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ABSTRACT. In this paper, we have studied an almost quasi Hermite-Fejér-type interpolation in rational

spaces. A Radau type quadrature formula has also been obtained for the same.

1. Introduction

Hermite Fejér and Quasi-Hermite-Fejér-type interpolation processes has been a subject of interest for
several mathematicians. In almost all the cases the interpolatory polynomials are considered on the nodes
which are the zeros of certain classical orthogonal polynomials. The main idea of the present paper is to
construct a rational interpolation process and its corresponding quadrature formula with prescribed nodes

based on the Chebyshev Markov fractions.
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Chebyshev and Markov introduced rational cosine and sine fractions [3] which generalizes Chebyshev
polynomials, possesses many similar properties ( [2,10,11]) and are called Chebychev—Markov rational frac-
tions. Different aspects of the rational generalization of Chebyshev polynomials are discussed in many works
([1,12]).

In 1962, Rusak [9] initiated the study of interpolation processes by means of rational functions on the
interval [—1,1]. The nodes were taken to be the zeros of Chebyshev—Markov rational fractions. In [6]
rational interpolation functions of Hermite-Fejér-type were constructed [7]. Min [4] was the first to consider
the rational quasi-Hermite-type interpolation. He constructed the interpolatory function and proved its
uniform convergence for the continuous functions on the segment with the restriction that the poles of the
approximating rational functions should not have limit points on the interval [—1, 1].

Recently, based on the ideas of [6] and using method that was different from that of [4], Rouba et.
al. ( [5], [8]) revisited the rational interpolation functions of Hermite-Fejér-type. They also proved the
uniform convergence of the interpolation process for the function f € C[—1,1] and obtained explicitly its
corresponding Lobatto type quadrature formula.

In this paper, we have considered an almost quasi-Hermite-Fejér-type interpolation process on the zeros of
the rational Chebyshev-Markov sine fraction on the semi closed interval (—1, 1], that is, when the interpola-
tory condition is prescribed only at one of the end points. A Radau type quadrature formula corresponding

to the interpolation process has also been obtained.

2. PRELIMINARIES

Consider a set of points ag, k = 0,1,--- ,2n — 1 which are either real and ax € (—1,1) or be paired by

complex conjugation. Also let U, (x) be the rational Chebyshev-Markov sine fraction,

sin pop, ()
2.1 Uy () = 22
2 W=
where,

2n—1
1 —+ ay,
(2.2) ton () 3 kZ:O arccos T
A2n

23) b () = 2D

V1—22’

2n 1
(2.4) e Z vicw o en

14+apz’

— €08 fon () Aon (2)V1 — 22 + x sin poy, (x)
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and
/\2n($k)
(2.6) Ul (x) = — 4.
(1—23)
Let Rop—1(ag, a1, -+ ,az,—1) be a rational space defined as
_1(x
(27) Ronoi(an,ar, - azy_y) o= | — 2zt
k=0 (1+apx)
2n—1

where po,,_1(x) is a polynomial of degree < 2n —1 and {ax};"," are real and belong to [—1,1] or are paired
by complex conjugation.

The rational fraction U, (z) can be expressed as

P,_1(z)
5", (1 4 agw)

Un(x) =

where P,,_1(z) is an algebraic polynomial of degree n — 1 with real coefficient. The fraction U, (z) has n —1

zeros on the interval (—1,1) given by,
—1<zp1<zpo<- - <za<z1<1l, pop(zk)=Fkm, k=1,2,--- ,n—1,

where po, () is given by (2.2). Also, the rational function Ag,(x), given by (2.4), can be expressed as

Q2n—1($)
Ao (T) = =577 —
’ ( ) iiol(1+ak13)

where ga2,—1(z) is a polynomial of degree atmost 2n — 1. It has no zeros on [—1,1].
3. ALMOST QUASI-HERMITE-FEJER-TYPE INTERPOLATION

Let zp = 1. Then for any function f € C(—1,1] the almost quasi type Hermite interpolation function

