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ABSTRACT. In this paper, we introduce certain subclasses of analytic functions defined by using the qg-
difference operator. Mainly we give several inclusion results for defined classes. Also, certain applications

due to g-Ruscheweyh derivative operator will be discussed.

1. INTRODUCTION

Let A denotes the class of analytic functions f(z) in the open unit disk E' = {z : |z| < 1} such that

f(2) :z—l—Zanz". (1.1)
n=2

Subordination of two functions f and ¢ is denoted by f < g and defined as f(z) = g(w(z)), where w(z) is
Schwartz function in E (see [10]). Let S, S* and C denote the subclasses of A of univalent functions, starlike
functions and convex functions respectively. Mocanu [11] introduced the class M (o) of a—convex functions

f € S satisfies;

) PR L
((1 e TR ><1—z’

where a € [0,1], @f’(z) # 0 and z € E. We see that My = S* and M; = C. This class is vastly studied
by several authors, see [2,14].

We recall here some basic definitions and concept details of g-calculus that are used in this paper.
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The q-difference operator, which was introduced by Jackson [7], defined by

f(z) = flqz).

Dyf(z) = 1-q)z ;

q#1, z#0,

for g € (0,1). It is clear that lim,_,,- D, f(2) = f'(2), where f’(2) is the ordinary derivative of the function.
For more properties of Dy; see [3-5,9,18].
It can easily be seen that, for n € N={1,2,3,..} and z € E,
o0 o0
S
n=1 n=1

where

We have the following rules of D,.

D, (af (2) £bg(2)) =aDyf (z) £bDyg (=) .

Dy (log f(2)) =

Some properties related with function theory involving g-theory were first introduced by Ismail et al. [6].
Moreover, several authors studied in this matter such as [1,12,13,15].

Now, by making use of the principle of subordination together with g-difference operator, we have the
following classes:

Let a function p € A with p(0) = 1 is in the class }3,](5) if and only if

14z
1—gqz

B
p(2) < pg.(2), where pga(z) = < > , (0<p<1). (1.2)

It is very easy to see that p, g(z) is convex univalent in E for 0 < § < 1. Aslo, pq g(2) is symmetric with

respect to the real axis, that is,

0 <R (pys(z)) < (1;)5
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Definition 1.1. Let function f € A and 0 < a <1, q € (0,1). Then f € M(f () if and only if

Jq (o, f) € Py(B),

where
D D, (2D
o) = 1 ) 222 (DT
Moreover, let us denote
MP(0)=5;(8),  MJ(1)=Cy(B).

A function f € A is said to be in S; (B) and C, (B) if and only if

2Dy (2) DD
72) =< pg,p(2) and D.J(2) = Pq,8(2),

respectively.

Special cases:

(i) If ¢ — 17, then the class Mqﬁ (a) reduces to the class M”? ().

(i) If ¢ — 17 and 8 = 1, then the class M (o) reduces to the class M («) introduced by Mocanu [11].

(iii) If ¢ = 17, « = 0 and 8 = 1, then the class Mf () reduces to the well known class S* of starlike
functions.

(iv) If ¢g = 17, a = 1 and 8 = 1, then the class M(IB (o) reduces to the well known class C' of convex
functions.

The authors in [8], introduced an operator Ry : A — A defined as:

Ryf(z) = Farrg(2) = f(2) (1.3)
X [n+A-1)

where f € A, Fay14(z)=2+>2, %z” and * denotes convolution.

This series (1.4) is absolutely convergent in E. For ¢ — 17, we have the operator R*, called Ruscheweyh
derivative operator introduced in [16].

In this case

A—1)!
A — li A § 7'L+ n
R1() —lgl— Ry f i BYCE n®
z

We note that R)f(z) = f(z) and R} f(z) = 2D f(z). Also
2D? (2" f(2))

[n],!

Ry f(2) = :neN=1{1,23.1}.
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The following identity can be easily obtained from (1.4)

[l

qA

[\l

2Dy (R) f(2)) = (1 + ) RyYUf(z) — qTRgf(z). (1.5)

Now, we define
Definition 1.2. Let f € A andn eN,0<a <1, qe (0,1) and § € (0,1]. Then
fe M,f (n,a) if and only if Ry f(z) € Mf (c).
Moreover, let us denote
Mf (n,0) =S5 (n,B) and Mf (n,1) =Cy(n,B).
Note that
feCqy(n,B) = 2Dy f € S5 (n,B). (1.6)
2. MAIN RESULTS

We need the following basic result to prove our main results:

Lemma 2.1. [17] Let 8 and v be complex numbers with § # 0 and let h(z) be analytic in E with h(0) =1
and Re{Bh(z) +~} > 0. If p(z) =1+ p1z + p22® + ... is analytic in E, then

zDgp(2)
P(z) Bp(z) +7 i)

implies that p(z) < h(z).
Theorem 2.1. Let 0 < a <1, 8€(0,1] and g € (0,1). Then

MP (a) C S5 (B).
Proof. Let f € M(f (o) and let
zDgf(2)
f(2)
We note that p(z) is analytic in E with p(0) = 1.

