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ABSTRACT. In this paper, we accomplished the concept of continuous and discrete Hermite wavelet trans-
forms. We also discussed some basic properties of Hermite wavelet transform. Inversion formula and
Parsevals formula for continuous Hermite wavelet transform is established. Moreover the discrete version of

wavelet transform is discussed.

1. INTRODUCTION

Many authors have defined wavelet transforms associated with different integral transforms. In ( [6], [5])
Pathak and Dixit, Pathak and Pandey defined the wavelet transform which are associated with the Hankel
and Laguree transform respectively. In [7] Upadhyay and Tripathi defined continuous wavelet transform
corresponding to Watson transform. In 2017 Prasad and Mandal [4] studied the Kontorovich-Lebedev wavelet
transform and derived many important properties related to the KL-wavelet transform. In [1] Pathak and
Abhishek studied the continuous and discrete wavelet transform associated with index Whittaker transform.
Hans-Jurgen Glaeske [3] defined the translation and convolution operator associated with Hermite transform

and proved so many important results related to these operator. Now, however to best our knowledge wavelet
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associated with the Hermite transform is not defined. So we are interested to define the wavelet associated
to Hermite transform and study the continuous as well as discrete wavelet transforms associated with this.

The wavelet transform [8] of the function f € Ly(R) with respect to the wavelet ¢ € Ly(R) is defined by

Wof) (p.0) = | T H () Bdt.p € Roo > 0, (L1)

where

Gpo(t) =020 <H> : (1.2)

g

In terms of translation 7, defined by

Tp0(t) = o(t = p),p € R,
and dilation D, is defined by
Dy(t) =077 ¢ <;> o0 >0,
we can write
Gp.o(t) =T, Dsd(2). (1.3)

From equation 1.1 and 1.3 it is clear that wavelet transform of the function f on R is an integral transform
for which the kernel is the dilated translate of ¢.

We can also express equation 1.1 as the convolution

(W¢f) (pyo) =(f = 90,0) (p)v (1.4)

where

Since associated with each integral transform there exists a special kind of convolution, one can construct
wavelet transform corresponding to an integral transform using the associated convolution.
We construct wavelet and wavelet transform on the interval (—oo,00) by using the theory of Hermite

transforms [2] and associated convolution involving the function

— 2\ -
HW (z) = exp (;) HW(z),z € R,

where fly(ﬂ )(sc) is the normalized Hermite polynomial, where o > —1, is given by

(1) (o _1
N LD _ R (a2),n = 2
H(u) (LE) — Hy, (0)
" B @) (k) oy ’
=R, (z%),n=2k+1

(H, (@) 10
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and
) — (—1yR22ki () (2)  — ok
(—1)k22k e L8 02y — o 41
Set

du(x) = e || 2 da. (1.5)

Let us consider the measurable function f(x) on the interval (—oo,00). Then the Hermite transform is

defined by
H(fin) = fo) = [ 1@ Ha(@)du(o)n e N. (16)
The inverse Hermite transform defined by
° -1
Z n)H (2 [h; >} . (1.7)

where

=2 (3] ) (22 ).

Let the space of those real measurable functions f on (—oo,00) be Ly, ,,(—00,00),1 < p < oo, for which

1l = { / 2) IP dpu(z)} 3 p < oo. (18)

| fllp,n = esssupzer | f(x) |,p = oo. (1.9)

An inner product on Lg ,, is defined by
oo [
— [ s@s@duta). (1.10)
—0o0
2. HERMITE TRANSLATION AND CONVOLUTION

In this section, Hermite translation and associated convolution will be discussed. To define the Hermite

convolution "*’ we have to introduce Hermite translation. For this purpose we need the basic function

oo

~ -1 . - ~
K (w,y,2) ~ D0 [R0] B @) P () Y (2). (2.1)
n=0
Hence by equation 1.6 and 1.7, we have
[ K @O ) = B @) P ) (2.2)

Clearly Kg“) (z,y, z) is symmetric in z,y and z.

Setting n = 0 in equation 2.2, we have

[ h KW (x,y, 2)dp(z) = 1. (2.3)
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The Hermite translation 7, of f € L, ,(—00,00),1 < p < 00 is defined
nf@) = faw) = [ FORE @y 2)du(z),1 < p < . (2.4)
Lemma 2.1. For f € L,, and 1 < p < oo,

I 1

po < [ lposss (2.5)

and the map: f — 7,f is continuous and linear in Ly, ,.

