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ABSTRACT. In this paper, we study the compact derivations on W* algebras. Let M be W*-algebra, let LS( M) be

algebra of all measurable operators with M, it is show that the results in the maximum set of orthogonal

predictions. We have found that W* algebra A contains the Center of a W* algebra £ and is either a commutative

operation or properly infinite. We have considered derivations from W* algebra two-sided ideals.

1. INTRODUCTION

Let M be a W*-algebra and let Z(M ) be the center of M . Fix a&€M and consider the inner
derivation 5, on M generated by the component @, which is &,(-) =[a,"].

The norm closing two sided ideal f(B) generated by the finite projections of a W* algebra
B behaves somewhat similar to the idealized compact operators of B(H) (see [11],[8],[9]).

Therefore, it is natural to ask about any sub-algebras d of B that is any derivation from A into

f (B) implemented from an element of y(B).
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We perform two main difficulties: the presence of the center of B and the fact that the main

characteristic in [8] proof (that is, if Q,, is a sequence of mutually orthogonal projections and
T € B(H) hence ||QnTQn || >qa >0 for all Nimplies that T is not compact) failure to generalize

to the case in which g is of Type Il .
Finally, we have considered derivations from d at the two-sided

C.. (B, T) =BnL* (B, z’)(l <l+e< oo) to obtain faithful finite normal trace 7 on B.

2. NOTATIONS PRELIMINARY

Lemma (1). Let B be a semi-finite algebra, let Q, € p(B) and X, €Q, be such thate, , is a

faithful trace on B, . Assume there are Q, € p(B), F, e p({)and U, €B for n=n;,n

i+10"

such that the projections Q, are mutually orthogonal and Q =U U, QF,=UU, for all n

(ie., Q, ~Q,F,). Let x, =U F X,. Then X, >, O.
Proof. Assume that Z::n_ Q, =n,. Let 7 be a faithful semi-finite normal ( fsn) trace on B* to

be agreed on B, with @, . Then forall B eB; we have

7(B)=r(U,U,BU,U;)
=7(U;U,U;BU,)
=7(Q,F,U,BU,F.Q,)
=o, (FU,BU,F,)
=, (B).

Let P e p(B) be any semi-finite projection. Then by [11] there is a central decomposition of the

identity >° E =1E, e p(),E,E, =0 for y# such that 7(PE, )< forall y €T Then

7(PE, )=

7(Q,PE,Q,)

1M 2D
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whence HPnyn <0 for all yeI'. Let £>0 and let AcI" be a finite index set such that

>l nyoHZ <¢&.Thenforall N,

> H PE, x,
yeA

"= |PEU,Fx[
yeA
:;HpunFnnyOHZ

< ZHnyOHZ <e

yeA

Hence from ||PXn ||2 < Z * +& where ||F’Xn || — 0, to completes the proof.

PE, X,

yeA

Lemma (2). Let T ¢f (P), then there is an >0 and 0%E e p(¢) such that for every
0=F e p(() with F<E wehave |z (TF)|>a.

Proof. Let & =1||z(T)|#0 and let G be the sum of a maximal family of mutually orthogonal
central projections G, such that [z(TG, )| <« . Then

|7(TG)| =sup, |7(TG,)|< @, hence G#1. Let E=Z~G and let 0= F e P(¢) with F<E.

Since FG =0, by the maximally of the family we have ”72' (TF )” >a.

3. RELATIVELY COMPACT DERIVATION

Let M be a W™ -algebra and let Z(M) be the center of M . Fix a€ M and consider the inner
derivation &, on M generated by the element @, that is&, () :=[a,]. Obviously, &, there is a
linear bounded operator on (I\/I ,|| . ||M ), where || . ”M isa C* -norm on M. It is known that
there exists ce€Z(M) such that the following estimate holds: ||5a|| 2||a—c||M . In view of this
result, it is natural to ask whether there exists is an element Yy € M with ||y || <land ceZ (M )
such that |[a, y]| 2|a—c|.

Definition (3). A linear subspace | in the W* algebra M equipped with anorm | - | is said to

be a symmetric operator ideal if
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G [S ], |s [forall s et

(i) | s

| =||S||I foral S eI,

(iii) [ASB| < |A[[S], [B] for all S €1, A,BeM .

Observe, that every symmetric operator ideal | is a two-sided ideal in M, and therefore by

[13], it follows from 0<S <T and T el that Sel and |S|| <|T|,.

