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Abstract. In the past, many researchers like Szasz, Rajgopal, Parameswaran, Ramanujan, Das, Sulaiman,

have established results on products of two summability methods. In the present article, we have established

a result on generalized indexed product summability which not only generalizes the result of Misra et al [2]

and Paikray et al [3] but also the result of Sulaiman [7].

1. Introduction

If we look back to the history, it is found that, in 1952, Szasz [8] published some results on products of

summability methods. Subsequently, Rajgopal [5] in 1954, Parameswaran [4] in 1957, Ramanujan [6] in 1958

etc. published some more results on products of summability methods. Later Das [1] in 1969 proved a result

on absolute product summability. In 2008, Sulaiman [7] published a result on indexed product summability

of an infinite series. The result of Sulaiman was then extended by Paikray et al.[3] in 2010 and Misra et al

[2] in 2011.

Let
∑
an be an infinite series with the sum of partial sums {sn}. Let {pn} be a sequence of positive real
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constants such that

Pn = p0 + p1 + p2 + ...+ pn →∞ as n→∞ (P−i = p−i = 0). (1.1)

The sequence-to-sequence transformation

tn =
1

n

n∑
ν=0

pνsν (1.2)

defines the (R, pn) transform of {sn} generated by {pn}.

The series
∑
an is said to be summable |R, pn|k, k ≥ 1, if

∞∑
n=1

nk−1|tn − tn−1|k <∞. (1.3)

Similarly, the sequence-to-sequence transformation

Tn =
1

n

n∑
ν=0

pn−νsν (1.4)

defines the (N, pn) transform of {sn} generated by {pn}.

Let {τn} be the sequence of (N, qn) transform of the (N, pn) transform of {sn}, generated by the sequence

{qn} and {pn} respectively.That is

τn =
1

Qn

n∑
r=0

qn−r
1

Pr

r∑
ν=0

pr−νsν

Then the series
∑
an is said to be summable |(N, qn)(N, pn)|k, k ≥ 1, if

∞∑
n=1

nk−1|τn − τn−1|k <∞, (1.5)

and the series
∑
an is said to be summable |(N, qn)(N, pn), δ|k, k ≥ 1, 1 ≥ δk ≥ 0 if

∞∑
n=1

nδk+k−1|τn − τn−1|k <∞. (1.6)

Similarly, if {αn} is a sequence of positive numbers, then the series
∑
an is said to be summable

|(N, qn)(N, pn), αn|k, k ≥ 1, if
∞∑
n=1

αn
k−1|τn − τn−1|k <∞, (1.7)

and the series
∑
an is summable |(N, qn)(N, pn), αn; δ|k, k ≥ 1, 1 ≥ δk ≥ 0, if

∞∑
n=1

αn
δk+k−1|τn − τn−1|k <∞. (1.8)

For, µ a real number, the series
∑
an is summable |(N, qn)(N, pn), αn, δ, µ|k, k ≥ 1, 1 ≥ δk ≥ 0, if

∞∑
n=1

αn
µ(δk+k−1)|τn − τn−1|k <∞. (1.9)
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We assume through out this paper that Qn = q0+q1+...+qn →∞ as n→∞ and Pn = p0+p1+...+pn →∞

as n→∞.

2. Known Theorems

In 2008, Sulaiman [7] has proved the following theorem.

Theorem 2.1. Let k ≥ 1 and {λn} be a sequence of constants. Let us define

fν =

n∑
r=ν

qr
pr
, Fν =

n∑
r=ν

prfr (2.1)

Let pnQn = O(Pn) such that

∞∑
n=ν+1

nk−1qn
k

Qn
kQn−1

= O

(
(νqν)k−1

Qk−1ν

)
. (2.2)

Then the sufficient condition for the implication
∑
an is summable |R, rn|k ⇒

∑
anλn is summable

|(R, qn)(R, pn)|k are

|λν |Fν = O (Qν) , (2.3)

|λν | = O (Qν) , (2.4)

pνRν |λν | = O (Qν) , (2.5)

pνqνRν |λν | = O (QνQν−1rν) , (2.6)

pnqnRn|λn| = O (PnQnrn) , (2.7)

Rν−1|∆λν |Fν−1 = O (Qνrν) , (2.8)

and

Rν−1|∆λν | = O (Qνrν) , (2.9)

where Rn = r1 + r2 + ...+ rn.

