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ABSTRACT. The study is aimed at investigating the robustness of forecast performance of a hybridized (ARIMA-

GARCH-type) model over each single component using different periods of horizon to display consistency over time. 

Daily closing share prices were explored from the Nigerian Stock Exchange for First City Monument Bank and Wema 

Bank Plc, spanning from January 3, 2006 to December 30, 2016, with a total of 2,713 observations. ARIMA model, 

GARCH-type, and hybridized ARIMA-GARCH-type were considered. The hybridized ARIMA-GARCH-type was 

found to produce the best forecast performance in terms of robustness over each single component model and the 

robustness was found to be consistent over different time horizons for the datasets. The implication is that, it 

provides an essential remedy to the problem associated with model instability when forecasting a discrete-time 

stochastic series. 

 

1. Introduction 

Forecasting for future observations is one of the objectives of time series application. 

Time series forecasting takes different approaches depending on what it is targeted at. It could 

be in-sample forecast approach, where the same data used for model formulation are also 

employed for checking the predictive performance of such model, which is aimed at selecting 

the best fitted models. Also, it could be out-of-sample forecast approach, where the data are 
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partitioned into two components (training and validation datasets), targeted at achieving 

forecast accuracy. Analytically, the later is advantageous over the former in that it is able to give 

information about the future values of observed time series, depict forecaster in real time, and 

strongly discourage model overfitting ([1], [2], [3], [4], [5]). Apart from predicting for future 

observations, forecasting is also a proven and valid tool for selecting a model with best 

predictive values ([6], [7], [8], [9], [10]). However, in a quest for best predictive performance, 

model instability has become a subject of discourse and tends to pose a serious threat to time 

series forecasting accuracy. Model instability refers to the tendency for estimated parameters to 

fluctuate over time. One obvious consequence of model instability is that it leads to wrong 

choice of model resulting in high variability of prediction error ([11], [12], [13], [14], [15]). 

One way of overcoming the problem associated with forecast accuracy due to model 

instability is to account for possible instability in the model ([16], [17], [18]). On the other hand, 

instead of accounting for fluctuating parameters of a single model in order to achieve improved 

forecast accuracy, it is a good practice and in line with the recent innovation trend in time series 

to combat the menace of model instability on forecast accuracy through combined models. This 

alternative approach involves selecting diverse models and thereafter hybridizing the models to 

generate forecast, which can depict the provable forecast performance of individual models and 

at the same time provides robust accuracy. It is evident in the literature that diverse forecast 

hybridized approaches have supported the assertion that forecasts generated from combined 

models appeared to be  improved and robust over the forecasts obtained by single models ([19, 

[20], [21], [22], [23], [24], [25]). 

Meanwhile, in Nigeria, [7] showed that out-of-sample model selection approach 

outperformed the in-sample counterpart in describing the characterizations of future 

observations without necessarily considering the choice of true model by utilizing the 

advantage of combining both ARIMA and GARCH-type models to achieve forecast accuracy. 

[26] looked at possible combination of both ARMA and ARCH-type models to form a single 

model such as ARMA-ARCH that could completely capture the linear and non-linear features 

of financial data. Their findings revealed that such combination was sufficient for the time series 

under study. [27] investigated the carry-over effect of biased estimates of joint ARIMA-

GARCH-type model parameters on forecast accuracy in the presence of outliers and their 
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results showed that after adjusting for outliers, marginal improvement on the forecasts was 

observed. However, these previous studies in the discrete-time stochastic series failed to 

compare the advantages of the combined ARIMA-GARCH-type models over its individual 

components, dwelt on only one time horizon, and failed to predict on different time horizons 

leading to risky reliance. Therefore, this study seeks to bridge this gap by investigating the 

robustness of forecast performance of ARIMA-GARCH-type model over each single component 

using different time horizons to show consistency over time. 

