)]2
(n−m) .

If µT2 = E
[
ln
(
ST

S0

)]
and σT2 = Var

[
ln
(
ST

S0

)]
represent the values of actual mean and variance, we want

µ̂p(n−m) approaches to µT2 and σ̂2
p (n−m) approaches to σT2 as (n−m)→∞ :

p ln

(
U

D

)
+ lnD → µT2

(n−m)

and

p(1− p)
[
ln

(
U

D

)]2
→ σT2

(n−m)

From the last two equations above, we have to calculate the values of parameters U,D and p subject to

constraint U = 1
D due to the balance in the tree structure in the binomial model. Calculations are shown

below:

p =
1

2
+

1

2

µ

σ

√
T2

(n−m)
.

Using the relation U = 1
D
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p ln

(
U

D

)
+ lnD =

µT2
(n−m)

p ln (U)
2

+ ln

(
1

U

)
=

µT2
(n−m)

lnU =
µT2

(n−m)
.

1

(2p− 1)
.

Now plugging the value of p

lnU =
µT2

(n−m)
· 1(

2
(

1
2 + 1

2
µ
σ

√
T2

(n−m)

)
− 1
)

lnU =
µT2

(n−m)
· 1(

µ
σ

√
T2

(n−m)

)
lnU =

T2
(n−m)

· σ(√
T2

(n−m)

) .
After solving the powers

lnU = σ

√
T2

(n−m)
or

U = e
σ
√

T2
(n−m) (4.12)

As D = 1
U , then the value of D is

D = e
−σ
√

T2
(n−m) . (4.13)

After plugging the calculated values of U,D and p in the µ̂p(n − m) and σ̂2
p (n−m) , we see how these

empirical values approaches to the actual values of mean and variance.

µ̂p(n−m) =

[
p ln

(
U

D

)
+ lnD

]
(n−m) .

Note that ln
(
U
D

)
= lnU − lnD = σ

√
T2

(n−m) + σ
√

T2

(n−m) = 2σ
√

T2

(n−m) . Now,

µ̂p(n−m) =

[
1

2
+

1

2

µ

σ

√
T2

(n−m)

][
2σ

√
T2

(n−m)
− σ

√
T2

(n−m)

]
(n−m)

=

[
σ

√
T2

(n−m)
+ µ

(
T2

(n−m)

)
− σ

√
T2

(n−m)

]
(n−m)

lim
m→∞

µ̂p(n−m) = µT2.
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Next

σ̂2
p (n−m) = p(1− p)

[
ln

(
U

D

)]2
(n−m)

=

[
1

2
+

1

2

µ

σ

√
T2

(n−m)

][
1−

{
1

2
+

1

2

µ

σ

√
T2

(n−m)

}]
×

[
2σ

√
T2

(n−m)

]2
(n−m)

=

[
1

2
+

1

2

µ

σ

√
T2

(n−m)

][
1

2
− 1

2

µ

σ

√
T2

(n−m)

] [
4σ2T2

]
=

(
1

4
− 1

4

µ2

σ2

T2
(n−m)

)
4σ2T2

lim
m→∞

σ̂2
p (n−m) = σ2T2. (4.14)

�

5. Main Convergence Result

In this section we prove the second most important result that the established general CRR formula

for binomial pricing formula of a Compound call option, to the well-known continuous-time Black-Scholes

formula for European Compound option. We state this assertion in the form of following Theorem.

Theorem 5.1. Assume that we are in assumptions of Theorem 3.1 and Theorem 4.1. the fair price at time

0 of a European compound call option with expiry m and strike K1, contingent upon a European call option

with expiry n and strike K2, can be given as:

C = S0B (a, b; p′;n, n−m)− (1 + r)−(n−m)K2B (a, b; p′, p;n, n−m) (5.1)

−(1 + r)−mK1ψ (a;m, p) ,

converges in the distribution to the following continuous time price of European compound call option with

expiry T1 and strike K1, contingent upon a European call option with expiry T2 and strike K2,

S0N

(
d1, d2;

