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ABSTRACT. In this paper, we investigate existence, uniqueness and blowup in finite time of the local solution
to the three dimensional magnetohydrodynamic system, in Gevrey-Lei-Lin spaces. To prove the blowup
results and give the blow profile as a function of time, two key points are used. The first is a frequency
decomposition of the spectrum of the initial data. This allows to use Leray theory. The second is a technical
lemma we proved to state that the Lei-Lin space is an interpolation space between the Gevrey-Lei-Lin and
the Lebesgue square integrable functions spaces. To prove uniqueness, we use a penalization procedure
and energy methods. About existence, we split the initial condition into low frequencies part and high
frequencies part. The former are considered as initial data to the linear part of the system. The latter will

be taken as small as needed, so that smallness theory applies and allows to run a fixed point argument.
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Let us consider the following three dimensional incompressible magnetohydrodynamic system,

du—Autu-Vu—b-Vb+V(p+1b?) =0, (t,) eRT xR3
Ob—Ab+u-Vb—b-Vu=0, (t,z)eRT xR3

(MHD) divu =0, (t,z)eRt xR?

divb=0, (t,z) € RT xR3

(u,0)(0) = (u%,b°), =x€R3,

where u, b and p denote respectively the unknown velocity, the unknown magnetic field and the unknown
pressure at the point (¢, ). If the initial data u® and b° are quite regular, the divergence free conditions
determine the pressure p. We aim to study the existence, uniqueness and blowup in finite time of local
solution to the M HD system, in the framework of Gevrey-Lei-Lin spaces. These spaces are defined for the

real numbers a > 0, 0 > 1 and p, by

X,(RY) = {f € S'®®); [ € Lj,,(R?), / Jelretf(€)lde < oo}

and endowed with its naturel norm

g ey = [ €€ e

where f denotes the Fourier transform of f.

In [15], the authors defined the Lei-Lin space by

-~

XUR) = {1 € S(®), Fe Ll @), [ O ge < ooy
S

and endowed with its natural norm

ey = [ e

Here, L, .(R?) states for the set of locally R3-Lebesgue integrable distributions. In this critical space, the
distinguishable fact was that to obtain global well-posedness to the Navier-Stokes equations, the norm
of the initial data have to be exactly less than the viscosity of the fluid. However, in the wide fluid
mechanic literature, it was always assumed that the initial data must be very small, especially smaller
than the viscosity multiplied by a tiny positive constant. Such assumption is mandatory to run the
smallness argument and to obtain global well-posedness; see for example [11-14] and a complete survey
in [10]. For many fluid mechanics equations, well-posedness and asymptotic behavior, as time goes to
infinity or as small parameter goes to zero, were investigated by the authors, in various spaces; see for
example [6-9, 18-20]. About blowup, it is worthwhile to emphasize that several authors studied this
phenomena to the Navier-Stokes equations; see for example [1-3,17] and references therein. The author

observed, in [4], that in the case of the Navier-Stokes equations, the blowup phenomena depends on the

chosen space not on the nonlinear part. To do so, he used Fourier analysis in Sobolev-Gevrey spaces, for
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Sobolev index s > 3/2. His blowup result was improved later on, in [5], where the authors gave precisely an
exponential type of the blowup profile, in Sobolev-Gevrey spaces but with less regularity on the initial data
since they dealt with s = 1. In [16], authors studied the Cauchy problem for a two-components high-order
Camassa-Holm system. First, they proved the local well-posedness of the system in Besov spaces. Then,
using Littlewood-Paley theory, they derived a blowup criterion for the strong solution. Finally, they studied

Gevrey regularity and analyticity of the solutions to the Camassa-Holm system in the Gevrey-Sobolev spaces.

In this paper, we begin by addressing the problem of local well-posedness. Our result is summarized in

the following existence and uniqueness theorem.

Theorem 0.1. Let (u°,0°) € (X, 2(R*))?. Then, there exist a time T > 0 and a unique solution (u,b) €

C([0,T], (X, 5(R*))?) of (MHD), such that (u,b) € L'([0,T], (X, ,(R?))?).