The motivation for this study is drawn from the fact that ARIMA models are not 

sufficient for modeling the return series due to the presence of heteroscedasticity, which leads 

to spurious forecasts. On the other hand, GARCH-type models are often misspecified with 

biased parameters and are susceptible to the presence of structural breaks and outliers. Thus, 

these challenges provide the pragmatic reason and form the symbolic platform for adopting the 

hybridized ARIMA-GARCH-type model in this study. 

The remaining aspect of the study is organized as follows: Section 2 takes care of 

materials and methods; section 3 handles discussion of results, while section 4 concludes the 

study.  

2 Materials and Methods 

2.1 The Return Series  

The return series, 𝑅𝑡  can be obtained given that,𝑃𝑡, is the price of a unit share at time, t 

and 𝑃𝑡−1  is the share price at time t−1. 

𝑅𝑡 = ∇𝑙𝑛𝑃𝑡  = (1 − 𝐵)𝑙𝑛𝑃𝑡   = 𝑙𝑛𝑃𝑡 − 𝑙𝑛𝑃𝑡−1.                                                              (1) 

Here, 𝑅𝑡 in equation (1) is regarded as a transformed series of the share price, 𝑃𝑡, meant to attain 

stationarity, where both the mean and the variance of the series are stable ([28], [29]), while𝐵is 

the backshift operator. 

2.2 ARIMA Models 

ARIMA model is practically applied to capture the linear dependence in the return series 

([30],[28], [26], [31], [32]). However, the fact that the series tends to appear in clusters, which 

actually results in the violation of assumption of constant variance. Also, the linear time series 

models do not seem to produce accurate out-of-sample forecasts, thus providing a more sensible 
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argument for adopting heteroscedastic models ([31], [33]). A typical ARIMA model equation is 

presented in (2): 

𝑅𝑡 = 𝜇𝑡 + 𝑎𝑡 ,                                                                                                                      (2) 

where 𝜇𝑡 = 𝜑0  +  ∑ φjRt−j
p
j=1 + ∑ θi

𝑞
𝑖=1 𝑎t−i, 

φ is an autoregressive parameter, and 𝜃 is a moving average parameter. 

2.3 GARCH-type Models 

The generalized autoregressive conditional heteroscedastic (GARCH-type) models were 

introduced to account for heteroscedasticity (changing variance) and to overcome the problems 

associated with violation of assumption of constant variance. The GARCH-type specification 

could be symmetric (for example ARCH) which rely on modeling the conditional variance as a 

linear function of squared past residuals or asymmetric (for example EGARCH) which allows 

for the signs of the innovations (returns) to have impact on the volatility apart from magnitude  

([34], [35], [31], [36]). Moreover, the generalized autoregressive conditional heteroscedastic 

(GARCH-type) models were specified based on the normal distribution for the innovations but 

could not capture the heavy-tailed property ([34]). Therefore, in this study, the student-t 

distribution is adopted which was traditionally introduced to overcome the weaknesses of the 

normal distribution in accommodating the heavy-tailed property. 

2.3.1 Autoregressive Conditional Heteroscedastic (ARCH) Model 

ARCH(q) model as provided in [37] and specified as  

𝜎𝑡
2 =  𝜔 + 𝛼1𝑎𝑡−1

2 + ⋯ +  𝛼𝑞𝑎𝑡−𝑞
2 ,                                                                                (3) 

where 𝜎𝑡
2 is the conditional variance (heteroscedasticity), 𝜔 is the constant term and𝛼𝑞 is the 

coefficient of volatility clustering up to order q. 

2.3.2 Exponential Generalized Autoregressive Conditional Heteroscedastic (EGARCH) 

Model 

EGARCH(q,p) model applies the natural logarithm to ensure that the conditional 

variance is positive and thus overcome the requirement of parameter restrictions ([38]). The 

EGARCH (q, p) is defined as,   

𝑙𝑛𝜎𝑡
2  =  𝜔 +  ∑ 𝛾𝑘𝑎𝑡−𝑘

𝑟
𝑘=1  +  ∑ 𝛼𝑖 (|𝑎𝑡−𝑖| −

2√𝑣−2𝛤(𝑣+1) 2⁄

(𝑣−1)𝛤(𝑣 2)√𝜋⁄
)