√
T2
T1

)
− e−rT2K2N

(
d∗1, d

∗
2;

√
T2
T1

)
− e−rT1K1N(d∗1),

where p = r−u
u−d , p

′ = pu
(1+r) , a =

[
ln S∗

S0
−m ln d

ln(u
d )

]
+ 1 and b =

[
ln

K2
S0
−n ln d

ln(u
d )

]
+ 1, and B(·, · ; ·) is the

complementary distribution function of bi-variate Binomial distribution and

d1 =
ln S

S∗ +
(
ln(1 + r)− 1

2σ
2
)
T1

σ
√
T1

, d∗1 = d1 + σ
√
T1

d2 =
ln
(
S
K2

)
+
(
ln(1 + r)− 1

2σ
2
)
T2

σ
√
T2

, d∗2 = d2 + σ
√
T2.
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Proof. From the last section we know that our choice of parameter (1 + r)
T1
m ensures that K1(1 + r)−m =

Ke−rT1 and K2(1+r)−(n−m) = Ke−rT2 . Next, we are going to show that the CRR price of compound option

converges to the continuous time Black-Scholes price of the compound option. To do let us begin with the

following observation about the CDF of bivariate Binomial random variables i, j, where i and j denotes the

number of times the price of underlying option and compound option, has went up, respectively.

1−B (a, b; p′;n, n−m) = P (i ≤ a− 1, j ≤ b− 1)

= P

(
i−mp√
mp(1− p)

≤ a− 1−mp√
mp(1− p)

,
j − (n−m) p√
(n−m) p(1− p)

≤ b− 1− (n−m) p√
(n−m) p(1− p)

)
(5.2)

where

a = min

{
i ∈ m; i ≥

ln S∗

S0Dm

ln U
D

}
∈

[
ln S∗

S0Dm

ln U
D

,
ln K1

CDm

ln U
D

+ 1

)

b = min

{
j ∈ (n−m) ; j ≥

ln K2

SD(n−m)

ln
(
U
D

) }
∈

[
ln K2

SD(n−m)

ln
(
U
D

) ,
ln K2

SD(n−m)

ln
(
U
D

) + 1

)
.

For the convergence to the continuous time, mean and variance of continuously compounded rate of

returns of stocks with respect to P = (p, 1− p) can be given as:

µ̂pm =

[
p ln

(
U

D

)
+ lnD

]
m and σ̂2

pm = mp(1− p)
[
ln

(
U

D

)]2
(5.3)

µ̂p(n−m) =

[
p ln

(
U

D

)
+ lnD

]
(n−m) andσ̂2

pm = mp(1− p)
[
ln

(
U

D

)]2
. (5.4)

Recall that i represents the number of times the stock price goes up before the expiry of the compound

option i.e. between 0 and m. Also recall the equation (4.1) i.e. ln
(
S∗

S0

)
= i ln

(
U
D

)
+ m lnD. Deducing the

value of i from this equation we may infer that

i−mp√
mp(1− p)

=

ln
(

ST
S0

)
−m lnD

ln( U
D )

−mp√
mp(1− p)

=
ln
(
ST

S0

)
−m(lnD + p ln

(
U
D

)
)

ln
(
U
D

)√
mp(1− p)

.

Using the equations (5.3) it follows that,

i−mp√
mp(1− p)

=
ln
(
ST

S0

)
− µ̂pm

σ̂p
√
m

. (5.5)

Let us fix ε ∈ ([0, 1]) . Now since a = min

{
i ∈ m; i ≥

ln S∗
S0Dm

ln U
D

}
∈
[
ln S∗

S0Dm

ln U
D

,
ln

K1
CDm

ln U
D

+ 1

)
therefore:

a− 1 =
ln S∗

S0Dm

ln
(
U
D

) − ε =
ln S∗

S0
−m lnD − ε ln

(
U
D

)
ln U

D
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and therefore,

a− 1−mp√
mp(1− p)

=
ln S∗

S0
−m lnD − ε ln U

D −mp ln
(
U
D

)
ln U

D

√
mp(1− p)