To prove uniqueness of solution, we use a penalisation method. This allows to put the problem in a form
where Gronwall inequality can be applied. To establish existence of solution, we split the initial condition
into low and high frequencies. The former will be considered as initial data to the linear part of the M HD
system. The latter, taken as small as needed, will be the initial data to the remaining nonlinear part, for
which smallness theory applies and allows to run a fixed point argument, in (X, 1(R%))?.

Then, we turn to the blowup result that we state in the following theorem.

Theorem 0.2. Let (u,b) € C([0,T*[, (X, 2(R3))?) be the mazimal solution of MHD system, where T* < oc.

Then, there exists co > 0, such that

P
limy (7" — &)/~ =07 () 1), >

N | =

The proof is somewhat technical. Our idea is to use a suitable frequency decomposition and to impose
”the problematic” large frequencies part to be a square integrable function, so that we fully profit from
Leray theory. Some technical lemmas are specially derived to handle technical difficulties, mainly Lemma
1.1, where we proved that X is an interpolation space between the Lei-Lin spaces X'° and the space of
Lebesgue square integrable functions. The structure of our proof is as follows. Starting with the energy

estimates, we prove that the &, 1

e

norm of the solution blows up, in finite time. Gronwall type inequality
allows to infer that blowup holds also in X 2,707 for any o’ € (0,a). Using a particular choice of parameter a’,

we deduce that our solution blows up in the X° norm, as a limit of XY,  spaces. We split the initial data

Nea
into two parts, a large frequencies one that belongs to X, LN L? and a small frequencies remainder that leis
in X L. The smallness theory applies an leads to a global and continuous in time solution that belongs to
X, L. This continuity plays an important role. About the large frequencies part, the L? theory applies and

allows to derive a Leray type energy estimates. We use the above two estimates to dominate the X° norm
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of the solution. Finally, Lemma 1.1 with a judicious choice of the index s, finish the proof of the blowup

result, in X, L and determine its profile as a function of time.

This paper is organized as follows. In section 2, we give some notations and useful preliminary results.
Section 3 is devoted to prove existence and uniqueness of local in time solution. In section 4, we establish

the blowup result.

1. TECHNICAL LEMMAS

In this section, we prove some technical lemmas that will be used later on.

Lemma 1.1. Let s > 3/2, there exists C > 0 such that, V f € L?(R?) N X*(R?),

[

5 flle?

[fllax0 < Clf

Proof. For \ > 0, we consider the decomposition

0 = £(6)|d £(&)|de .
1l LLKAf@N£+A;yJﬂOI£

I J(N)

By Cauchy-Schwarz inequality for I(\) and direct computation for J()\), we get

1) < VIR f
JO) < A f e

1

For A = vz ||f|lz2 and B = |[f]|x-, let @(X) = AXY2 + BA=*. Clearly the value Ao = (2385) T isa

s 3/2

minimum of ¢ and for all s > 3/2, p(A\g) < CA**2 B**2 . 0

Lemma 1.2. Let o > 1, then there is a constant C' > 0, such that for all f,g € X;};(R%, we have

Ifollxe, < Clifllxe, llgllxg  +Cligllxe M fll2s -

Proof. In a first step, using the triangular inequality and the fact that

min(|§ —nl, [n]) ),

€] = max(le =l ) + e =D

we obtain

~

max _ 1/0 min(|€—nl,[n]) 1/0 ~
Hmm%f//”a“"m”““@FWw P& — m)] ()| dnde.
EJn

In a second step, the inequality (1 +7)% <1+ 60r?, Vr € [0,1], V0 €]0,1] leads to

amax(|¢ —nl, [p)V/7 (1 + BRUEILI Y < g max(|¢ - p|, [n])/7 + £ min(|§ — ], [n]) /7.

Finally, distinguishing the two cases |£ — n| < |n| and |§ — 5| > |n|, we obtain the desired result. O
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By Cauchy-Schwarz inequality, we prove the following lemma.
Lemma 1.3. For all f € X; ' (R?) N X;EH(R?), with o > 1 and a > 0, we have
1z, < I I
Using the fact that |£|Y/7 < (| — | + [n])}/7 < [€ — n|'/7 + |n|'/7, we have the lemma below.