Subsequently Paikray et al [3] generalized the above theorem by replacing the (R, pn) summability by A

summability. He proved:

Theorem 2.2. Let k ≥ 1 and {λn} be a sequence of constants. Let us define

fν =

n∑
r=ν

qrarν , Fν =

n∑
r=ν

fr (2.10)



Int. J. Anal. Appl. 18 (2) (2020) 175

Then the sufficient condition for the implication
∑
an is summable |R, rn|k ⇒

∑
anλn is summable

|(R, qn)(A)|k are

m+1∑
n=ν+1

nk−1qn
k

Qn
kQn−1

= O

(
1

λν
k

)
, (2.11)

(
n∑
r=ν

qr
k

k−1

)
= O(qν), (2.12)

(
n∑
r=ν

akr,ν

)
= O

(
νk−1

)
, (2.13)

Rν = O (rν) , (2.14)

qn
Qn

= O (1) , (2.15)

qnλnan,n
Qn−1

= O (1) , (2.16)

(∆λν)
k

qνk−1
= O

(
νk−1

)
, (2.17)

∆λν
λν

= O (1) , (2.18)

and

λν
k

qνk−1
= O

(
νk−1

)
, (2.19)

where Rn = r1 + r2 + ...+ rn.

In 2011, Misra et al [2], generalize the above theorems and proved the following theorem.

Theorem 2.3. For the sequences of real constants {pn} and {qn} and the sequence of positive numbers

{αn}, we define

fν =

n∑
i=ν

qn−ipi−ν
Pi

and Fν =

n∑
i=ν

fi (2.20)

Let

Qn = O (qnPn) (2.21)

and

m+1∑
n=ν+1

{f(αn)}k(αn)k−1qn
k

Qn
kQn−1

= O

(
(νqν)k−1

Qkν

)
as m→∞. (2.22)
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Then for any sequence {rn} and {λn}, the sufficient conditions for the implication
∑
an is summable

|R, rn|k ⇒
∑
anλn is summable |(N, qn)(N, pn), αn; f |k, k ≥ 1, are

|λν |Fν = O (Qν) , (2.23)

|λn| = O (Qn) , (2.24)

RνFν |λν | = O (Qνrν) , (2.25)

qnRnFn|λn| = O (QnQn−1rn) , (2.26)

Rν−1Fν+1|∆λν | = O (Qνrν) , (2.27)

Rν−1|∆λν | = O (Qνrν) , (2.28)

qnRn|λn| = O (QnQn−1rn) , (2.29)
∞∑
n=1

nk−1|tn|k = O(1), (2.30)

and

∞∑
n=2

{f(αn)}k(αn)k−1|tn|k = O(1), (2.31)

where Rn = r1 + r2 + ...+ rn.

In what follows, we established a theorem on generalized product summability of the infinite series
∑
anλn

in the following form:

3. Main Theorem

Theorem 3.1. For ’µ’ a real number, the sequences of real constants {pn} and {qn} and the sequence of

positive numbers {αn}, we define

fν =

n∑
i=ν

qn−ipi−ν
Pi

and Fν =

n∑
i=ν

fi (3.1)

Let

Qn = O (qnPn) (3.2)

and

∞∑
n=ν+1

αn
µ(kδ+k−1)qn

k

Qn
kQn−1

= O

(
(νqν)k−1

Qkν

)
as m→∞. (3.3)
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Then for any sequence {rn} and {λn}, the sufficient conditions for the implication
∑
an is summable

|R, rn|k ⇒
∑
anλn is summable |(N, qn)(N, pn), αn, δ, µ|k, k ≥ 1, are

|λν |Fν = O (Qν) , (3.4)

|λn| = O (Qn) , (3.5)

RνFν |λν | = O (Qνrν) , (3.6)

qnRnFn|λn|αnµδ = O (QnQn−1rn) , (3.7)

Rν−1Fν+1|∆λν | = O (Qνrν) , (3.8)

Rν−1|∆λν | = O (Qνrν) , (3.9)

qnRn|λn|αnµδ = O (QnQn−1rn) , (3.10)
∞∑
n=1

nk−1|tn|k = O(1), (3.11)

and

∞∑
n=2

(αn)µ(k−1)|tn|k = O(1), (3.12)

where Rn = r1 + r2 + ...+ rn.

4. Proof of Theorem 3.1

Let {tn
′} be the (R, rn) transform of the series

∑
an. Then

tn
′

=
1

R

n∑
ν=0

rνsν

tn = tn
′
− t
′

n−1 =
rn

RnRn−1

n∑
ν=1

Rν−1aν

Let {sn} be the sequence of partial sums of the series
∑
anλn and {τn} be the sequence of (N, qn)(N, pn)-

transform of the series
∑
anλn. Then

τn =
1

Qn

n∑
r=0

qn−r
1

Pr

r∑
ν=0

pr−νsν

=
1

Qn

n∑
ν=0

sν

n∑
r=ν

qn−νpr−ν
Pr

=
1

Qn

n∑
ν=0

fνsν (4.1)
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Hence

Tn = τn − τn−1

=
1

Qn

n∑
ν=0

fνsν −
1

Qn−1

n−1∑
ν=0

fνsν

= − qn
QnQn−1

n∑
ν=0

fνsν +
fnsn
Qn−1

= − qn
QnQn−1

n∑
r=0

fr

r∑
ν=0

aνλν +
fn

Qn−1

n∑
ν=0

aνλν

= − qn
QnQn−1

n∑
r=0

arλr

r∑
ν=0

fν +
fn

Qn−1

n∑
ν=0

aνλν (4.2)