Corollary (4). Let M be a W"-algebra and let | be an ideal in M. Let 6:M — | be a

derivation. Then there exists an element a € |, such that 6 =0, = [a, ]

Proof. Since & is a derivation ona W” -algebra, it is necessarily inner [8]. Thus, there exists an

element d € M , such that 5() =45d () = [d,-] . It follows from the hypothesis that [d,M]< I .
Using [22] (or [20]), we obtain| d*,M |=—[d,M] < 1"=1 and [d,,M]c I k=12, where
d=d,+id,, dk=d; eM, for k=12. It follows now, that there exist ¢, c,eZ(M) and
u,u, €U (M), such that |[d,,u,]21/2|d, —c,| for k=1,2. Again applying [20], we obtain
d,—C, e, for k=12 Setting a:=(d, —¢,)+i(d,—~C,), we deduce that ac | and 5=[a,"].

Corollary (5). Let M be a semi-finite W* -algebra and let E be a symmetric operator space. Fix

a=a"eS(M) and consider inner derivation §=0, on the algebra LS(M) given by
5(X) = [a, X], X e LS (M ) If 5(M )g E, then there exists d €E satisfying the inequality

||d||E < ||§|| and such that 5(X) = [d,X].

M—-E

Proof. The existence of d€E such that 5(X)=[d,x]. Now, if UEU(M), then

|6()|, =du—ud], <|duf, +|ud|. =2||d]. . Hence, if xeM,={xeM:|x|<1}, then
X = Z;aiui ,  where uyeU(M) and |g|<1 for 1=1234, and so

ool < X e ), <l

_, thatis |5, <8|d], <oo.

M—>E
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4. A COMMUTATIVE OPERATION ON W* SUB-ALGEBRAS
When A a commutative operation is is crucial because it provides the following explicit way to
tind an operator T € B implementing the derivation.
For the rest of this section let A be any a commutative operation sub-algebras of B and
0:A — B be any derivation. Let U be the unitary group of A and M be a given invariant
mean on U, i.e., a linear functional on the algebra of bounded complex-valued functions on U

such that

(i) Forallreal f, inf {f(U)U eu}<Mf <sup{f(U)U eu}

(i) For all U eu, Mf, =MS, where f, (V)= f(UV) for V eu.

Thus M is bounded and |Mf|<sup{ [f(U)| | Ueu} for all f (see [8] for the existence and

properties of M ).

For each ¢ € B, the map
$—>Mgp(U's(U))
is linear and bounded and hence defines an element T ( B, )* . Explicitly,
#(T)>Mg(U's(U)) forall geB,
The same easy computation as in [8] shows that 6 =aAT . Notice that for all Ae B the map
¢ —>Mg(U'BU)=g¢(E(B))
defines an element E(B) which clearly belongs to AMB . Moreover it is easy to see that E is

a conditional expectation (i.e., a projection of norm one) from B onto ANB (see [6]).

Theorem (6). Let A be a commutative operation W* sub-algebras of B containing the center (

of B. For every derivation 5: A —f (B) thereisaT ef (B)suchthat §=aA T .

We have seen that given an invariant mean M on U there is a unique T € B such that

0=aAT and E(T)=0. We are going to show that T € A(B ). Reasoning by contradiction

assume that T ¢ A(B). We proof requires several reductions to the restricted derivation
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5. :Ag > f (B) for some 0+ E e p(¢). To simplify notations we shall assume each time that
E=1.

=0and P=Q,+Q,,,, then

n+1 n+l7

Let us start by noticing that if Q; € p(A) for i=n,n+1, Q,,Q

n+1

PTP = QTQ +5(Qu.)Q, +5(Q) Qs

hence

fr(eT)|- |3 x(are)

+Mmax 7(QTQ)

Definition (7). For every Q € p (A) define [Q] = [Q, 8] to be the central projection. Set
P={Pep(A)|[P]=1}.
Thus P € p iff ||7Z'(PTPG)|| = ||7r(TG )” forall G € p((). We collect several properties of [Q].

Corollary (8). Let B be a semi-finite W* algebra with a trace 7, let A be a properly infinite W*

sub-algebras of B and let 1<1+& <. Then for every derivation 6:A —C,,,(B,7) there is
aT eC,, (B,7) such that § =aAT .

In the notations introduced there, it is easy to see that ¢(Cl+£ (B, Z')) =C,, (g, T ) ), where
7=7®7, and 7, is the usual trace on B(H,). We can actually simplify the proof by choosing
An =1 ®( since the condition { — A is no longer required.