Lemma 1.4. For all f € X2 (R?), g € X} ,(R3), with ¢ > 1 and a > 0, we have

1£-Vallxo, < fllx, llgllxy -

Lemma 1.5. Let u,v € L>([0,T], X, 2(R*)) N L'([0,T], X} ,(R?)). Then
t
—r . 1/2 1/2 1 2 1 2
[ / DA div(uo)dr| oy < Null )2 s Nl s 100 s 01

Proof. First of all, let us prove that for f,g € X; J(R*) N X, ,(R?), we have

1/2 1/2 1/2 1/2
1 £gllas,, < A2 NI gl 2 gl - (1.1)

Ifoll, < [t ([ 17t~ mlatmian) ae
n

Using the inequality ealél’” < ea|5”7|1/ce“|"|l/g7 we obtain

/( / €= e — ).l ()| diy)de
£ Jn

To do so, we recall that

IN

||fg||Xg,c,

Put F(¢) = e?€"7 [F(¢)] and G(€) = 6”‘f§‘|/ F(€)|. Tt holds that,

Ifollxg, < [[F*Glw
< NENe 1G] e
<

1£1lxe, llgllxe,, -

By Cauchy-Schwarz inequality, we get (1.1). To continue proving lemma above, we have

/ =T div(uv)dr | 41 < H/ DA div(wv)|| o dr

/ [[uv)||x0  dr

< |\U||xg,”||v||xg,(,d7

/ Il ||u\|”2 oI, ol dr

1/2 1/2 1/2 1/2
< Nl ey W12 ) / lall ¥ ol ¥E dr

1/2 1/2 1/2 1/2
/ \|||/ _1||H/ IIH/

S ||UHL%C(X_1

1



Int. J. Anal. Appl. 18 (3) (2020) 426

Lemma 1.6. Let u,v € L (X, J(R?)) N L (X, ,(R?)). Then

T 1/2 1/2 1/2 1/2
H / 8 div(uo)dr ) < Nl s ol s Il 2Tl -

Proof. Using the definition of Xalﬂ norm and integrating the function e~ (=TI twice with respect to

€ [0,¢] and t € [0,T], it follows that

/ [ / =i () de
/// o (b= T>|s|2|§|2 am”“mv(rg)\drdtdg
R3

T
1/o r —e—(t=T)IE?
< [ggpere | @l | | <] ) ar | de
. : e,

T _ o (T-7)|?
alé|t/e o 1 e
< / ¢2ecll / @O ar ) e
. ; €]
T
g/ vl xo_dr.
0 |

Using equation (1.1) finishes the proof. a

2. WELL-POSEDNESS RESULTS

To prove uniqueness of solution to the (M HD), we consider two solutions (u1,b;) and (us, be) that belong
o (C([0,T], X, 2(R3)))® N (L*([0,T], X} ,(R?)))* and have the same initial data. Let 6 = u; — uy and

1 = by — ba, it follows that

até—A6+6~Vu2—|—u1-V5—77-Vb2—b1-Vn—l—V(pl—p2+%(\b1|2—|b2|2)):
8tn—An+uQ-Vn—n-Vu1+5~Vb1—bg-V(S:O

divd =0 (2.1)
divnp =0
(6,m) = (0,0).

Taking the Fourier transform and using divergence free condition, one infers that

018 + €176 + (5 V) + (w1 - VO) — (11.Vbs) — (by - Vi) = 0 (2.2)
v+ €27 + (uz - Vi) — (- V) + (8 - Vby) — (b - V6) = 0. (2.3)

Multiplying (2.2) (respectively (2.3)) by 5 (respectively 7)) and its conjugate by ) (respectively 1), summing

up the four resulting equations, and dominating the real part of any complex quantity by its modulus, we
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obtain
0.6 + (A1) + 1€ + 14 P)
< (6Nu2)l[8] + [(ur. VO8] + |(7-Vb2)[[6] + (b1 V)] 18] (2.4)
+ N2 T[]+ |-V |[7] + 21@EVb0)[7] + (b2 Vo) [7]-