=
ln S∗

S0
−m

(
p ln U

D − lnD
)
− ε ln

(
U
D

)
ln U

D

√
mp(1− p)

=
ln S∗

S0
− µ̂pm− ε ln

(
U
D

)
σ̂p
√
m

. (5.6)

Next, let us turn towards the random variable j over (n−m) time steps, where j is the number of up moves

of the stock price in the interval m to n.

j − (n−m) p√
(n−m) (1− p)p

=

ln
(

ST
S0

)
−(n−m) lnD

ln( U
D )

− (n−m) p√
(n−m) (1− p)p

=
ln
(
ST

S0

)
− (n−m) lnD − ln

(
U
D

)
(n−m) p√

(n−m) (1− p)p
.

Using the equations (5.3) it follows that

j − (n−m) p√
(n−m) (1− p)p

=
ln
(
ST

S0

)
− µ̂p(n−m)

σ̂p
√
N

. (5.7)

Again since b = min

{
j ∈ (n−m) ; j ≥

ln
K2

SD(n−m)

ln( U
D )

}
∈
[
ln

K2

SD(n−m)

ln( U
D )

,
ln

K2

SD(n−m)

ln( U
D )

+ 1

)
so it follows that

b− 1 =
ln K2

SD(n−m)

ln U
D

− ε =
ln
(
K2

S

)
− (n−m) lnD − ε ln

(
U
D

)
ln U

D

and therefore,

b− 1− (n−m) p√
(n−m) (1− p)p

=
ln
(
K2

S

)
− (n−m) lnD − ε ln

(
U
D

)
− (n−m) p ln

(
U
D

)
ln U

D

√
(n−m) p(1− p)

=
ln
(
K2

S

)
− (n−m)

(
p ln

(
U
D

)
− lnD

)
− ε ln

(
U
D

)
ln U

D

√
(n−m) p(1− p)

=
ln
(
K2

S

)
− µ̂p (n−m)− ε ln

(
U
D

)
σ̂p
√

(n−m)
. (5.8)

Using equations (5.5), (5.6), (5.7) and (5.8) into (5.2), it follows that,

1−B (a, b; p′;n, n−m)

= P

 ln
(

ST
S0

)
−µ̂pm

σ̂p
√
m

≤
ln S∗

S0
−µ̂pm−ε ln( U

D )
σ̂p
√
m

,

ln
(

ST
S0

)
−µ̂p(n−m)

σ̂p

√
n−m ≤ ln(K2

S )−µ̂p(n−m)−ε ln( U
D )

σ̂p

√
(n−m)

 . (5.9)
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To proceed further we want to show that µ̂pm →
(
ln(1 + r)− 1

2σ
2
)
T1 and µ̂p (n−m) →(

ln(1 + r)− 1
2σ

2
)
T2 as m → ∞ and n → ∞, respectively. We will prove first the convergence, and the

second will follow the analogue argument. Recall that between the time 0 to m, the value of m can be given

as,

p =
1

2
+

1

2

µ

σ

√
T1
m
.

In order to show that µ̂pm→
(
ln(1 + r)− 1

2σ
2
)
T1 as m→∞, it is sufficient to show that,

p =
1

2
+

1

2

µ

σ

√
T1
m
→ 1

2
+

1

2

(
ln(1 + r)− 1

2σ
2
)

σ

√
T1
m

as m→∞

or 2
√
m

(
p− 1

2

)
→
(
ln(1 + r)− 1

2σ
2
)

σ

√
T1 as m→∞.

Or it is sufficient to show that,

lim
m→∞

2
√
m

(
p− 1

2

)
=

(
ln(1 + r)− 1

2σ
2
)

σ

√
T1.

Let us consider the term on left hand side of last equation. Using value of p from

2
√
m

(
p− 1

2

)
= 2

√
m

(
(1 + r)

T1
m −D

U −D
− 1

2

)

= 2
√
m

(
2(1 + r)

T1
m − 2D − U +D

2 (U −D)

)

=
√
m

2 (1+r)
T1
m

D − U
D − 1

U
D − 1

 .