Proof. Proof is referred from [3]. O

Let p,q,r € (—00,00) and % =14 % — 1. Then the Hermite convolution [3] of f € L, ,(—00,00) and

P
g € Ly ,,(—00,00) is defined by following equation

Uaw= [ T (1) g(o)du(z). (2.6)

— 00

By using the relation defined in equation 2.4, convolution (f * ¢g) can be defined as

(9@ = [ Z / Z F(2)g(2)dm®)(2)

|| reu@E .y 2 du@nt), (27)
Also recall the following Lemma from [3].

1

Lemma 2.2. Let p,q,r € (—00,00) and } =5

+ % —1,feL,,(—00,00) and g € Ly ,(—00,00). Then the

convolution (f * g) defined by equation 2.7 satisfies the following norm inequality:

@IS * gl < IIf

poiillgllg,pe- (2.8)

Moreover f,g € Lo, we get

(i0) (f * 9)" (n) = f(n)g(n). (2.9)

Lemma 2.3. For any f € Ly, the following Parseval Identity holds for Hermite transform.:

~ -1
STRO) 1 F0) P= 151 e (2.10)
Proof. Proof is referred from theorem 1 in ref. [2]. O

For any fi, fa € Ly, (—00,00) the below Parseval Identity holds for Hermite transform. See ref. [2].
-1 o0
S 0] A = [ @ n@d)

and

S [9] " st = [ H A@I00)du),

n
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In this paper, following the technique of Pathak and Dixit [6] and Trimeche [9], Hermite wavelet transform
is defined. The continuity and boundedness properties of Hermite wavelet transform is derived. A semi dis-
crete Hermite wavelet transform is defined. Furthermore discrete Hermite wavelet transform is investigated.

Using discrete Hermite wavelet, frame and Riesz basis [8] are also studied.

3. CoNTINUOUS HERMITE WAVELET TRANSFORM
For a function ¢ € Ly, ,,(—00,00), defined the dilation D, by
D,¢(t) = ¢(at), o > 0. (3.1)
Using the Hermite translation 2.4 and above dilation, the Hermite wavelet ¢, »(t) is defined as follows:
bpolt) = TpDod(t)

Top(ot) (3.2)
| ekl oot auco) (3.3)

where p > 0 and ¢ > 0. The integral is convergent by virtue of inequality 2.5.

Definition 3.1. Admissible Hermite wavelet
The function ¢(-) € Ly ,(—00,00) is said to be admissible Hermite wavelet if ¢(-) satisfies the following

admissibility condition

where (;Ab(n) is the Hermite transform of ¢.

Continuous Hermite wavelet transform

Using the wavelet ¢, , we now define the continuous Hermite wavelet transform.

(1), b0 (1))
/ e @du(t) (3.4)

(ffé,”)f) (p,0)

/ h / T HOF@IEY (., 2)du(=)du() (3.5)

provided the integral is convergent. Since by inequality 2.5 and definition ¢, , € Ly, whenever ¢ € L, .
By virtue of Lemma 2.2, the integral 3.5 is convergent for f € L, ,, % + % =1.

The Hermite wavelet transform can be expressed in the form of Hermite transform as follows.

H [(F) (p,0)| = Fm)d(o.n).
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Also the Hermite wavelet transform can be written as

(5£) (p.0) = (£ x6(0,)) (0):

The continuity and boundedness results follow from the following theorem.

Theorem 3.1. Let f(-) € Ly, ,, and ¢(-) € Lg,0 >0 with 1 < p,q < oo and Z%—F% =1. and (ﬁé”)f) (p,0)
be continuous Hermite wavelet transform 3.5. Then

) 1A 1) (0l < I llpalldlr, g 2 = £+ 2 =11 < prgr < oc.

@) 11 (5 1) (0. Moo < 11l 90, Mlgus 2 + 2 = 1.

p,p

Proof. (ii) Using representation 3.5, we have

(7875) (0.0) = / h / T S KY (ot 2)du(2)du(t)

— 00 — 00

= /00 /OO f(t)qzs(O'Z)Kg‘)B (o, 1, Z)Kj(r.?) (p,t, 2)dp(2)du(t)

Q=

3 =

/ ) / R Kﬁf‘)@’tvz)du(z)du(t)) x

/Z /Z |0(2) 'K ot ZW(Z)du(t)) %

[ s i) [T <p,t,z>du<t>)é

by using equation 2.3, it follows that

| (ﬁé#)f) (p.o) < IIf Dy 9(o, ')Hq,ﬂ;

so that

1 (7S £) (0 oo < 15l all&@, g

the inequality 1.1 follows from inequality 2.8. ]

Theorem 3.2. If ¢ is a basic Hermite wavelet and WV is any bounded function, then (¢ U) is also a hermite

wavelet.
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Proof.
00 « T ()2
Clonsy = Z|(¢ ‘I’Tz (n)]

n=0
> o A ) (T (n)]?