H,(z, f) satisfying the conditions

(3.1) Hy(zx, f) = f(zx), k=0,1,--- ,n—1,
(32) H;z(xlﬁf):yka k:1a2a"'7n_17
is given by
n—1 n—1
(33) Hy(x, f) =Y f(ar)Ar(@) + Y yrB(a),
k=0 k=1
where yi, k = 1,2, -+ ,n—1 are arbitrarily given real numbers, { A, (z)}}_; and { Bx(z)}7Z| are fundamental

functions satisfying the conditions

Ap(z) =05, 4, k=0,1,---,n—1,
(3.4) k(75) kjs J
A(z;)=0, j=1,2,---,n—1,k=0,1,--- ,n—1
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and

Bk:l" :O, j:0,1’~.~771—17]1;:1’2,...,77/71’
By (x;) = 6kj,  Jok=1,2,--- ,n—1
4. EXPLICIT REPRESENTATION OF THE FUNDAMENTAL FUNCTIONS

Lemma 4.1. The fundamental functions { Ay, (m)}z;é satisfying the conditions (3.4) can be explicitly repre-
sented as fork=1,2,--- ,n—1
(14 2)(1 — 2)(1 — 2){1 — bi(z — 22) } U (@)

(4.1) Ag(w) = Nan (1) (T — 25)2 Aam () ’
where
(4.2) bk = 2127i ;21
k
and
_ Up(=)
(4.3) Aol = 5, o an (D)

Proof. We will show that Ag(xz), k =0,1,--- ,n — 1 defined by (4.1) and (4.3) satisfy the conditions (3.4)
Obviously for k =1,2,--- ,n—1, Ag(zo) = 0 and Ag(z;) =0, j=1,2,--- ,n—1 when j # k. For j =k

using the I'Hospital’s rule, we have

— 7})

(1 lim SinNZn(x) ’
/\gn(xk) T Tk (33 - .’L‘k)

(l—x%) lim —Aop () cos pa, () ?
Moo \ b VI a2

lim Ag(zx) =

T—T

On differentiating (4.1) with respect = we get

A () =

(1 + 21 —22) [201 = b(z — 22)} (mugn(x)) (sinugn)/

Aon(Tk) (1+ x)Aan(x) T — T, T — Tk

bi(1 + ) Aon () + {1 — b(x — 2) H (1 + 2) A5, (2) + Ao (2)}
(1+2)273, (2)

y (Smﬂmﬂ
r — Tk
then for j # k we have A} (z;) =0, j=1,2,--- ,n—1. For j =k,
1— 2 . . /
lim A;C(a;) — W[Q lim <(Sln,u2n(a?)> (smugn(a:)) )
T—T) /\2 k) T T —xp T — xp

n(@
_bk(l + zp)Aon (k) + (1 4+ 2p) A, (k) + Aon (k)
(1 + k) A2n (k)

sin poy, () 2
« (lim )
T—=Tr X — Tk




Int. J. Anal. Appl. 19 (2) (2021) 184

We know that

. sin pan(z) , A2n (k)
44 lim SRA2\D) ) = —
(44) B ey T Hanlan)cosien(ng) = =T
and
injian(@) ) _ 1
. sin poy, (x

(4.5) $lgngk <zu—2xk> = §C05ﬂ2n(f£k):u’/2/n($k)
where

" _ _(1—1‘2))\/2n(.%')+$)\2n(x)
(4.6) pg,(x) = (1— 22)3/2
then

. , _ 20, — 1 _ _

Jm Ale) = [u_zg) bl =0

due to (4.2) which shows that Ag(z), k =1,2,--- ,n— 1, given by (4.1), satisfy all the conditions given by
(3.4).