𝑞
𝑖=1 +  ∑ 𝛽𝑗

𝑝
𝑗=1 𝑙𝑛𝜎𝑡−𝑗,

2     (4) 

𝛽𝑗is the garch coefficient measuring persistence, and𝛾𝑘is the asymmetric coefficient. 
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2.4 Hybridized Models 

Heteroscedastic models are hybridized of both mean and variance equations. The mean 

equation represents the ARIMA model as shown in equation (5): 

𝑅𝑡 = 𝜑0  +  ∑ φjRt−j
p
j=1 + ∑ θi

𝑞
𝑖=1 𝑎t−i + 𝑎𝑡 ,                                                                 (5) 

𝑎𝑡 =  𝜎𝑡𝑒𝑡 ,                                                                                                                        (6) 

where 𝑒𝑡 is a sequence of independent and identically distributed (i.i.d.) random variables with 

mean zero, that is, E(𝑒𝑡) = 0  and variance 1,while 𝑎𝑡 in (6) is the standardized residual term that 

follows ARCH(q) and EGARCH(q,p) models in (3) and (4), respectively. Putting it differently, 

equation (6) provides the link between the ARIMA and the GARCH-type models. 

2.5 Model Evaluation Criteria 

The methods of forecast evaluation based on forecast error include Mean Squared Error (MSE), 

and Mean Absolute Error (MAE). These criteria measure forecast accuracy. These measures are 

employed in this study because of their popularity. 

The measures are computed as follows:   

MSE  =   
1

𝑛
∑ ℮𝑖

2𝑛
𝑖 =1                                                                                                         (7) 

MAE =    
1

𝑛
∑ |℮𝑖|𝑛

𝑖=1                                                                                                        (8) 

where ℮𝑖 is the forecast error and n is the number of forecast error. 

3. Results and Discussion 

 The data are divided into two groups; training and testing which is purposed at 

checking the forecasting performance. The training data set ranging from January 3, 2006 to 

November 24, 2016, consisting of 2690 was used for model formulation while the testing data set 

was used for evaluating the forecasting performance at 8, 16 and 23 horizons. 

3.1 Plot Analysis 

The plots of share prices in Figures 1-2 showed a fluctuating movement away from the 

common means indicating the presence of nonstationarity. However, Figures 3-4 represent the 

return series, which are the stationary, because they are clustered around the common means,  

indicating the presence of changing variance. 
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Figure 1: Share Price Series of First City Monument Bank  

Source: Data Analysis 

 

Figure 2: Share Price Series of Wema Bank  

Source: Data Analysis 

 

Figure 3: Return Series of First City Monument Bank  

Source: Data Analysis 
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Figure 4: Return Series of Wema Bank 

Source: Data Analysis 

3.3 Evaluation of Forecast Performance 

 Considering the return series of First City Monument bank, ARIMA(0,1,1) model was 

found to be adequate in capturing the linear dependence in the data. On the other hand, 

ARCH(2)-t model was adequate in handling the heteroscedasticity in the data. However, 

combining the two models resulted in an ARIMA(0,1,1)-ARCH(2)-t model could jointly express 

both the linear and nonlinear properties of the series. Since our aim is to assess the forecast 

performance of the combined model in comparison to the individual component models at 

different horizons, the MSE and MAD were explored as the forecast performance evaluation 

measures and their values at different horizons are shown in Table I. 