Let € > 0 be a penalizing parameter. One has

(187 + [71%) = 0,16 + |f* + %) = 2\/I5|2 +9[? +62-8t\/l5\2 + [0 + €. (2.5)

Substituting (2.5) in (2.4), dividing by 1/|d|2 + |A|2 + €2, integrating with respect to time, letting e — 0 and

using that M\@Iﬁl < 1/10]2 4 |2, we infer that

8418l + / RGERT

/0 (6-Fu2) 18] + |(ur- VO3] + (-2 (18] + | (b2 )] 18] )b

IN

t — — _ — —
+ /O(I(Uz-Vn)HﬁH [(0-Vur)[[9] + 2[(6.-V1) 7] + |(b2- V) [7)]dr).

Multiplying by £ | §| and integrating with respect to £. By divergence free, we get

t
s+ s+ [ 18Ty + 180l )ar
t
\/5(/ [0uallxo | + [luidllxo |+ |Imballao | + [01n]la0  dr
0
t
+ / luznllao  + Inuallaxo  + 1601l x0 | + [[b26][x0  dT).
0

IN

Using the product Young inequality, it follows that
[ouallxe < [[0llxo [luzllxo
: b :
S Y P PR Y
1
< 2l s oot Aunl s + 5180

and so on for the other terms. Thus,

t
161102 + Il 2 < 2v2 | U0l aes + llazn) D Mol s | Auill s+ [10il] s 1403 | s

1<i<2
Since the function ¢ — Z lwill x-1 [[Auifl x=1 + [|bill y-1[[Ab; | x-1 belongs to LY([0,T]), Gronwall

1<i<2
inequality implies that § = 0 on [0,7]. Thus, uniqueness holds.

We turn to the existence result. To do so, let r € (0, 10) such that

(1 0 g )22 < o5,
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and N € N, such that

e

/ T vl + / e)|de <
sy 1€ e>n 1€ 5

Let 0% = }-71(1{‘5‘<N}Ub(§)) (respectively ® = .7-"’1(1{|5|<N}l;0(§))) the low frequencies part of u® (re-

spectively b°) and w® (respectively d°) its high frequencies part corresponding to (|¢| > N). Clearly, one

has

1(d”, ™) x-2 <

1
a,o

(2.6)

o] 3

By a standard Fourier computation, one infers that (v, c) = e”** (v, ¢°) is the unique solution to the following

linear system

Ov—Av=0, (t,r)€R" xR3
dc—Ac=0, (t,z)eRT xR3
(MHDL) dive =0, (t,z)eRt xR?
dive=0, (t,7) € Rt xR3
(v,¢)(0) = (%, %), x€R3

and that for all ¢ > 0,
1w, )l azn < (@ 6%) - (2.7)

By definition of Xal,n norm, expression of (v,c¢) and Tonelli’s theorem, we infers that

Iy xr,) < /R3<1 — VT |1l ([ (€)] + |80 (€) ) de.

Using the Dominated Convergence Theorem, we get

A (v, e)lley ) = 0. (2.8)

As it will be seen below, for instance, the stability condition of the fixed point argument requires a choice
1/2
Xao
to fulfill the supplementary condition (||(u”,5%)[| -1 + r)}/2el/2 < L. For this choice of ¢, by (2.8), there

of € > 0 such that &/2||u|| < Tls' Moreover, for the operator ¥ to be a contraction mapping, ¢ has

exists a time T'= T'(¢) > 0 such that

lollzy s,y <e (2.9)
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Put w = uw—wv and d = b— ¢, the 3+3 components vector (w, d) satisfies, for all (¢, z), the following nonlinear

system denoted (MHDNL),

dw—Aw+ (w+v) - V(w+v) = (d+¢) - V(d+e)+V(p+ 3ld+c>) =0
Od—Ad+ (w+v)-V(d+c)—(d+¢)- V(w+v)=0

divw =0

divd =0

(u,b) = (u°,b°).