_ Z()I()()fl)()l

< w1

n=0
< o0
Hence (¢ * ¥) is a Hermite wavelet. O

Basic Properties of Continuous Hermite Wavelet Transform

Theorem 3.3. Let ¢ and ¥ be two wavelets and f, g be two functions belong to Ly, (—0c0,00), then

(i) Linearity property:

HY (nf + Cg)(o, p) = nHY (f) (0, p) + CH (9)(0, p)

where 1 and ¢ are any two scalars.
(ii) Shift property
(HY1) @ = 7)oup) = (1) (0.0 = 7)
where T is any scalar.

(iii) Secaling property If ¢ # 0 is any scalar, then the Hermite wavelet transform of the scaled function
felz) = <f (3) is
(1) _gwge (9P
(#81.) (o) = £ (2,2)

(iv) Symmetry property:

(121 (0. = (1 5) (0) (2.)

o’ p

(v) Parity property
(£55p5) (@) = (HJ"£) (0 =p)

where p is the parity operator defined by pf(x) = f(—=x).

Proof. The proof is the straight forward application of Hermite transform. O

Plancharel and Persevals relation for Continuous Hermite wavelet Transform

Let f,g € Ly ;,(—00,00) and ¢1,p2 € Lo, (—00,00) are two Hermite wavelets. Then we have

<<H<§’l:) ) (U’ p)’ (Hg;)g> (U’ p)>L2,H((*OO,OC)X(7oo,oo)) = C¢1»¢2 <f7 g>L2,“<7oo,x)7 (36)
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where
Coron= | 6r(am)onlp.m)du(o)
Proof. Let f,g € La,,(—00,00) then from 3.4, we have
/ / (H7) (0. p)( '9) (0, p)du(o) / / HY [ (o) (o)
YT g(m)0a(.m)] (0)dia()dp(p)
now by using 2.10 we get
[ [ t@aeoi@ee o))
= L[] i [ ortomen(onduto) (3.7
o 3 [M] T,
Hence by using the Parseval formula for Hermite transform, we get
[ [ (#5) 0.0 (#9) Gpriutorints) = covouFita)
= o100 (1D Loy ooy (3.8)
O

Theorem 3.4. (Inversion formula) Let f € Ly ,(—00,00) and ¢ is Hermite wavelet defines continuous

Hermite wavelet transform. Then,

= 614)/_0; /_O:o (Hé“)f) (0, 0)bp,o (t)dp(o)du(p),

where cq is the Admissible Hermite wavelet.
Proof. Let h(x) € Ly ,(—00,00) be any function, then by applying previous theorem, we have
ol Wiy = [ [ (#8) (0.0 (HOR) (0 p)dn(o)iuto)
= 5[] (08 0w [ 0t Oddu(ointo

- / / / (HY 1) (9,06 0 (0 D)1 ) ()

- / o(t)h(E)dt
= (g,h),
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where,
=5 Z / Z (HY£) (0. 0)6 .0 (0)du(o)dip).
Then,
colf, ) = (g, )
f=ro=ge [ [ (BE5) @ taute)ino
If f=h,

T / / (HY£) (0.0) I? dulo)du(p).

Moreover the Hermite wavelet transform is isometry from Ly ,(—00,00) to La ,,(—00,00) X Ly ,(—00,00).

O

A General Reconstruction Formula
In this section, we show that the function f can be recovered from its Hermite wavelet transform. In derived

the reconstruction formula, we need the following lemma.

Lemma 3.1. Let f € Ly, and ¢ € Ly, be a basic wavelet, which defines Hermite wavelet transform 3.5.

Then

(897)" (0.0) = Fm)(o.m), (3.10)
where

o) = [ oo AP (autz). (3.11)

Proof. Using representation 3.5, we have

(ﬁfVﬁaﬂ = /Z/if@mw@KgmmJMM@@@
= /m/mf@dmmmaww(ffmwaww@mw@gwgg
TeodTee n=0
= S ] Eew ([ roapoa [T Eeae )

0 — 00

. (ﬁéﬂ)f)A(p’g) = f(n)d(o,n).