=p(2). (2.1)

The g-logarithmic differentiation of (2.1) yields

Dq (2Dq (£(2))) _ Dq(f(2)) _ Dgp(2)

Dy f(2) f(z) p(2)
Equivalently
D, (ZDq (f(z))) . Zqu(Z)
D,f PP )

Since f € Mqﬂ (a), so we get
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Since Re {1p, 3(z)} > 0in E, so by (2.2) together with Lemma 2.1, we obtain p(z) < pg,s(z). Consequently
fes;(B). O

Corollary 2.1. For ¢ — 17, we have M?(a) C S* (8). Furthermore, for 8 =1, M(a) C S*.
Corollary 2.2. Forq— 1", a =1 and 8 =1, we have well known fundamental result C C S*.
Theorem 2.2. Let a« > 1, B € (0,1] and ¢ € (0,1). Then

MP (o) C Cy(B).

Proof. Let f € Mf («). Then, by Definition 1.1,

Duf() , D (:Duf(2) 5

Now,
Dy (2Dqf(2)) _ _ 2Dy f(z) Dy (2Dqf(2)) _ 2Dy f(z)
S 1 R A 6 D, VTG
B B zDqf(2)
R ERRIC]

This implies

DQS§Qf) — (; = 1) Zl;qf - épl(Z)

= (3-1)me)+ 20

Since p1,p2 € ]Bq(ﬂ) and is ]Bq(ﬂ) convex set, so Dngljff) € 15(1([3). Hence, proof is complete. O

Theorem 2.3. For0<a; <as <1

M(’ZB (Ckz) - Mqﬁ (al).

Proof. For a; = 0, this is obvious from Theorem 2.1.

Let f € M} (a2). Then, by Definition 1.1,

(1—as) Z’;q(gz) + %M = qi(z) € P,(B). (2.3)

Now, we can easily write

2

Jy(en 1) = L)+ (1= 21 ) ), (2.4

where we have used (2.3) and Zqu(];;Z) = q2(2) € ]Bq(ﬁ). Since 15,](6) is convex set, so (2.4) follows our

required result. O
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Remark 2.1. Ifas =1 and let f € Mqﬁ (1) = Cy(B). Then, from Theorem 2.3, we can write
fEMqB(Oq),fOTOSOé1<1,

Now, by making use of Theorem 2.1, we obtain f € S;(8). Thus we have, Cy(8) C Sy (B).

We develop some applications in terms of g-linear operator, which we call g-Ruscheweyh derivative oper-

ator, given by (1.3).

Theorem 2.4. Let 0 < a <1, € (0,1], n € Ny and q € (0,1). Then
MP(n+1,0)C S;(n+1,8).

Proof. One can easily prove this result by using similar arguments as used in Theorem 2.1 and letting

2Dqfni1,4(2)
fn-‘qu(Z)

where p(z) is analytic in F with p(0) = 1. O

=p(2) (for fasrq(z) = Ry f(2))

Theorem 2.5. Let 0 < a <1, 8€(0,1], n € Ng and q € (0,1). Then
S (n+1,8) 5} (n.5).

Proof. Let f € S} (n+1,3) and let fny1(2) = R)™' f(2). Then

ZDanJrl,q(Z)

= Pq,(%);
fn—i—l,q(z) q/B( )
where p, g(z) is given by (1.2).
Now, let
2Dqfn.q(2)
Talna®) iy, 2.5
fn,q(z) ( ) ( )
where H(z) is analytic in F with H(0) = 1. Using identity (1.5) and (2.5), we get
2Dq (fn.q(2)) frt1,4(2)
— s = (14 N,) ——=~—= — N,,
Frale) TN TG
equivalently
fry1 q(z) ( [n]Q>
1+ N,)) —/————= = H(z) + N, or Ny=—=1].
( q) fn,q(z) ( ) q f q qn
The g-logarithmic differentiation yields,
2Dq (fr+1,4(2)) zDgH (2)
fona) PO ER T, 20
Since f € S; (n+ 1, ), So (2.6) implies
zDgH (%)

p(2) + m = Pq,8(2)- (2.7)
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Since Re{pq,3(z) + Ng} > 0 in E, we use Lemma 2.1 along with (2.7), to get
H(z) < pq,p(z). Consequently, f € Sy (n, ). O

Theorem 2.6. Let 0 < a <1, € (0,1], n € Ny and q € (0,1). Then
Co(n+1,8)CCqy(n,pB).
Proof. Let

feCy(n+1,p)
& 2f €8 (n+1,p) (by (1.6))
= zf € 85 (n,B) (by Theorem?2.5)

& fely(np). (by (1.6))

Remark 2.2. From Theorem 2.4 and Theorem 2.5, we can extend the inclusions as following

MP(n+1,a) C Si(n+1,8) CS;(n,B)C..CS:(B).

Cy(n+1,8)CCy(n,B)C...CCy(B).