To run a fixed point argument, we introduce the following operator ¥ defined for all (w,d)” by the right

hand side of the following integral equation

dr,

w w? /t WTEN (w+wv)-V(w+v)—(d+¢)-V(d+c)
- [ e
d d° 0 (w+v)-V(d+c)—(d+c)  V(w+)
and we consider the space X7 := C([0,T7], (X, 2(R*))?) N L*([0,T], (X, ,(R?))?), endowed with its naturel

norm || fllxr == [[fllpge (az2y2y + I lpn e, )2)-
In a first step, let us prove that X7 is stable under the operator ¥. To do so, we denote by B, the subset
of X defined by

B = {(u,0) € Xr; [[(w, )| 1o 2y < 75 (1w, 0) |,y < -

For (w,d) € B,, we have ¢¥((w,d)) € B,. In fact, it holds that

||\Il(w7d)(t)||/’t‘;}, S I’ww +va +I'uw +Ivv +Idd+Idc+ch+Icc (2 10)

+ de + Iwc + Ivd + Ivc + Idw + Idv + Icw + IC?M
where we denoted, for any divergence free vector field v and w,
t
I, = / e~ - Vo y -1 dr.
0 ,o
To estimate || W(w,d)(t)| -1, we recall that according to the choice of N, we have
r
%l + 1l s < £

Using divergence free condition and lemma 1.5, we obtain that

r
Iy, < HU”L;O(X )”UHL (xi )= EHUJO”X 1< T2 18"
The same holds for I.., I,. and I.,. Moreover,
Lww < lwll e ey lwll Ly ) <72 < TS
and the same holds for 144, I,,q and I4,. Furthermore,
1/2 1/2 1/2 1/2 1/2
Lo < IoU2 oy I 5 Il 2 s 0l ) < e 22 < £
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and the same holds for the seven remaining integrals. Finally, we obtain
1@ (w, d) ()| s <7 (2.11)
Let us estimate [|¥(w)()|[z1(x1 ). As above, we have

||\I/(w)(t)||L1(Xal7U) < Jww + Jwo + Jow + oo + Jaad + Jac + Jea + Jee (2 12)

+ de+ch+Jvd+Jvc+de+Jdv+ch+va7

where we denoted, for any divergence free vector field v and w,

T t
JW:/ ||/ ey Vwdr| 1 _dt.
0 0 '

By the facts that [[v][z1 x1_y, [lellzy a1 ) <&, we can take

Nel e

1ollLy.cap ) + el ) <

Using lemma 1.6 and the fact that w € B,., we get

r
S < ||UHL;C(X;},)HU”LlT(X(}J) < 5”“0”/\6;}, < 18

and so on for J.., Jy and J,. Also, we get

r
Juw < ”w”L%O(X;},)HwHLlT(XL}’U) <r’< 18

and so on for Jyq, Jwq and Jg,,. Moreover,

1/2 1/2 1/2 1/2

L%Q(Xa_,}r) ||UHL’}I‘(X«:},0') ||w||L%°(X(;},) ||II‘UHL}F(‘X‘al,’:r 1/2

o2, < 2

Jow < |0 P AN

) <re’*u

and so on for the seven remaining integrals. Thus,

W (w, d) ()| r () <7 (2.13)

Combining (2.11) and (2.13), we deduce that ¥(B,) C B,.

In a second step, to prove that ¥ is a contraction mapping on B,. One has

! Qo + @
\II(wQ, d2) - \:[l('l,Ul7 dl) = — / e(t*T)A dd d,r’
0

Qud + Qdw
where
Qo = (W +v) - V(wg — wy) — (w2 —wy) - V(wy +v)
Qg = —(dz +¢) - V(da +¢) + (dy +¢) - V(dy +©)
wa = (w2 +v) - V(dz +¢) — (w1 +v) - V(dy +c)
agw = —(da +¢) - V(wz +v) + (dy +¢) - V(w1 +v).
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Or equivalently, in an adequate form to be estimated, one has

e = (w2 +v) - V(wz —w1) — (w2 —w1) - V(wi +v)
agq = —(da +¢)-V(de —dy) + (da — dy) - V(d1 + ¢)
pd = (wg —w1) - V(da + ¢) + (w1 —v) - V(dy — dy)
gy = —(da —dy) - V(we +v) — (di + ¢) - V(wa — w1).

