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ABSTRACT. In this study, we will give new characterizations of weakly unconditionally Cauchy series and

unconditionally convergent series through summability obtained by the invariant convergence.

1. INTRODUCTION

Let o be a mapping of the positive integers into itself. A continuous linear functional ¢ on m, the space

of real bounded sequences, is said to be an invariant mean or a ¢ mean, if and only if,

(1) ¢(x) > 0, when the sequence x = (z;) is such that z; > 0 for all j,
(2) ¢(e) = 1,where e = (1,1,1....),
(3) (o)) = ¢(x) for all x € m.

The mappings ¢ are assumed to be one-to-one and such that o?(j) # j for all positive integers j and i,
where ¢%(j) denotes the ith iterate of the mapping o at j. Thus ¢ extends the limit functional on ¢, the
space of convergent sequences, in the sense that ¢(z) = limz for all z € ¢. In case o is translation mappings
o(j) = j + 1, the o mean is often called a Banach limit and V,, the set of bounded sequences all of whose

invariant means are equal, is the set of almost convergent sequences.
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It can be shown that
Vo ={x = (x;) : limt;;(x) = € uniformly in j,{ = o —limx}
where,

Toj) T To2() + -+ Toi()
i+ 1

tij(w) =

Several authors including Raimi [19], Schaefer [20], Mursaleen and Edely [10], Mursaleen [12], Savag [22,23],
Nuray and Savag [14], Pancaroglu and Nuray [16,17] and some authors have studied invariant convergent
sequences. The concept of strongly o-convergence was defined by Mursaleen [11]. Savag and Nuray [24]
introduced the concepts of o-statistical convergence and lacunary o-statistical convergence and gave some
inclusion relations.

Now, we recall the basic concepts and some definitions and notations (See [1,3-5,7-9,13,15,21]).

Let X be a normed space. For any given series >, z; in X, let us consider the sets

S(Z x;) = {(a;) € boo : Z a;x; convergent}

S’w(z x;) = {(a;) € oo : Z a;x; convergent for the weak topology}.

K2

The above sets endowed with the sup norm and they will be called the space of convergence and the space

of weak convergence associated to the series ), x;.

Definition 1.1. A series ), x; in a normed space X is said to be a weakly unconditionally Cauchy(wuc)

if for each ¢ > 0 and f € X*, an ng € N can be found such that for each finite subset F' C N with
FOAl,...,no} # 0 is Y ,cp | f(xzi)] <e.

As a consequence, ) . x; is a wuc series in X if and only if each functional f € X* satisfies that
S22, ()] < .

In [18] it is proved that a normed space X is complete if and only if for every weakly unconditionally
Cauchy (wuc) series ), x;, the space S(_, x;) is also complete.

Diestel [6] proved the following characterization that will be used throughout the paper.

Theorem 1.1. Let ) . x; be a series in a normed space X. Then, the series Y . x; is wuc if and only if

there exists H > 0 such that
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H :sup{HZaixiH neN |a| <1,ie{l,...,n}}
i=1

= sup{HZEixiH :ne€Nyg e {-1,1},i € {1,...,n}}

i=1
—sup{> | f(x:)| : f € Bx-}
i=1
where Bx« is denotes the closed unit ball in X*

2. MAIN RESULTS

Proposition 2.1. Let X be a normed space and (z,) an invariant convergent sequence in X. Then (z,) €

oo (X).

Proof. Let (x,) be a sequence in X such that o — lim, z,, = x¢ for some zg € X. We can fix £ > 0 and

19 € N satisfying that
1 3
- Z Lok (j)
1+ 1 P
for every i > ig and j € N. Then we have that for every j € N is

< |lzol| + ¢

. io+1 io+1 .
io 2§~ Lok () Tk () i +2
1 — = _ < 1
ool = el = |37 20 3255 — X | < Gegg +1) ool 9
where the last term is a fixed constant, what concludes the proof. O

Definition 2.1. A series ), x; in X is said to be invariant convergent to xg € X if o — lim, s, = o,
where s, = Y., x; is sequence of partial sums, and we will denote it by V, — > . x; = x¢. Therefore,
Vo — > @i = xo if and only if
J 1 i
Zlgglo (;xk + 1 ’; {(z —k+ l)xgk(j)}) = x
uniformly in j € N.