 

Table I: Evaluation of Forecast Performance for First City Monument Bank 

Horizon 8 16 23 

Model MSE MAE MSE MAE MSE MAE 

ARIMA ARIMA(0,1,1) 3.267𝑒−4 0.01379 4.792𝑒−4 0.01681 4.626𝑒−4 0.01718 

GARCH-

type ARCH(2)-t 
3.333𝑒−4 0.01438 4.778𝑒−4 0.01711 4.500𝑒−4 0.01717 

ARIMA-

GARCH-

type 

ARIMA(0,1,1)-

ARCH(2)-t 

2.327𝑒−4 0.01330 4.667𝑒−4 0.01602 4.300𝑒−4 0.01710 

Source: Data Analysis 
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To show the improvement of forecast performance of the joint ARIMA(0,1,1)-ARCH(2)-t 

model over the ARIMA(0,1,1) model, from Table II, it was found that ARIMA(0,1,1)-ARCH(2)-t 

model outperformed ARIMA(0,1,1) model by; 0.0094% and 0.049% as indicated by MSE and 

MAE, respectively at horizon 8; 0.00125% and 0.079% as shown by MSE and MAE, respectively 

at horizon 16; 0.00326% and 0.008% as indicated by MSE and MAE, respectively at horizon 23. 

Table II: Percentage Improvement of Forecasting Performance between ARIMA and ARIMA-

GARCH-type Models for First City Monument Bank 

Horizon 8 16 23 

Model MSE MAE MSE MAE MSE MAE 

ARIMA ARIMA(0,0,1) 3.267𝑒−4 0.01379 4.792𝑒−4 0.01681 4.626𝑒−4 0.01718 

ARIMA-

GARCH-

type 

ARIMA(0,0,1)-

ARCH(2)-t 

2.327𝑒−4 0.01330 4.667𝑒−4 0.01602 4.300𝑒−4 0.01710 

Percentage Difference 0.94𝑒−2 0.049 0.125𝑒−2 0.079 0.326𝑒−2 0.008 

Source: Data Analysis 

From Table III, it was found that ARIMA(0,1,1)-ARCH(2)-t model also outperformed 

ARCH(2)-t model by 0.01006% and 11.1% (as indicated by the respective values of MSE and 

MAE) at horizon 8; 0.00111% and 0.109% (as indicated by the respective values of MSE and 

MAE) at horizon 16; while 0.002% and 0.007% (as indicated by the respective values of MSE and 

MAE) at horizon 23. 

Table III: Percentage Improvement of Forecasting Performance between GARCH and 

ARIMA-GARCH-type Models for First City Monument Bank 

Horizon 8 16 23 

Model MSE MAE MSE MAE MSE MAE 

GARCH-

type ARCH(2)-t 
3.333𝑒−4 0.01438 4.778𝑒−4 0.01711 4.5𝑒−4 0.01717 

ARIMA-

GARCH-

type 

ARIMA(0,0,1)-

ARCH(2)-t 

2.327𝑒−4 0.01330 4.667𝑒−4 0.01602 4.3𝑒−4 0.01710 

Percentage Difference 1.006𝑒−2 11.1 0.111𝑒−2 0.109 0.2𝑒−2 0.007 

Source: Data Analysis 
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 For the return series of Wema bank, ARIMA(2,1,1) model was successfully adequate in 

handling the linear dependence in the data. EGARCH(1,1)-t model, on the other hand, was 

adequate in expressing the heteroscedasticity in the data. Combining the two models resulted in 

an ARIMA(2,1,1)-EGARCH(1,1)-t model, which was able to jointly capture both the linear and 

nonlinear properties of the series. Assessing the forecast performance of the combined model in 

comparison to the individual component models at different time horizons, the MSE and MAD 

were explored as the forecast performance evaluation measures and their values at different 

horizons are shown in Table IV.  

Table IV: Evaluation of Forecast Performance for Wema Bank 

Horizon 8 16 23 

Model MSE MAE MSE MAE MSE MAE 

ARIMA ARIMA(2,1,1) 

7.690𝑒−4 

 

0.02354 

 

7.821𝑒−4 

 

0.02352 

 
8.848𝑒−4 0.02226 

GARCH-

type EGARCH(1,1)-t 

7.559𝑒−4 

 

0.02296 

 

7.753𝑒−4 

 

0.02323 

 
8.803𝑒−4 0.02206 

ARIMA-

GARCH-

type 

ARIMA(2,1,1)-

EGARCH(1,1)-t 

7.446𝑒−4 

 

0.02148 

 

7.503𝑒−4 

 

0.02131 

 

8.750𝑒−4 0.02202 

Source: Data Analysis 

From Table V, it was found that ARIMA(2,1,1)-EGARCH(1,1)-t model outperformed 

ARIMA(2,1,1) model by 0.00244% and 0.206% (as indicated by the respective values of MSE and 

MAE) at horizon 8; 0.00318% and 0.221% (as indicated by the respective values of MSE and 

MAE) at horizon 16; while 0.00098% and 0.024% (as indicated by the respective values of MSE 

and MAE) at horizon 23. 