It follows that
2

19 (w2, da)) = W((wy, d1)) ] -1 < Z D+ K+ KO+ K,

where

KW = ||/ E=T)A (wy 4 v)V(ws — w1)dT| - L

K2 = | / et (1, — 1 )V (wy + 0)dr ] o1,

and so on for the other integrals. Using lemma 1.5, triangle inequality, the fact that w; belongs to B,
inequalities (2.7) and (2.9), we infer that
Kb, i)

1/2
Le(Xak

1/2

1/2
< o+ wal t ey llee = will 2

HU + w2||L1 (X1, )HU}? - wl”
< ([l +7“)1/2(€+7")1/2||w2 — w1l xp

< (10,8 s + )2 + )2 w2 — wn ] 2

Similarly,
1 2
Ky K < (1000 gmp + 1) 2 412l do — iy
Ko Kl < (10080 on +1)2( + 1) [wg = wy
2 1
KZ, KL < (1080 or + 7)Y+ 1) 2]ds — da vy
Thus,

”\Ij(w?»dQ) - \I/(whdl)”L%O(X,;},) <

(2.14)
AN @O, 00| + )2 (e + )2 (lwz — wi]| e + [ld2 — di ]| 7).

To estimate the LlT(Xal’U) norm, we proceed as above;

[ V)

19 (w3, ds)) — U((wr, dr))l| ey Z L, + LG + L8, + LG,

where

T t
o) :/ ||/ e (wy 4 )V (wy — wn)dr||xs_dt
0 0 !

Tt
LG, = / | / e (wy — wy)V(wy + v)dr|x1_dt,
o Jo ’
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and so on for the other integrals. Using lemma 1.6, triangle inequality, the fact that w; belongs to B,

inequalities (2.7) and (2.9), we infer that

A

ww?

L3 < (100 s + )2 4+ )2 Jws — wi ||
The same holds for ijg, L wy and L% and one obtains

dw?

[V (w2, d2) = W(wy,di)ll Ly ar ) <

(2.15)

A @0, 0 [ 1 +1)2 (e + 1)V (lwe — will ey + [|d2 = di]|xr)-

By (2.14) and (2.15), we infer that
W (w2, da) — W (w1, dy)|ar <
81l (w®, b | oz + )2 (e + 1) 2 (we — will ey + [ld2 — di || 27)-
This implies that
1

1 (ws, d2) = W (wy, di)llay < 5wz = willay + lld2 = dullxr) (2.16)

and ¥ is a contraction mapping. The fixed point theorem implies that there is a unique (w,d) € B,., such
that (u,b) = (v +w, ¢+ d) is the solution of (M HD) with (u,b) € Xr.
3. BLOWUP RESULTS

In this section we prove theorem 0.2. First of all, the following energy estimates holds in X}

a,o)

(B0 os + / N b)Ollxs, < o, bl

/0 Lon(T) + Lop () + Lo(7) + Low(7)dr

where Ly, = [|div (vw)[|y-1. By lemma 1.2, we have

E’UUJ

IN

lollxg, Nlwllag |+ lwllxe, lvllxg
:

2[[(v,@)llxe 1w O}l 2, -

IN

It follows that

t
(. b) (2 ||X1+/ (D)), <||<uo,bo>||xg;+8/0 0.5) g 1w, B g i

Using Lemma 1.3 and product Young inequality, we obtain

1, 0) ()] 2 / 1w, 0) () 2, dz < [[(u0,b0) | x2

(3.1)
" 32/ I8y 08
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However, a direct computation implies that |[(u,b)[[xq < Mo|[(u,b)|[,-1, where the constant M =

Mo(a,0) = sup,> re=Z =07 Then, estimation (3.1) becomes

1 t t
DOl + 5 [ 10Dl b < by +3208F [ w0y

Let T' = sup{t € [0,T"[; sup.cjoq [|(u0)(2)l|x-2 < 2[[(uo,b0)lx-1} By continuity of (u,b), we have T' €
10, 7*] and
20 (a0, b0) s < (0, bl s + 128MET (o, bo) o
We infer that
128 M2)~!
bt <7< T