Definition 2.2. xq is said to be weak invariant limit of a sequence (x,) if each function f € X* verifies

that o — lim f(xz,) = f(xo) and we will write wo — lim x,, = xg.
Let X be a normed space and ), z; a series in X. We define following sets:
S"(Z x;) ={(a;) € log : Vy — Z a;x; exists}

Swg(z x;) = {(a;) € boo : WV, — Z a;x; exists}.

These spaces are the vector subspaces of /., and we consider them endowed with the sup norm.
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Theorem 2.1. Let X be a Banach space and ), x; a series in X. Then ), x; is wuc(weakly unconditionally
Cauchy) if and only if So(>", x;) is complete.

Proof. Let ), x; be a wuc series. We will prove that S, (>, ;) is closed in /. Let (a™) be a sequence in
So (3, i), a™ = (a?) for each n € N and let also be ag € ls such that lim, [|[a" — a°|| = 0. We will show

that a® € S, (>, z;). Let H > 0 be such that

n
H > sup{|| ZaixiH :neN,|a| <1,i€{l,...,n}}.
i=1
For each natural n there exists y,, € X such that y, =V, — ZZ afz;. We will see that (y,,) is a Cauchy
sequence.
€
If € > 0 is given, there exists an ng such that if p,q > ng ,then ||a? — a?|| < —. If p,q > ny are fixed,

3H
there exists i € N verifying

<Zakmk+z {(z‘kﬂ)af;k(j)xak(j)DH <§ (2.1)

k=1

J i
1 . €
k=1 as k=1 3

for each j € N. Then, if p, ¢ > no we have that

J

1—k+ 1
I =l < (22) + 22)+ |36k~ s + Z [ A g - || e
k=
where (2.3) < % Therefore, since X is Banach space, there exists yo € X such that lim,, ||y, — yo| = 0. We

will check that oY, az; = yo, that is,

%

1 .
zli}?o (Zakl'k + — + 1 Z |:(7, —k + 1)a2k(j)$gk(j):|) = Yo,

uniformly in j € N.

5
If € > 0 is given, we can fix a natural n such that ||a” — a®|| < 30 and

€
lYn — voll < 3 Now, we can also fix i¢ such that for every i > ig is

. n 9
(Zakik + + 1 Z |:(Z — k + 1)aak(j)xak(j):| ) H < g
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for every j € N. Then, if i > 7 it is satisfied that
‘yo— (Zakxk+ 1 Z [(l—k‘f‘l) Aok () Tok( DH < lyo — ynll

7
+‘y

J
n 1 N n
<§:%@k+i+1;;{@k+1MM”ﬂMUJ)H
J 1 2e
. n 0
kg —a’ l‘k—f' i1 E |:(Z_k+1)(a/o.k(j) _ao-k(j))xo‘k(j)]H < 3

i

k=1
a(4) 0
—k+1) (a71) — dor(j)
_ 0 J J '

+a" —a ||<Zan_ T JrZ{ i1 [a" — a0 “otO)

25

4 " H<

=3 Tagh=e

for every j € N. Thus (a2) € S,(3°, x;).

Conversely, if S, (>, x;) is closed, since cog C Sy (D, x;), we deduce that ¢g C So(>", z;). Suppose that

>, @; is not wuc series. Then there exists f € X* verifying > .o, | f(z;)] = +oc.

if

We can choose a natural ny such that >, |f(z;)] > 2.2 and for ¢ € {1,...,n1} we define a; =

f(z;) >0o0ra; = 7 if f(z;) <0

1
There exists ng > ny such that Y372 |f(2;)| > 3.3 and for i € {ny +1,...,m2} we define a; = 3 if
f(z;) >0o0ra; = % if f(x;) <O0.
In this manner we obtain an increasing sequence (ny); in N and a sequence a = (a;); in ¢ such that

oo aif(z;) = 4o0. Since (a;); € So (3, ), it follows that o >, a;x; exists and therefore (Z?_l aif(xi)>

n
is bounded sequence, which is a contradiction. O

Then we have the following result.