Similarly, for Ag(x), given by (4.3), we have that Aop(z;) =0, j =1,--- ,n—1. For j = 0 and using
the fact that Uy, (1) = A2,(1), we have Ag(xo) = 1. Again by differentiating (4.3) with respect x, we get
Aj(z;) =0, j =1,2,--- ,n— 1. Thus Ag(z) given by (4.3) satisfy the conditions (3.4) for j = 0, which

completes the proof of the lemma. O

Lemma 4.2. The fundamental functions { By, (x)}Z;ll satisfying the conditions (3.5) can be explicitly repre-

sented as

(=) + )1 - 2f)UR(x)
(4.7) B(@) = Azn(x))%lzxk)(l“ —k»’%) '

Proof. Obviously, B(z;) =0, k =1,2,--- ,n—1, j =0,1,--- ,n—1 and for j # k, Bj(z;) =0, j,k =

1,2,---,n—1. For j =k,

. / — M 1 M
wll)rngk(x) T2 () S (@ — k)

BT . <2Un<w>U;<w> . <Un<w>>2>

(x — xg) T — x

due to (2.6), which proves that Bg(z), k =1,2,--- ,n — 1 given by (4.7) satisfy all the conditions given by
(3.5). O

From Lemma 4.1 and Lemma 4.2 it follows that H,, (f, z) satisfying the conditions (3.1) is an almost quasi

Hermite interpolation.
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Theorem 4.1. The function H,(f,x) is a rational function of degree atmost 2n — 1 that is

(4.8) H,(f,z) € Ran—1(ao, a1, ,a2n—1)-
Proof. Since U,, € Pp_1(ag, a1, -+ ,a2,—1), Wwe can express it as
Up(z) := 75"_1(?/2
(S5 ()
where S} (z) == (z —ap)(x —a1) -+ (x — agn—1), Sn—1(x) := cp_1(x — x1)(T — 22)

depends on n and {ax};",". So, we have

)\ 12
(19) a0 = () D, k=2 -,
where
(4.10) gu(z) = ——n=1(®) k=1,2,- ,n—1.

Sy () (@ — xp)’

coo(x—xpo1) and ¢

Thus, ¢k(x) € Pn_1(ao, a1, ,a2n—1), thus by (3.3), (4.1) and (4.7) we easily find that

t2n—1 (l‘)

(4.11) Ha(f0) = 2220

where to,_1(x) is a polynomial of degree < 2n — 1, which proves the lemma.

Let y, =0, k=1,2,--- ,n —1 then (3.3) reduces to

n—1
(4.12) Hy(f,2) =Y flaw)Ax(z) + £(1) Ao ()

k=1

which is an almost quasi Hermite Fejér interpolation function for f € C[—1,1].

5. RADAU-TYPE QUADRATURE FORMULA

For a given function f defined on [—1, 1], we define the function

(5.1) Gu(z, f) = :Z_:f(wk)hk@)
where, _
m) =1 | (G ) ¢ ) 4
k=1,2,---,n—1
and
o () = Us ()
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We have that G, (f,x) € Ran—1(ag, a1, ,a2,—1). Also the rational function G, (f,z) is an almost quasi

Hermite Fejér interpolation function. Let

1
1
(52) Ak:/;l ﬁhk(l’)dﬂf, k:1,2, ,n—l
and
1 1 2
(5.3) Ap = Un(x)

e x
1 V1 =22 UZ(1)
then the Radau-type quadrature formula is given by

n—1

(5.4) e = Ao f(1 +2Akf ).

/ m

With respect to this quadrature formula, we have the following

Theorem 5.1. The quadrature formula (5.4) can be expressed as

(55) [1 vV 1-— .132d )\2n + Z )\Qn

Lemma 5.1. Fork=1,2,--- ,n—1

7

(5.6) / (1 — x)(x — xx) 3 (2)dx = 0.

-1

Proof. We have that for k=1,2,--- ,n—1

Un(x)
(UR)? (k) (2 — )
(1 — x3)?sin? gy, ()

_ k
(5.7) T2 (o) (1 — 22) (2w — ap)?

Bla) =

Also

(58) Un(l) = m1—>rnl Slnft\/ii? = )\Zn(l)
and

(5.9) Un(—1) = (=1)" T Xg, (—1).