If we consider the magnetohydrodynamic system starting at initial time ¢, with the data (u,b)(t) , we get

Mt
lwh@P, =" "

or equivalently
(128M3)~1

2
O <D,

Therefore, we infers that

tl_lgl* ||(U»b)(t)||2(;}, = +00. (3.2)

Applying Gronwall inequality to inequality (3.1), we get

1 t t
DOz +5 [ DO, < bl esp(32 [ w0y _de)

By equation (3.2), we obtain

—
[ by dz=oc. (33)
0 e
This implies that
lim [|(u, B)(8) vy = +oc. (3.4)
t—T* s

At this point, we proved that Xgp norm of the solution blows up, in finite time.

Let o’ = £ € (0,a), using the same method, we obtain

Ol + [ 1d0l
< H(Umbo)ng/yU‘F/o Rouw(2) + Rpp(2) + Rup(2) + Rpu(2)dz,

where Ry, (t) = [|2.Vy||yo, . Using Lemma 1.4, we get

Ry (1)

IN

||$||X3,,a HZJHX(},’U

AN

< @)l vl
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It follows that

¢ t
DO, + [ DOz, < b, +4 [ 1 Dllag, b,
By lemma 1.3, we obtain
3/2 2
0@, / D)z, | < lwo, bo)ll s, +4/ [CROla (O] Fo
Using product Young inequality, we get
1 t t 3
DO, + 5 [ 108z, < lobollas, +4 [ b,
Gronwall lemma gives
t
D), < o)l exo (4 [ bR, d2).
Or equivalently,
t
Sl (O, exp (=8 [ b, d=) < Sl b,
a’ o 0 a’,o a’, o
Integrating over [0,7*) and using (3.4), we infer that
1< 8||(uo, bo) |30, T
Since % < ... < £ < a, by the same method we used for a’ € (0,a), we prove that
1< 8|[(ug, bo)[[50, T, Vn e N*.

By Dominate Convergence Theorem, we obtain

71 T < [(uo, bo) |
U, 0.
WoNicks 0,00)||x
Consider the (M HD) system starting at ¢ € [0,7*), by time translation, we have

1
2T — ¢t

At this point, we proved that the X° norm of the solution blows up, in finite time.

< [ (u, 0) ()] 0. (3.5)

Let k € N*, we consider the subset Aj defined by
A = {£ € R%; [¢] < kand [u0(¢)] < k)

and v° and ¢ in L*(R®) N X, }(R?), such that (vp, ) = F (14, (f)((ﬂa,l;(\))) Let (wg,d?) = (u® — 0D, b° —

1

?), one has limj_,o H(wg,dg)HX;; = 0. So, there exists k € N, such that H(w%,d%)”xc:; < 15 Using
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smallness theory, we prove that a unique and global in time solution (wg, dx) to the system

Ow—Aw+w-Vw—d-Vd=—-Vnr, inRt xR3

Ohd—Ad+w-Vd—d-Vw=0, inRt xR3
(MHD)

divw =divd =0, in Rt xR?

(wv d)(O,ZE) = (w27 d%)(m)7 in RB:

exists in Cy(R*, X, 2(R?)) N L' (R, X} (R?)) and satisfies for ¢ > 0,

1 t
0 ) Ol + 3 [ N )l 2 < oDl (3.