This completes the proof. (|
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Theorem 3.5. Let f € Ly, and ¢ be a basic wavelet which defines Hermite wavelet transform by equation

3.5. Let q(o) > 0 be a weight function such that

Q(n) = / " 4(0) | éovm) P du(o) > 0.

Set

ép,a (n)

Then

/ / ) (B8 £) (p.0)6"* ()du(o)du(p).

Proof. From equation 3.10, we have

( ”éu)f)A (p,0) = f(n)d(o,n)
- /O; (877 (p.0) Y B)du() = Fm)(o,m).

(3.12)

(3.13)

(3.14)

multiplying both sides by QAS(J, n) and weight function ¢(o) and integrating with respect to du(co), we have

/OOO 4(0)(o,n) ( / Z (A9°F) (p, ) (p)du(p)> du(o)

_ / " 4(0)F(m)d(o. n)d(o m)dp(o)
= [T atwriten ([ (85) o) B 1) ) duto)
- /ooo 4(0) () | 6(0,m) 2 dyu(o)

Equation 3.11 and 3.15 gives

foem = [ a@demauto) [ (1) tr.) B ()iut)

— 00

R 1 [e'S) [e'S) = . -
fo) = gr [t [ (BE8) (. )bl B ()t

We also have from equation 3.3,

bpo(t) = /OO é(o Z [h(# r W (p)H (1) H9 (2)dp(2)

= i [h(“)} A )H(“)(t)/ d(o2)HW (2)dp(2)
n=0 — 0

- i [M‘l A () AP (030,
n=0

(3.15)

(3.16)
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Therefore
] T ()
bpo(t) = (dlom AL (p) (0.
Gpo(t) = (o) HI (p). (3.17)
Using equation 3.17 in 3.16, we have
Fo) = g [ a0@) [ bat) (25 (0. )ut)ato) (318)
From equation 3.13 it follows that
fln) = / a(o) / 6 (n) (A1) (p, 0)dpu()dpu(p). (3.19)
From equation 1.7 and 3.19, we have
1 = Z ] mww [ o) (805) (0,00 )auto)dute)
- a0 (#9F) (o) Y [hgw} 677 (n) Y (1) dp()dpu(p)
n=0
= [ a0 (825) (0107 )autorduto)
This completes the proof of theorem 3.5.
A characterization of ¢”? is given below. |
Theorem 3.6. Assume that there exist positive constant A and B such that,
0<A<QMn)<B<x (3.20)
Let
NCI-
2(t) = o,n)H P (t 3.21
97 (t) 2" G0m) ¢(o,n)Hy (t) (3.21)
Then
(1)9™7 (t) = 7,97 (1) (3.22)
(@@)16" |2 < A7 | p,oll2- (3.23)
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Proof. (i) Using equations 1.7, 2.2, 3.13 and 3.16, we have

¢p,o(”)

Q(n)

é(o,n)HY (p)
Q(n)

PP (t)

Q)
oo S i () )] A )
Q)

e 4o e A @) [14]
Q)

= Y bpemAw ]

—
3

e ] e () 2
2;0 R RN

L R
Q(n) 9 n n

o |7 -t -
= 2 [h;(j) o(o,m) ( / wK%><x,y,z>ﬁgﬂ><z>du<z>)

- / 67K W) (2, y, 2)du(z)

= Tp¢>‘7 (Z)7
where ¢?(t) is given in equation 3.21.

(ii) From equation 3.13, we have

|77 1S A7 | 9p0() | (3.24)
so that
oo -1 e _1
SO 1) P A S ] b () P
n=0 n=0

Using equation 2.10, we get

1672, < Nl dp,oll2,p-
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4. THE DISCRETE HERMITE WAVELET TRANSFORM

The continuous Hermite wavelet transform of the function f in terms of two continuous parameters o and
p can be converted into a semi-discrete Hermite wavelet transform by assuming that o = 277,35 € Z and
14 S R+.

In what follows we assume that ¢ € L , N Lo, satisfies the so called ’stability condition’.

A< f: | 6(279n) P< B ae. (4.1)

j=—o0

for certain positive constants A and B, —o0o < A < B < o0.
The function ¢ € L1, N Ly, satisfying condition 4.1 is called dyadic wavelet. Using definition 3.4, we

define the semi discrete Hermite wavelet transform of any f € Ly, N La , by

(H21) () = (HDT) (p27) (4.2)
(F(E), Bpas (1))
/ Z F ()G Ddu(t)

/_ T FOT, @D du()
(f * ;) (p),

where ¢;(z) = ¢(2772),j € Z.