By these equalities, the left hand side of (5.6) can be represented as

B 1 sin? ton ()
(5.10) I 7/71 (1+x)m(m—$k)dx

Consider the transformation

1 _
(5.11) O

which gives

(5.12) de = —
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2(y2 — y?)

(5.13) T — Tk = *ma

14 lfo=—""
(5.14) eI

(5.15) Vi = %Y

1+y2
We know that,
(5.16) i Chuk ) P (%)
) Sin fo, | ——= | = sin ¢ay,
H2 1442 2n Y
where sin ¢2,(y) is a Bernstein sine fraction
. 1 1
(5.17) sindan(y) = 52 (xa(y) = xa' ()

where x,,(y) = H?Zgl % and zj are the roots of the equations y? + (1 +ax)(1 —ax) 1 =0,Zz, >0, k =
0,1,---,2n — 1. Taking into account the assumptions on the parameters ar, £ = 0,1,--- ,2n — 1, we have
the following: 1) zp = 7, 2) if ax and q; are paired by complex conjugation, then the corresponding numbers

zr and z; are symmetric with respect to the imaginary axis. Besides, the function sin ¢, (y) has zeros at

Fyr, ye =/ — ) /(L + ), k=1,2,--- ,n— 1. Thus,

I l+yR / (14 yz)sin22¢>2n(y) dy
4 ) y: —vi
1+ vy} .
1 - _ 1
(5 8) 4 z—)ykl,IInzk>O Jk(z)
where
© (1 4 y?) sin? ¢oy,
(5.19) To(z) = / (1+y g 2¢2 () a.
oo Y2 —z
From (5.17) we get
. 1 _
(5.20) sin gan(y) = =7 (X2 (y) = 2+ X, (v))
due to which, we have
1
(5.21) Te(2) = =7 (T (2) = 2Jk2(2) + Jra(2))

where

Jkl(z) =

)

/°° L4y )xa),
2 2
O

Jia(z) = /°° A+,

2 _ 2
oo Y — 2
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and

Jis(2) = /°° L+’ W)

y2_22

—0o0

Since Jg1(z) has only singular point y = z in the upper half plane. Thus by the residue theorem we have

(1+y*)xa(y)

Jki(z) = 2mi ;1_>mz )
(5.22) -1 *;22 2 (2)i.
Similarly,
(5.23) Jia(2) = 22 =2 )i

Also, Jk2(z) has only singular point y = z in the upper half plane, therefore by the residue theorem, we have

ISR O o) B -
(5.24) Jkg(z)—2m;g Wt panii2

Putting the value of Jy1(z2), Jr3(2) and Jia(2) from (5.22), (5.23) and (5.24) respectively in (5.21) we get

1(1 2 1 2 1 2
(5.25) Ji(z) = —= ( Rk X2 (2)mi — 2 Rk i+ te X;Q(z)m)

4 z z z
which by (5.18) gives

14y 1422 5 1422 ., _1+22
(5.26) I = 16 z—)y}cl,l%lzk>0 . X (z)mi + X (z)mi —2 -
Since x(yx) = 1, thus it follows that I = 0, which completes the proof of the lemma. |
Lemma 5.2. Fork=1,2,--- ,n—1,
T

5.27 A = .
(520 £ = Sontan)
Proof. Due to Lemma 5.1 and by putting the value of ¢3(x),k = 1,2,--- ,n—1, from (5.7) in (5.2), we have

1 1—22) [! in? pio,,
(5.28) A, = 0LF ”“"2’“)( k) / i pan (2) da

A3 (k) 1 (x—zk)?2(1+ 2)vV1 — 2?

We find the integrals

! sin? fig, ()
5.29 I = e de, k=1,2,---,n—1,
(5:29) g /4 (x —2p)?2(1 4+ 2)V1 — 22

by using the transformation (5.11), (5.12), (5.13), (5.14), (5.15) and (5.16), we have

. (1+y7)? [ (L+y?)?sin® gon(y)
S 2 232 d
8 —00 (y - yk)

Consider the auxiliary integral

J*(Z) _ /oo (]- + y2)2 Sin2 ¢2n(y) dy

k
oo (y? — 2%)?
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then I}; can be written as

(1+y?)? .