On substituting (1 + r)
T1
m = e(

T1
m ) ln(1+r), U = eσ

√
T1
m and D = e−σ

√
T1
m

(
orUD = e2σ

√
T1
m

)
into last

equation

2
√
m

(
p− 1

2

)
=
√
m

2e(
T1
m ) ln(1+r)+σ

√
T1
m − e2σ

√
T1
m − 1

e2σ
√

T1
m − 1

 .

Taking limit m→∞,

lim
m→∞

2
√
m

(
p− 1

2

)
= lim
m→∞

2e(
T1
m ) ln(1+r)+σ

√
T1
m − e2σ

√
T1
m − 1(

e2σ
√

T1
m − 1

)
m−

1
2

,

(
0

0
form

)
.

Using L’Hospital rule we may infer that, lim
m→∞

2
√
m
(
p− 1

2

)
=

= lim
m→∞

2e(
T1
m ) ln(1+r)+σ

√
T1
m − e2σ

√
T1
m − 1(

e2σ
√

T1
m − 1

)
m−

1
2

= lim
m→∞

2e(
T1
m ) ln(1+r)+σ

√
T1
m (m−2T1 ln(1 + r) + 1

2m
− 3

2σ
√
T1)− e2σ

√
T1
m m−

3
2σ
√
T1

e2σ
√

T1
m

(
m−2T1 ln(1 + r) + 1

2m
− 3

2

)
− 1

2m
− 3

2

.
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On dividing the numerator and the denominator by m−
3
2 e2σ

√
T1
m , we get

= lim
m→∞

2e(
T1
m ) ln(1+r)+σ

√
T1
m (m−

1
2T1 ln(1 + r) + 1

2σ
√
T1)− σ

√
T1

σ
√

T1

m + 1
2 −

1
2e

2σ
√

T1
m

,

(
0

0
form

)
.

Again using L’Hospital rule, we infer,

= lim
m→∞

2e(
T1
m ) ln(1+r)+σ

√
T1
m (−m−2T1 ln(1 + r) + 1

2m
− 3

2σ
√
T1)

(
m−

1
2T1 ln(1 + r) + 1

2σ
√
T1

)
− 1

2m
− 3

2T1 ln(1 + r)

− 1
2m
− 3

2σ
√
T1 − 1

2m
− 3

2 e−2σ
√

T1
m σ
√
T1

.

On multiplication of 2m
3
2 into the numerator and denominator and simplifying it follows that,

= lim
m→∞

4e(
T1
m ) ln(1+r)+σ

√
T1
m (m−1 (T1 ln(1 + r))

2 −m 1
2T

3
2
1 σ ln(1 + r) + 1

4T1σ −
1
2T1 ln(1 + r))

−σ
√
T1

(
1 + e−2σ

√
T1
m

)

=
4
(
1
4σ

2 − 1
2T1 ln(1 + r)

)
−2σ
√
T1

lim
m→∞

2
√
m

(
p− 1

2

)
=

ln(1 + r)− σ2

2

σ

√
T1.

On returning the value of p,

lim
m→∞

p = lim
m→∞

1

2
+

1

2

µ

σ

√
T1
m

=
1

2
+

1

2

(
ln(1 + r)− 1

2σ
2
)

σ

√
T1
m
. (5.10)

On the same lines we can prove that, between m and n,

lim
m→∞

1

2
+

1

2

µ

σ

√
T2

n−m
=

1

2
+

1

2

(
ln(1 + r)− 1

2σ
2
)

σ

√
T2

n−m
. (5.11)

Now recall from the equation (5.3),

µ̂pm =

[
p ln

(
U

D

)
+ lnD

]
m.

Substitute the values of U = eσ
√

T1
m and D = e−σ

√
T1
m

(
orUD = e2σ

√
T1
m

)
, we get,

µ̂pm =

[
p ln

(
U

D

)
+ lnD

]
m

µ̂pm =

[
p ln

(
e2σ

√
T1
m

)
+ ln e−σ

√
T1
m

]
m

=

[
2σp

√
T1
m
− σ

√
T1
m

]
m

= [2p− 1]mσ

√
T1
m
.