Theorem 4.1. Assume that the semi discrete Hermite wavelet transform of any f € L1, N Ly, 15 defined
by the equation 4.2.

Let us consider another wavelet ¢* defined by means of its Hermite transform

b (n) = (b(??) 4.3
M SN FTERIE -

Then
=3 [ " (#21) (o) (#m AL ®) (du(p) (4.4)

j=—00’~

Proof. In view of relations 1.7, 3.23 and 2.9,
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Z /_OO (Hff) (p) (<13*(2—jn) ~7(Z/t)(t))v(p)d'u(p)

— Z /°° (Hff) (p) [ [ﬁ%u)}_l & (2~In) AW (1) ~7(1u)(p)] du(p)
j=—00” T n=0

= 3 Y[ demaro [ () (e o)
j=—o0on=0 h — 00

= Y ] demaro (1) o
j=—oon=0 )

= 3 N [R] g naR @) (f65) " (n)
j=—oon=0 -

= 3 S [) T e A 0 fmdin)
j=—00on=0

=S S ] A wér @ dein)
j=—o0on=0 h

= 3 3 Vi'l('u') Tty n (P‘) t %(2-]7,7)) ~ 2_-771
2 S L )

S S ] o )| PET)
j:z;oonz::o . Flm)H ()Zl | 9(2792-1n) |2

S O I [ T
j=—oon=0

= f@.

The above theorem leads to the following definition of dyadic dual. 0

Definition 4.1. A function ¢ € Li,NLy,, is called a dyadic dual of a dyadic wavelet ¢, if every f €

Li,NLy, can be expressed as
=% [ (#5) ) (3 aL®) (G)dnto) (45)

So far we have considered semi-discrete Hermite wavelet transform of any f € L, N Ly, discretizing
only variable a. Now, we discretize the translation parameter b also by restricting it to the discrete set of
points:

k .
Pik = 55P03] € Z,k €N, (4.6)

where pg > 0 is a fixed constant. We write,

(bpg;j,k(t) = (bp,j,k:;oj (t) = ¢(2_jt7 2_jk,00)- (4'7)



Int. J. Anal. Appl. 18 (4) (2020) 545

Then the discrete Hermite wavelet transform of any f € Ly, can be expressed as

(H(;M)f) (p]J??O.]) = <f7 ¢P0§j7k>7j € Z? k7n € N (48)

The ’stability condition’ for this reconstruction takes the form

AllFI13, < Y 1F Spogid) P < BIIFI3,0k €N, (4.9)

JEZ

where A and B are positive constant such that 0 < A < B < cc.

Theorem 4.2. Assume that the discrete Hermite wavelet transform of any f € Lo, is defined by 4.8 and

stability condition 4.9 holds. Let T be a linear operator on Lo, defined by

Tf = Z <fa ¢pg;j,k>u¢po;j,k- (410)
jEZ kENg
Then
f= Z<f> ¢po;j,k>u¢z})kv
where,

P =T ¢, 503 € Z, k € No.

Proof. From the stability condition 4.9, it follows that the operator defined by equation 4.10 is a one-one
bounded linear operator.

Set
g = Tf7f S L2,;4-

Then from equation 4.10, we have

(Tffy="> | f ook I”-

JEZ,kENg

Therefore, from condition 4.9,

AT gll3,

AFIE3 < 1 Ypon) 2= (TF, £
= (9779 < llgll2p T gll2,n

by Schwartz equality.
Therefore,
1
-1
I gl < Sl

Hence, every f € Ly, can be constructed from its discrete Hermite wavelet transform given by 4.8. Thus

f= T_le = Z (f, ¢po;j,k>T_1¢po;j7k- (4.11)

JEZ,EENg
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Finally, set
o =T ' $p5k:4 € Z,n € No.
Then the construction 4.11 can be expressed as

f=Y" (frbpindht,

JEZ,EEN

which completes the proof of theorem 4.2. |

Frames and Riesz basis in L,

In this section, using ¢,,.;,» a frame is defined and Riesz basis of Ly , is studied.

Definition 4.2. A function f € Lo, is said to generate a frame {¢,,.; 1} of Lo, with sampling rate py if

condition 4.8 holds for some positive constant A and B. If A = B, then the frame is called a tight frame.