Theorem 2.7. Let f € A. Then [ € Mqﬁ(n—F L,a), a # 0, if and only if there exists g € S; (n+ 1, 3) such

() = [;L l/ott}w_l (g(tt));dqt}a. (2.8)

Proof. Let f € Mqﬁ(n—&— 1,@). Then

that

2Df(2) | DaG:Df(2) _

Jq(a’f):(lia) f(Z) « qu(Z)

On some simple calculations of (2.8), we get

2D f(2) (f(2))° " = (9(2)7 . (2.10)
The g-logarithmic differentiation of (2.10), gives

(1—a) 2Dy f(2) + o2 (2Dqf(2)) _ ZDqg(Z). (2.11)

f(2) Dy f(2) 9(2)

From (2.9) and (2.11), we conclude our required result. O
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Theorem 2.8. Let f € A and define, for f € Mqﬁ(n,a),

[e+1],

Feq(z) = o

/Z L (t)d,t. (2.12)
0
Then F. 4 € S5 (n,3).

Proof. Let f € Mf(n,a). If we set, for ", (z) = Rl (Feq(2))

zD, (Fgfq (z))

=Q(2), (2.13)
ng(z)
where Q(z) is analytic in F with Q(0) = 1.
From (2.12), we can write
D, (z°F, ,(z .
Q( #1( )):Z 1f<Z)
[e+1],
Using product rule of the g-difference operator, we get
(], (],
2DgFeq(z) =1+ T f(z)— - Feq4(2). (2.14)

From (2.13), (2.14) and (1.3), we have

where F? (2) = Ry (Fe.4(2)) and f,, 4(2) = Ry (f(2))

q

On g-logarithmic differentiation, we get

2Dy (Jgl2)) _ DO (4., - ) o1
fn,q(z) Q(Z) + Q(z) + [N]q’ fOT q qc : ( . )
Since f € MP(n,a) C S; (n, ), so (2.15) implies
2DyQ(2)
Qz) + m =< Pg,8(2)-
Now, by applying Lemma 2.1, we conclude Q(z) < pq,a(2). Consequently, w}(;«"# = pg,p(%). Hence
F., € S} (n, ). 0

Conflicts of Interest: The author(s) declare that there are no conflicts of interest regarding the publication

of this paper.



Int. J. Anal. Appl. 18 (4) (2020) 558

REFERENCES

[1] O. Altintas, N. Mustafa, Coefficient bounds and distortion theorems for the certain analytic functions, Turk. J. Math. 43
(2019), 985-997.
[2] J. Dziok, Classes of functions associated with bounded Mocanu variation, J. Inequal. Appl. (2013), Art. ID 349.
[3] H. Exton, q-Hypergeometric functions and applications, Ellis Horwood Limited, UK, 1983.
[4] G. Gasper, M. Rahman, Basic hypergeometric series, Cambridge University Press, Cambridge, UK, 1990.
(5] H.A. Ghany, g-derivative of basic hypergeomtric series with respect to parameters, Int. J. Math. Anal. 3 (2009), 1617-1632.
[6] M.E.H. Ismail, E. Merkes, D. Styer, A generalization of starlike functions, Complex Var., Theory Appl. 14 (1990), 77-84.
[7] F.H. Jackson, On g-functions and a certain difference operator, Trans. R. Soc. Edin. 46 (1908), 253-281.
[8] S. Kanas, R. Raducanu, Some classes of analytic functions related to Conic domains, Math. Slovaca. 64 (2014), 1183-1196.
[9] V. Koc, P. Cheung, Quantum Calculus, Springer, 2001.
[10] S.S. Miller, P. T. Mocanu, Differential subordinations theory and applications, Marcel Dekker, New York, Basel, 2000.
[11] P.T. Mocanu, Une propriete de convexite generlise dans la theorie de la representation conforme, Math. (Cluj). 11 (1969),
127-133.
[12] M. Naeem, S. Hussain, T. Mahmood, S. Khan, M. Darus, A new subclass of analytic functions defined by using Salagean
g-differential operator, Mathematics. 7 (2019), 458.
[13] K.I. Noor, On generalized g-close-to-convexity, Appl. Math. Inf. Sci. 11 (2017), 1383-1388.
[14] K.I. Noor, S. Hussain, On certain analytic functions associated with Ruscheweyh derivatives and bounded Mocanu variation,
J. Math. Anal. Appl. 340 (2008), 1145-1152.
[15] K.I. Noor, S. Riaz, Generalized g-starlike functions, Stud. Sci. Math. Hungerica. 54 (2017), 509-522.
[16] S. Ruscheweyh, New criteria for univalent functions. Proc. Amer. Math. Soc. 49 (1975), 109-115.
[17] H. Shamsan, S. Latha, On genralized bounded Mocanu variation related to g-derivative and conic regions, Ann. Pure Appl.
Math. 17 (2018), 67-83.
[18] H.E.O. Ucar, Coefficient inequality for g-starlike functions, Appl. Math. Comput. 276 (2016), 122-126.



	1. Introduction
	2. Main Results
	References