= − qn
QnQn−1

n∑
ν=1

Rν−1aν

(
λν
Rν−1

n∑
r=ν

fr

)
+

q0p0
PnQn−1

n∑
ν=1

Rν−1aν

(
λν
Rν−1

)

= − qn
QnQn−1

[
n−1∑
ν=1

(
ν∑
r=1

Rr−1ar

)
∆

(
λν
Rν−1

n∑
r=ν

fr

)
+

(
n∑
ν=1

Rν−1aν

)
λn
Rn−1

fn

]

+
q0p0

PnQn−1

[
n−1∑
ν=1

(
ν∑
r=1

Rr−1ar

)
∆

(
λν
Rν−1

)
+

(
n∑
ν=1

Rν−1aν

)
λn
Rn−1

]

= − qn
QnQn−1

[
n−1∑
ν=1

{
λνFνtν +

Rν−1
rν

fνλνtν +
Rν−1
rν

(∆λν)Fν+1tν

}
+
Rn
rn
λnFntn

]

+
q0p0

PnQn−1

[
n−1∑
ν=1

{
λνtν +

Rν−1
rν

(∆λν) tν

}
+
Rn
rn
λntn

]

=

7∑
i=1

Tn,i, say. (4.3)

In order to prove this theorem, using (4.3) and Minokowski’s inequality, it is sufficient to show that

∞∑
n=1

αn
µ(δk+k−1)|Tn,i|k <∞ for i = 1, 2, 3, 4, 5, 6, 7.

On applying Holder’s inequality, we have

m+1∑
n=2

αn
µ(δk+k−1)|Tn,1|k

=

m+1∑
n=2

αn
µ(δk+k−1)| qn

QnQn−1

n−1∑
ν=1

λνFνtν |k
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≤
m+1∑
n=2

αn
µ(δk+k−1) qn

k

Qn
kQn−1

n−1∑
ν=1

|λν |kFνk|tν |k

qνk−1

(
1

Qn−1

n−1∑
ν=1

qν

)k−1

= O(1)

m∑
ν=1

1

qνk−1
|λν |kFνk|tν |k

m+1∑
n=ν+1

αn
µ(δk+k−1)qn

k

Qn
kQn−1

= O(1)

m∑
ν=1

1

qνk−1
|λν |kFνk|tν |k

(νqν)k−1

Qν
k

, using (3.2)

= O(1)

m∑
ν=1

νk−1|tν |k
(
|λν |Fν
Qν

)k

= O(1)

m∑
ν=1

νk−1|tν |k using (3.4)

= O(1) as m→∞.

Next

m+1∑
n=2

αn
µ(δk+k−1)|Tn,2|k

=

m+1∑
n=2

αn
µ(δk+k−1)| qn

QnQn−1

n−1∑
ν=1

Rν−1
rν

fνλνtν |k

≤
m+1∑
n=2

αn
µ(δk+k−1) qn

k

Qn
kQn−1

n−1∑
ν=1

Rν
kFν

k|λν |k|tν |k

qνk−1rνk

(
1

Qn−1

n−1∑
ν=1

qν

)k−1

= O(1)

m∑
ν=1

Rν
kFν

k|λν |k|tν |k

qνk−1rνk

m+1∑
n=ν+1

αn
µ(δk+k−1)qn

k

Qn
kQn−1

= O(1)

m∑
ν=1

νk−1|tν |k
(
RνFν |λν |
rνQν

)k

= O(1)

m∑
ν=1

νk−1|tν |k using (3.6)

= O(1) as m→∞.

Further

m+1∑
n=2

αn
µ(δk+k−1)|Tn,3|k

=

m+1∑
n=2

αn
µ(δk+k−1)| qn

QnQn−1

n−1∑
ν=1

Rν−1
rν

Fν+1(∆λν)tν |k

≤
m+1∑
n=2

αn
µ(δk+k−1) qn

k

Qn
kQn−1

n−1∑
ν=1

(Rν−1)
k
(Fν+1)

k|∆λν |k|tν |k

qνk−1rνk

(
1

Qn−1

n−1∑
ν=1

qν

)k−1
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= O(1)

m∑
ν=1

(Rν−1)
k
(Fν+1)

k|∆λν |k|tν |k

qνk−1rνk

m+1∑
n=ν+1

αn
µ(δk+k−1)qn

k

Qn
kQn−1

using (3.3)

= O(1)

m∑
ν=1

νk−1|tν |k
(
Rν−1Fν+1|∆λν |

rνQν

)k

= O(1)

m∑
ν=1

νk−1|tν |k using (3.7)

= O(1) as m→∞.