. [ =2k 1 S (2).
(5 30) 8 z—>ykl,ISnzk >0 Jk (Z)
which due to (5.20) can be expressed as

1 2\2
(5.31) =R (1) - 205,() + =)
32 2—Yk,S2E >0
where,
. = (1497)?
I (2) = [m mxi(y)dy,
. * (1+97)?
IQk(Z) = [m (yz _ 212)2dy

and

Gaazjm—ﬂillw*@My

oo (Y2 = 2227

Since zp = i the integrand of I, (z) has only singular point y = z in the upper half plane. Thus by the

residue theorem, we have

ﬁW)zmﬂgi(%i%ﬁ@>
(5.32) = 2mi lim [xi () d% %y izl))Z ((:1; :21))2 d% 2wl

Since,
2n—1
— 2

_ Y
xa() = ]I -
j=0 -
which by logarithmic differentiation gives

2n—1
d

@xn(y) =xn(y) > (

= -2 -3z)

Z5 — Zj

Also,
d ((y2 + 1)2> 2 Ay 4 dyz — 2
dy \ (y+2)?) (y+2)3
Therefore,
" . 324 4222 1
(5.33) ) = w2
n (2’2 + 1)2 iy Zj — Zj
222 = (z—2)(z — Z5)
Similarly,
324 4+222 -1
(5.34) L(2) = 2min2(z)| 2 +4 :
z

2n—1 _
(22 +1)2 zj — Z
+ 242 Z ( ’

L =2 5)
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Again by residue theorem we have

29t + 4z + dyz — 2

Iy (2) = 2mi ;llg (y+ 2)3
(324 +222 -1
(5.35) = 2mi (42«3) .

By (5.33), (5.34), (5.35), (5.31) and (5.30) and taking into account that x?2(yx) = 1 it follows that

. 2n—1
L mi(l+yp)t
R DS

Ry k) —z)

Zj—Zj

Since, yi = \/(1 — z)/(1 + z) and 2 = i\/(1 + ax)/(1 — ay), thus by simple calculation, we have,

2n—1 _ 2n—1
Yot - Y ()
— (yr — 2;)(yr — Zj) Yk — 2§ Yk — Zj

3=0 7=0
2"2‘:1 i/ T a;)y/(1—ay) ( 2 )
= 1+ ajzy 14y}
4iday,
(5.36) - 127@2’“)
(1+y;)
thus
1 Panm) (Lt )’
k SQ% .
Therefore by (5.28), the lemma follows. O

Lemma 5.3. For Ay, defined by (5.3), we have

(5.37) A = (/\2::(1)> .

Proof. By using the transformation (5.11), (5.12), (5.15) and (5.16), we have

1 C1+y?
Ay = 4U,2L(1)/ " sin® ¢o, (y)dy

which, due to (5.20), can expressed as

(5.38) Aoz—ﬁg(l)(h — 2+ I3)
where
I = /m 1+2y2xi(y)dy,
- Y
12—/0:0 1Z2y2dy
and
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Since for I, y = 0 is the only singular point in the upper half plane. Thus by the residue theorem, we have

. d
(5.39) L = 2m§g%dfy{(1+y2)xi(y)}

2n—1

11
4ri Z - =
7=0 ZJ Z.]

Similarly,

2n—1

) 1 1
(5.40) I3 =47 Z g — 2
7=0

The integrand of I5(z) has only singular point y = 0 in the upper half plane. Thus by the residue theorem,

we have

d
5.41 Ir = 27 lim — (1 + ¢4?) = 0.
(5.41) 2 Myg%dy( +9°)

Hence using (5.40), (5.40) and (5.41) in (5.38) we get

2n—1

and since

2n—1

1 1 4
(-2)-p

S \F 7 i

hence
2T

5.42 Ay =
( ) 0 /\Qn(l)
which in turn proves the lemma. U

By Lemma 5.2, Lemma 5.3 and (5.4), Theorem 5.1 follows.
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