Corollary 2.1. Let X be a Banach space and ), x; a series in X. Then Y, x; is a wuc(weakly uncondi-

tionally Cauchy) series if and only if for each sequence (a;); € co it is satisfied that Vi, — >, a;x; exists.

Proof. Let )", x; be a wuc series in X. Then, we have that S;(}_, ;) is complete. Since cog C S5, x4),
we deduce that co C S,(3_, x;), that is, V, — >, a;x; exists for every sequence (a;) € co. The converse is

proved similar to the end of the previous demonstration. O

Remark 2.1. Let X be a normed space and ), x; a series in X. We consider the linear map T :

Se (>, i) = X defined by T'(a) =V, — >, a;x;.
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Suppose that Y, z; is a wuc series and consider H = sup{|| > a;z;|| : n € N,|a;| < 1,3 € {1,...,n}}.
Then, it is easy to check that if a € So(>_, ;) then |[T(a)|| = ||Vo — >, aixil| < Hlla|| and therefore T is
continuous.

Conversely if T is continuous and {a1,...,a;} C [—1,1], it is satisfied that | Zgzl a; x| = ||Ve —

Yooy aizs|| < ||T|| (considering a; =0 if i > j), which implies that Y, z; is a wuc series.
In the next theorem we study the completeness of space Sy (D, ;).

Theorem 2.2. Let X be a Banach space and ), x; a series in X. Then ), x; is a wuc series if and only

if Swo(D; xi) is complete.

Proof. Consider ), z; to be a wuc series. It will be enough to prove that Sy (3", ;) is closed in . Let (a™)
be sequence in Sy (>, i), a™ = (al); for each n € N and let also be a” € £ such that lim,, |la™ — a°|| = 0.

We will show that a® € Sy,s (>, ;). Let H > 0 be such that

n
stup{HZaixiH :ne€Nyja;| <1,ie€{l,...,n}}

=1

For each natural n there exists y,, € X such that y,, = wV, =3, al'z;. We will check that (y,), is Cauchy

sequence.
€

If ¢ > 0 is given, there exists an ng such that if p,g > ng ,then |a? — a?]] < 3 We fix p,q > ng

and we have that there exists f € Sx- (unit sphere in X*)verifying |lyp — yqll = [f(yp — yq)|- Since

Vo = > al f(z;) = flyp) and V, — >, af f(z;) = f(yg), there exists ¢ € N such that

J i -
1 . €
_ (Zaif(’ljk) + m Z (Z —k + 1)a§k(j)f(:cgk(j)) > < g (24)
k=1 k=1 " .
7. i €
(Zakf Tk) Z (z—kJrl)agk(j)f(xak(j)) ) <3 (2.5)
L=t .
for each j € N. Then, if p, ¢ > ng we have that
lyp — vl =f(yp) — flyg)l < (2.4) + (2.5) (2.6)
J
1—k+ 1
+ Z —al)f(xk) + Z [ 1 agk(j) - agk(j))f(:tgk(j))] ‘, (2.7)

k=1
where (2.6) < % Therefore, since X is Banach space, there exists yo € X such that lim, ||y, — ol = 0.
We will check that wV, — Y, alz; = yo.

€
If ¢ > 0 is given, we can fix a natural n such that ||a” — a®|| < e and

5
lyn — yoll < 3 Consider a functional f € Bx«. We have that there exists ig € N such that if i > iy is
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) - (éawuk) T 3 ik D o) )| <

k=1
for every j € N. Then, if i > iy and j € N, we have that

wW| ™

)

0 - (k}:agfm) eI (SRR C | B!
+| ) - (gamw ¥ ilg 6= k4 g faony)] )|

(" =)o)+ 5 D [(i —k+ Dlageg — agkm)f(%k(j))] ‘ =

7
1 k=1

+

M)~

° o0

that is, wV, — >, adz; = yo and a® € Syo (3, 7;).
Conversely, if Sy,o (D, x;) is complete, which implies that ¢y C Swo (D, 2:). Suppose that there exists

[ € X* verifying > .2 | f(z;)| = +oo.