Again,

m+1∑
n=2

αn
µ(δk+k−1)|Tn,4|k

=

m+1∑
n=2

αn
µ(δk+k−1)| qn

QnQn−1

Rnλnfntn
rn

|k

≤
m+1∑
n=2

αn
µ(δk+k−1)|tn|k

(
qnRnFn|λn|
QnQn−1rn

)k

=

m+1∑
n=2

αn
µ(k−1)|tn|k

(
qnRnFn|λn|αnµδ

QnQn−1rn

)k

= O(1)

m+1∑
n=2

αn
µ(k−1)|tn|k, using (3.7)

= O(1) as m→∞.

Next,

m+1∑
n=2

αn
µ(δk+k−1)|Tn,5|k

=

m+1∑
n=2

αn
µ(δk+k−1)| p0q0

PnQn−1

n−1∑
ν=1

λνtν |k

≤ O(1)

m+1∑
n=2

αn
µ(δk+k−1) 1

Pn
kQn−1

n−1∑
ν=1

|λν |k|tν |k

qνk−1

(
1

Qn−1

n−1∑
ν=1

qν

)k−1

= O(1)

m∑
ν=1

|λν |k|tν |k

qνk−1

m+1∑
n=ν+1

αn
µ(δk+k−1)

Pn
kQn−1

= O(1)

m∑
ν=1

|λν |k|tν |k

qνk−1

m+1∑
n=ν+1

αn
µ(δk+k−1)qn

k

Qn
kQn−1

using (3.2)

= O(1)

m∑
ν=1

νk|tν |k
(
|λν |
Qν

)k

= O(1)

m∑
ν=1

νk|tν |k using (3.6)

= O(1) as m→∞.
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Again,

m+1∑
n=2

αn
µ(δk+k−1)|Tn,6|k

=

m+1∑
n=2

αn
µ(δk+k−1)| p0q0

PnQn−1

n−1∑
ν=1

Rν−1
rν

(∆λν)tν |k

≤ O(1)

m+1∑
n=2

αn
µ(δk+k−1) 1

Pn
kQn−1

n−1∑
ν=1

(Rν−1)
k|∆λν |k|tν |k

rνkqνk−1

(
1

Qn−1

n−1∑
ν=1

qν

)k−1

= O(1)

m∑
ν=1

(Rν−1)
k|∆λν |k|tν |k

rνkqνk−1

m+1∑
n=ν+1

αn
µ(δk+k−1)

Pn
kQn−1

= O(1)

m∑
ν=1

νk−1|tν |k
(
Rν−1|∆λν |
rνQν

)k

= O(1)

m∑
ν=1

νk−1|tν |k using (3.9)

= O(1) as m→∞.

Finally,

m+1∑
n=2

αn
µ(δk+k−1)|Tn,7|k

=

m+1∑
n=2

αn
µ(δk+k−1)| p0q0

PnQn−1

Rn
rn
λntn|k

= O(1)

m+1∑
n=2

αn
µ(δk+k−1)|tn|k

(
Rn|λn|

PnQn−1rn

)k

= O(1)

m+1∑
n=2

αn
µ(δk+k−1)|tn|k

(
qnRn|λn|
QnQn−1rn

)k

= O(1)

m+1∑
n=2

αn
µ(k−1)|tn|k

(
qnRn|λn|αnµδ

QnQn−1rn

)k

= O(1)

m+1∑
n=2

αn
µ(k−1)|tn|k, using (3.10)

= O(1) as m→∞.

This completes the proof of the theorem.
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5. Conclusion

For µ = 1, the summability method |(N, qn)(N, pn), αn, δ, µ|k reduces to the summability method

|(N, qn)(N, pn), αn, δ|k. For, f(αn) = (αn)δ and δ ≥ 0, |(N, qn)(N, pn), αn, δ; f |k - summability re-

duces to |(N, qn)(N, pn), αn, δ|k - summability. Again, for δ = 0, |(N, qn)(N, pn), αn, δ|k - summabil-

ity reduces to |(N, qn)(N, pn), αn|k- summability and for αn = n, |(N, qn)(N, pn), αn|k- summability re-

duces to |(N, qn)(N, pn)|k-summability. When pn = 1 = qn, |(N, qn)(N, pn)|k-summability is same as

|(R, qn)(R, pn)|k-summability. Also, |(R, qn)(R, pn)|k-summability reduces to |(R, qn)(A)|k-summability

when (R, pn)-summability is replaced by A- summability. From the above results and discussions, we are in

a conclusion that our results are more generalized and in particular generalizes the results of Sulaiman [7],

Paikray et al [3] and Misra et al [2].
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