Definition 4.3. A function f € Lo, is said to generate a Riesz basis of {¢p,;j.x} with sampling rate po if
the following two properties are satisfied.

(i) The linear span (¢py.;.k;J € Z) is dense in Lo .

(ii) There exist positive constants A and B with 0 < A < B < 0o such that

Alle il <117 ¢iubpoiklls, < Blij sl (4.12)
J,kEZ

for all {c;} € I>(N?). Here A and B are called the Riesz bounds of {¢py:j.k}-

Theorem 4.3. Let ¢ € Lo, then the following statements are equivalent.
(1) {Ppo:jk} is a Riesz basis of Lo ,,.
(ii) {Ppoijk} s a frame of Lo, and is also an I* linearly independent family in the sense that if

> ik Cik®poik = 0 and {cji} € 17, then cjp = 0. Furthermore, the Riesz bounds and frame

bounds agree.

Proof. 1t follows from property 4.12 that any Riesz basis is [*-linearly independent. Let {¢,,.;.x} be a Riesz

basis with Riesz bounds A and B, and consider the matrix operator:

M= [’Yl,m;j,k}(l,m)(j,k)ezvxzvv
where the entries are defined by
Tmige = (Dpostms Pooiik) - (4.13)

Then from property 4.12, we have

Alfeiidllz < Y ammmgncik < Bl{er}liEs
L gk
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so that M is positive definite. We denote the inverse of M by

1
M= = [st,ms.) (my Gy e N xon » (4.14)

which means that both

Z Hi,mr,sVr,s;5,k = 5l,j5m,k; l» m, jv ke N, (415)

T,

and

B el < D cmmmgntin < A7 {ei IR (4.16)

l,m,j,k

are satisfied. This allows us to introduce
¢(@) = Himg kB possik ()- (4.17)
gk

Clearly, "™ € Lo, and it follows from equation 4.15 and 4.13 that

(8", G posjik)u = 01.30m kit sk € N,

which means that {¢"™} is the basis of Ly ,, which is dual to {¢,,.jx}-

Furthermore from equation 4.15 and 4.17, we conclude that

<¢l,m’ Qj)j’k)u = Hi,msj.k

and the Reisz bounds of {¢"™} are B! and AL

In particular, for any f € Lo, we may write

f(l‘) = Z<f7 ¢po;j,k>u¢j7k(x)

J.k
and

B_l Z | <f7 ¢P0§j,k>l¢ |2S Hf”%,,u, S A_l Z | <f7 ¢P0§j,k># |2 : (418)
5.k gk
Since condition 4.18 is equivalent to condition 4.8, therefore statement (¢) implies statement (i4).

To prove the converse part, we recall Theorem 3.5 and we have any g € Lo, and f =T"!g,

g(z) = Z (fs Dposjk) Ppoiink-

meZ,neN

Also by the {?-linear independence of {¢,,.;.x}, this representation is unique.
From the Banach-Steinhaus and open mapping theorem it follows that {¢,,.;x}, is a Riesz basis of

Lo m
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Example 4.1. Let the mother wavelet be

-
an)
IA

t<

N|—=

A

<t<1- (4.19)

l\)\»—t

0, otherwise

This mother wavelet is called Haar wavelet. This is piecewise continuous. Using this wavelet we have

following expression for ¢(ot).

plot) =4 -1, L<t< (4.20)
0, otherwise

Let f(t) = t~2#¢~2t. Then Hermite transform of f(t) is given by

e = [ 0@

/ T et e P W (1)

> 2 2
= / t72e 2T HW () | ¢ |2 et dt

— 00

t2
e t2+2t’7)H£f‘> (t)dt
= Jr(20)"e” (4.21)

Now,

/OO o Y ()du(z) = | B @du(z) — | AP (@)du(z)

00 0 =

_ (1) (4 2) — 7 (1) (5 Py
2 [* HP aute) / (2)du(z)

= 2¢ (na /J) — 02 (n’ :u)v (4'22)

where ¢1(n, p) = foé HY (2)du(z) and ¢a(n, p) = foi HWY (2)dp(z).

Using representation 3.5 and 2.1, we have

(801 o) = [ [ 503K (.t 2)dn(elaute)

T ( [0 eme) ([ seae @ ).

n=0

From equations 4.21 and 4.22, it follows that

(785) (0, 0) = i 220 (5] +1)r ([” ;F 1] bt 1) A9 (p)/m(20)7e (261 (n, 1) — da(n, ).
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