Int. J. Anal. Appl. 18 (1) (2020) 145

Taking limit m→∞ and using equation (5.10), it follows that,

lim
m→∞

µ̂pm = lim
m→∞

[
2

(
1

2
+

1

2

(
ln(1 + r)− 1

2σ
2
)

σ

√
T1
m

)
− 1

]
mσ

√
T1
m

= lim
m→∞

[(
ln(1 + r)− 1

2σ
2
)

σ

√
T1
m

]
mσ

√
T1
m

lim
m→∞

µ̂pm =

(
ln(1 + r)− 1

2
σ2

)
T1. (5.12)

Now we turn towards the next interval i.e. m to n. Recall the equation (5.4),

µ̂p(n−m) =

[
p ln

(
U

D

)
+ lnD

]
(n−m) .

Substitute the values of U = e
σ
√

T2
n−m and D = e

−σ
√

T2
n−m

(
orUD = e

2σ
√

T2
n−m

)
, we get,

µ̂p(n−m) =

[
p ln

(
e
2σ
√

T2
n−m

)
+ ln e

−σ
√

T2
n−m

]
(n−m)

=

[
2σp

√
T2

n−m
− σ

√
T2

n−m

]
(n−m)

= [2p− 1] (n−m)σ

√
T2

n−m
.

Taking limit (n−m)→∞ and using equation (5.11), it follows that,

lim
(n−m)→∞

µ̂p(n−m) =

[
2

(
1

2
+

1

2

(
ln(1 + r)− 1

2σ
2
)

σ

√
T2

n−m

)
− 1

]
(n−m)σ

√
T2

n−m

= lim
m→∞

[(
ln(1 + r)− 1

2σ
2
)

σ

√
T2

n−m

]
(n−m)σ

√
T2

n−m

lim
(n−m)→∞

µ̂p(n−m) =

(
ln(1 + r)− 1

2
σ2

)
T2. (5.13)

Now let us return to the equation (5.6). Take limit m → ∞ and ε → 0, and using the equations (5.12)

and (4.11), we consider the following limit.

lim
m→∞

lim
ε→0

ln S∗

S0
− µ̂pm− ε ln

(
U
D

)
σ̂p
√
m

=
ln S∗

S0
−
(
ln(1 + r)− 1

2σ
2
)
T1

σ
√
T1

= d1. (5.14)

Similarly consider the equation (5.8). By application of limit (n−m) → ∞ and ε → 0, and using the

equation (4.14) and (5.13), we consider the following limit,

lim
m→∞

lim
ε→0

ln
(
K2

S

)
− µ̂p(n−m)− ε ln

(
U
D

)
σ̂p
√

(n−m)
=

ln
(
K2

S

)
−
(
ln(1 + r)− 1

2σ
2
)
T2

σ
√
T2

= d2. (5.15)
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Thus we are in a position to claim our key convergence, using bivariate Binomial convergence to bivariate

binomial from [16] (page 9) and Theorem 4.1 we infer that

1−B (a, b; p′;n, n−m) = P

 ln
(

ST
S0

)
−µ̂pm

σ̂p
√
m

≤
ln S∗

S0
−µ̂pm−ε ln( U

D )
σ̂p
√
m

,

ln
(

ST
S0

)
−µ̂p(n−m)

σ̂p

√
N

≤ ln(K2
S )−µ̂p(n−m)−ε ln( U

D )
σ̂p

√
(n−m)


→ N

(
−d1,−d2;

√
T2
T1

)
as (n−m) , m→∞, where

ln S∗

S0
−
(
ln(1 + r)− 1

2σ
2
)
T1

σ
√
T1

: = −d1

ln
(
K2

S

)
−
(
ln(1 + r)− 1

2σ
2
)
T2

σ
√
T2

: = −d2.