Table V: Percentage Improvement of Forecasting Performance between ARIMA and ARIMA-

GARCH-type Models for Wema Bank 

Horizon 8 16 23 

Model MSE MAE MSE MAE MSE MAE 

ARIMA ARIMA(2,0,1) 

7.690𝑒−4 

 

0.02354 

 

7.821𝑒−4 

 

0.02352 

 
8.848𝑒−4 0.02226 

ARIMA-

GARCH-

type 

ARIMA(2,0,1)-

EGARCH(1,1)-t 

7.446𝑒−4 

 

0.02148 

 

7.503𝑒−4 

 

0.02131 

 

8.750𝑒−4 0.02202 

Percentage Difference 0.244𝑒−2 0.206 0.318𝑒−2 0.221 0.098𝑒−2 0.024 

Source: Data Analysis 
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From Table VI, it was found that ARIMA(2,1,1)-EGARCH(1,1)-t model outperformed 

EGARCH(1,1)-t model by 0.00113% and 0.148% (as indicated by the respective values of MSE 

and MAE) at horizon 8; 0.0025% and 0.192% (as shown by the respective values of MSE and 

MAE) at horizon 16; while 0.00053% and 0.004% (as indicated by the respective values of MSE 

and MAE) at horizon 23. 

Table VI: Percentage Improvement of Forecasting Performance between ARIMA and 

ARIMA-GARCH-type Models for Wema Bank 

Horizon 8 16 23 

Model MSE MAE MSE MAE MSE MAE 

GARCH-

type EGARCH(1,1)-t 

7.559𝑒−4 

 

0.02296 

 

7.753𝑒−4 

 

0.02323 

 
8.803𝑒−4 0.02206 

ARIMA-

GARCH-

type 

ARIMA(2,0,1)-

EGARCH(1,1)-t 

7.446𝑒−4 

 

0.02148 

 

7.503𝑒−4 

 

0.02131 

 

8.750𝑒−4 0.02202 

Percentage Difference 0.113𝑒−2 0.148 0.25𝑒−2 0.192 0.053𝑒−2 0.004 

Source: Data Analysis 

So far, ARIMA(0,1,1)-ARCH(2)-t model appeared to be more robust than each of 

ARIMA(0,1,1) and ARCH(2)-t models for the return series of First City Monument bank, while 

ARIMA(2,1,1)-EGARCH(1,1)-t model seemed to be more robust than each of ARIMA(2,1,1) and 

EGARCH(1,1)-t models for the return series of Wema bank by producing the least forecast 

errors (as measured by MSE and MAE at 8, 16 and 23 time horizons), while the percentage 

difference between each of the component models and the combined model provides the 

quantity of improvement measured. These findings are in tandem with the studies of [19], [20], 

[21], [22], [23], [24], [25]. Evidently, the study has provided the needed improvement on the 

work of [27] by showing that the robustness of forecast performance of ARIMA-GARCH-type 

model over each component using different horizon periods is consistent over time. 

4. Conclusion 

In summary, our findings revealed that the forecast performances of the combined 

models are better and more robust than those of individual components. Actually, the 

robustness of their performances is consistent over different time horizons, which is a clear 

indication of an insignificant variability of the prediction error. This is particularly, a remedy to 
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model instability, which is a process that results in high variability of prediction error. 

Conversely, it is recommended that model instability should be accounted for in each of the 

component models and their forecast performances compared to that of the combined model in 

order to assess whether they all result in near robustness. 
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