Then, as we did in Theorem 2.1, a sequence a = (a;) in ¢o can be obtained such that ), a, f(z;) = 400
since a € Sy (D ; ®i), there will exists zg € X such that wV, =), a;x; = xo and it will be V, =", a; f(x;) =
Zo. But this implies that the sequence (Z?_l aif(xi)) is bounded which is a contradiction. O

n

Remark 2.2. Let X be a Banach space Y, x; a series in X. We consider the linear map T:Syo (>, ;) = X

defined by T(a) = wV, — >, a;x;. We will show that ), z; is wuc series if and only if T is continuous.

We define H = sup{|| >\, a;zi|| : n € N,|a;| < 1,5 € {1,...,n}} and take a € Sy (>, z;). Then
wVy—>, a;x; = xo exists and we can take f € Sx- such that |T'(a)| = |f(T(a))| = |Vo—2_, aif(x;)| < Hlal.

Conversely if T' is continuous.Then if {ay,...,a,} C [—1,1], we have that
| >0 aimi|| = |[wVe — Y2y aszs|| < ||T|| (considering a; = 0 if ¢ > n), which implies that >, z; is a wuc
series.

From the previous theorem and its proof the following corallary can be easily proved.

Corollary 2.2. Let X be a Banach space ), x; a series in X. Then the following are equivalent:
(1) >, @i is a wuc series.
(2) Swo (>, i) is complete.
(3) co C Swo(d; i) (WV, =, ax; exists for each a = (a;) € co).

Let us see that the hypothesis of completeness in the two previous theorems is completely necessary.
Let X be a non-complete normed space. Then it is easy to prove that there exists a sequence ) . x; in

1
X such that ||z;]| < o and ), z; = 2™ € X**\X. Then we have that V, — 3 . z; = 2**. If we consider
i



Int. J. Anal. Appl. 18 (4) (2020) 670

the series ), z; defined by z; = ix; for each n € N, we have that ), z; is wuc series. Consider the sequence
a = (a;) € ¢ given by a; = % It is satisfied that V, — Y. a;z; € X**\ X and therefore a ¢ S, (3, z;) and
a ¢ Swo(_; 2i)-

Let X be a normed space and X* its dual space. Let also ), f; be a series in X*. It is known that [6],
>, fiis wuc if and only if >, |fi(x)| < oo for each x € X.

Now we consider the vector space
S*wg(z fi) ={a=(a;) € oo : ¥V, — Zaifi exists}
k i
, where xwV, — 3. a;f; = fo if and only if V, — >, a;fi(x) = fo(x) for each z € X.

Theorem 2.3. Let X be a normed space. It is satisfied that 1 = 2 = 3, where:
(1) >, f(3) is a wuc series.
(2) S*um(zi f’L) = goc
(3) Ifx € X and M CN, then V, =3, fi(x) exists.

Besides, if X is a barelled normed space, the three items are equivalent.

Proof. From the x weak compacity of Bx» we deduce that 1 = 2. It is clear that 2 = 3.

We suppose now that X is barelled and we will prove that 3 = 1. Effectively, our goal is to prove
that £ = {3 ,a;fi : n € N,|a;] <1,i € {1,...,n}} is pointwise bounded for each € X and therefore
E is bounded, which implies that ). f; is wuc series. Suppose that E is not pointwise bounded, that
is, there exists xop € X such that ), |fi(zo)] = +oo. Then, we can choose a subset M C N such that

> iem Ji(wo) = + —oo. But, by hypothesis, V, — >,/ fi(xo) exists, which is a contradiction. O

When o(j) = j+ 1, we have the almost all definitions and theorems in [2] concerning almost summability.
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