Since 1−N
(
−d1,−d2;

√
T2

T1

)
= N (d1, d2) , hence

B (a, b; p′;n, n−m)→ N

(
d1, d2;

√
T2
T1

)
.

where,

ln S
S∗ +

(
ln(1 + r)− 1

2σ
2
)
T1

σ
√
T1

: = d1

ln
(
S
K2

)
+
(
ln(1 + r)− 1

2σ
2
)
T2

σ
√
T2

: = d2.

Precisely on the same line of argument we can show that

B (a, b; p, p′;n, n−m)→ N

(
d∗1, d

∗
2;

√
T2
T1

)
where,

d∗1 = d1 + σ
√
T1

d∗2 = d2 + σ
√
T2

and N
(
·, ·;
√

T2

T1

)
is the bivariate standard normal CDF with correlation coefficient

√
T2

T1
. Finally we will

deal with the one-dimensional convergence i.e. ψ (i ≥ a,m, p)→ N (d∗1) as m→∞. Again

1− ψ (i ≥ a,m, p) = P (i ≤ a− 1)

= P

(
i−mp√
mp(1− p)

≤ a− 1−mp√
mp(1− p)

)
where

a = min

{
i ∈ m; i ≥

ln S∗

S0Dm

ln U
D

}
∈

[
ln S∗

S0Dm

ln U
D

,
ln K1

CDm

ln U
D

+ 1

)
.
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Using equation (5.5) and equation (5.6) into the last equation we infer that

1− ψ (i ≥ a,m, p) = P

 ln
(
ST

S0

)
− µ̂pm

σ̂p
√
m

≤
ln S∗

S0
− µ̂pm− ε ln

(
U
D

)
σ̂p
√
m

 .

Using the convergence (5.14) and the one dimensional Central Limit Theorem, and arguing in same manner

as we argued in the end of the section 4 , we may infer that

1− ψ (i ≥ a,m, p) = P

 ln
(
ST

S0

)
− µ̂pm

σ̂p
√
m

≤
ln S∗

S0
− µ̂pm− ε ln

(
U
D

)
σ̂p
√
m


→ N

(
ln S∗

S0
−
(
ln(1 + r)− 1

2σ
2
)
T1

σ
√
T1

− σ
√
T1

)
as m→∞, where N (·) is the c.d.f of standard normal distribution. By the use of symmetry property of the

standard normal c.d.f i.e. 1−N (z) = N (−z), it follows that,

ψ (i ≥ a,m, p) = N

(
ln S

S∗ +
(
ln(1 + r)− 1

2σ
2
)
T1

σ
√
T1

+ σ
√
T1

)
= N(d∗1).

Hence, we are done with the conclusion that

C = S0B (i ≥ a, j ≥ b; p′;n, n−m)− (1 + r)−(n−m)K2B (i ≥ a, j ≥ b; p′, p;n, n−m)

−(1 + r)−mK1ψ (i ≥ a,m, p)

→ S0N

(
d1, d2;

√
T2
T1

)
− e−rT2K2N

(
d∗1, d

∗
2;

√
T2
T1

)
− e−rT1K1N(d∗1), (5.16)

where

d1 =
ln S

S∗ +
(
ln(1 + r)− 1

2σ
2
)
T1

σ
√
T1

, d∗1 = d1 + σ
√
T1

d2 =
ln
(
S
K2

)
+
(
ln(1 + r)− 1

2σ
2
)
T2

σ
√
T2

, d∗2 = d2 + σ
√
T2.

Thus we have shown that our developed CRR formula converges to the standard well-known continuous

time Black-Scholes price of the compound option. �

6. Conclusion

The paper provides a comprehensive treatment of the binomial pricing of option of financial derivatives,

in general, and options in particular. Following two new results have been proven.

1. The Cox-Ross Rubinstein(CRR) type formula has been derived for risk-neutral pricing of the European

style Compound call option on European call option.

2. It has been shown explicitly that for a suitable choice of parameters, the CRR formula to

price the compound call option of on call, converges to the well known, continuous time version of the
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Black-Scholes price of the same option. Simulation of our derived formula will be helpful for financial market.
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