Consider (vg, cx) = (u — wg, b — ¢), it belongs to C([0,T%), X, }(R?)) and satisfies, for all (,x) € R x R?,
the following (M H D5) system,

Oy, — Avg, +vg - Vo, + v, - Vg, +wy, - Vo, — ¢ - Ve — e - Vdy, —dg. - Ve, = =V
O, — Acg, +vy, - Ve +vg - Vdg +wi - Vep —ceg - Vo — e - Vg —di - Vo =0
divw =divd =0

(Vs €x)(0, ) = (v}, ) (@)

Having that (v, ¢}) € L?(IR3), we take the scalar product and use L? theory. Under divergence free condition,

we infers that

1d

5 7 @es ) DNz + [(Vor, Ver) 072 < Cll(dx, we)llz= | vk, c) B)IIZz-

The Gronwall lemma implies that
t t
1wk, ) (8)]172 +A 1(Vor, Ver)(2)||72dz < ||(v2702)||izexp(0/0 [ (wi, di) |7~ d2).-

. i 1/2 1/2 .
Using that || f]lz~ < [Fllzr = [Iflxo < [FIIX2 1112, we obtain

I(vr, ce) N2 + /OII(Vvk,VCk)(z)I\%2dz

t
¢ [ M)l wn,do)
0

IN

1(vRs )7z

t
¢ [ M di)l s N, do)l dz
0 ’ B

IN

I(vRs )12 €

By the energy estimates (3.6), we obtain the following L? energy estimates

¢
(e )@= + [ 1(T0n, Ve @) [ads < ao, (3.7)

0
where ag = ||(v), &) ||% 2exp(2C | (w), d%)Hi_l ). At this point, thanks to the properties of small frequencies

part in X}, we closed the L? energy estimate of the large frequencies part of the solution. Using X, =

a,0)
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energy estimates (3.6), we obtain

1(w, 0)[x0 < [[(vk, i) Lo + [[(wr, di) [ a0
< ks er)llao + M| (wr, di) |y
< l(ows er)llaco + Mul(w, )] -
—art/e

where M7 = My(a,0) = Sup,>q 7e

Inequality (3.5) implies that the function t — ||(u,b)(¢)||xo0 is continuous on [0,7*) and tends to infinity

when ¢ approaches T*. Thus, there is Ty € [0,T7*), such that

el < Mok O, v € (10,7,

(3.8)

At this point, we proved that the high frequencies part considered above blows up in the X° norm. Thus,

according to equation (3.5), one can infers that only high frequencies are responsible for this phenomena.

Now, using Lemma 1.1 and (3.8), we can involve X*. Mainly, for s > 3/2 and ¢ € [Ty, T*),

oo

E] 2
ey o3
2 1wk er) ()]l s® -

Tt < e

Using inequality (3.7), we can omit the L? norm and obtain

oleo

1/4 =37 =3
T r < e Ol

This implies for n € N, such that 2 —1>3/2 or n > ng = [ga] +1,

2
4-1/3 g 4735 %7\ _ a”
(T~ —t)l/sﬁ((T* —t)i) < e ) Ol gz

Summing up for n > ng, we get

-
s a® 74730 3T\ a™
w2 one) © L o) Ol

n>ngo n>ng

IN

(ke ) ()]

Using triangular inequality and X, L energy estimates (3.6), we have

1(vrs ) ()l aemz < 10, D)) + Nl (s d) -

2 -
Dividing both sides of the resulting inequality by exp (a%), we infer that
*—t)30

_2

4=F5qp 37
liminf (7° — 1)/ exp ( - ﬁ) 1, DY) 1 > 4.

This gives the blowup profile and finishes the proof.
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Remark 3.1. Let U° = (u°,b°) € X; (R®), where a >0, 0 > 1. Let U = (u,b) be the mazimal solution of
(MHD) system. Using the fact

X R < XL (RY) — X 7H(R), VO < d <a,

one infers that U € C([0,T; ), X, 2(R%)), U € C([0,T} ), X, ,(R)) and U € C([0,T*), X~ (R?)), where

the maximal times of existence T _, T7

a,0’ ~a',o

and T* belong all of them to (0,+00]. These times satisfy T , <
T, , < T*. By the method we used in the proof of the blowup result (a' = %), we proved that Ty , = T*,
if o > 1. However, we note that if 0 = 1 our technics failes. So, this critical case seems to need an other

approach different from us.

Remark 3.2. Using the same technics we can prove existence, uniqueness and blowup results in finite
time of solution to the periodic M HD, the three dimensional Navier-Stokes system, the two dimensional

quasi-geostrophic equations with subcritical dissipation, in the Lei-Lin-Gevrey space.
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