Corollary (9). Let P =Q_ +Q

Then there is a largest central projection [Q,,Q,,,] such that

n+l n+l

for every G e p(¢) with G <[Q,.,Q,.,], we have |z(QTQG)| =|~(PTPG)|.
Proof. Let G, ={G € p(¢)||7(QTQG)| = |=(PTPG)|} and E={G +& e p(¢)| if
G ep(’) and £20 then G €G, }. Since ||7r(PTPG)||: max, ||7r(QiTQiG)|| forall Ge p((), we

see that G, UG ,,; = p (). Notice that Z is hereditary (i.e, G —¢€Z and F e p((),F<G +¢

imply F eZ).
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Let [Qn ,le] =sup=. We have only to show that [Qn ,le] eZ. LetG+e= Zy(G +€)7 be

the sum of a maximal collection of mutually orthogonal projections (G +&) €=. Then for

every F = we have ([Q,.Q,.,]-(G +¢))F =0 because of the maximal of the collection of Z..

Then [Q,,Q,.,,]=G +¢. Consider now any G e p((), £20,thenG = G (G +¢), and since

G (G +2),<(G +2), €=, we have |7(Q,TQ,G (G +2), )|=|=(PTPG (G +2) )| for all ».

Since 7(Q,TQ,G )(resp. z( PTPG )) is the direct sum of then

7(Q,TQ,G (G +2) )(resp. 7( PTPG (G +#) )}, then we have
[7(@10,6)|=sw|z(QT0,6 @ +2), |

=sup
Ve

7(PTPG (G +2) ||
=|=(PTPG)|
whence G €G, . Since & >0 is arbitrary, we have G +£ =[Q,,Q,,,] €E which

completes the proof.

Corollary (10). (i) If Q,Q,,, =0 with Q; € p(A) then 1-[Q,,Q, ,] <[Q,.Q,..]-
(i) If Q, <Q,,, with Q; e p(A) then [Q,]<[Q,..]-

(i) If £>0 withQ e p(A),Q +cep then [Q]=[Q, ] and 1-[Q]<[¢]

If 7(TG)#0 forall 0= E e p(¢) then the following hold:

(iv) If E € p(¢) then E =[E].

(v)If Q e p(A) then [Q]<c(Q), where ¢(Q) is the central support of Q.

Proof. We have to show that for every G e p((), G <1-[Q,, Q,,;] we have G €G,,,. Let

n+l-

E +& be the sum Zy E, of a maximal collection of mutually orthogonal projections of G,

that are majored by G . Then
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=@, F)=sup[=(QTQ.F, )
= Supuﬂ-(Qnﬂ +Qn+l)T (Qn+l +Q”+l) FV H
- H”(Qnﬂ +Qn+l)T (Q“+1 +Q“+1) F H

whence E +¢ €G,,. By the maximalist of the collection, 0 <G —(E +¢&) does not majority any

n+l-

nonzero projection of G, ,; and since p(£)=G, UG, ,,, any central projection G’ <G —(E + 5)

n+l’/

must be in G,. By definition of Z, this implies that G—(E +&)€ZE whence
G -(E +¢)<[Q,.Q,..]- So,
G —(E +¢)<G <1-[Q,,Q,.,] and hence G =E +¢ €G,, which completes the proof.

(i) Let Gep(f) and G<[Q,]. Then |z(TG)|=|~(Q,TQ,G)|<|~(Q,.TQ..C)|
<|lz(TG)| whence equality holds and [Q,]<[Q,..] by the maximalist of [Q,.,].

(iii) [Q, ] is maximal under the condition: if G € p(/) and G <[Q, ¢] then

|=(@TQ6 )| <[7((@ +£)T (@ +¢)6 )| =[=(T6 )|

which is the same condition defining [Q,1 —Q]=[Q]. Thus [Q]=[Q, &]. Applying this to &
we have [£]=[2,Q] and thus by (i) we have [£]>1-[Q,2]=1-[Q].

(ii) Let E +&,E e p(() then |7 (ETE (E +¢))|=|=(TE (E +¢))| . This implies that if £>0,
then E +&<[E] so E<[E] andif E +¢=[E]~E <[E] then
0=|z(ETE (E +¢))|=| (T (E +¢))| whence E =[E].

(v) Follows at once from (ii) and (iv).

The condition that ||7Z'(TE)|| #0 for all 0#E e p(() is of course meaningless unless B is

properly infinite. Hence, we may assume without loss of generality that:
B is properly infinite and semi-finite.

There is an a >0 such that ||72'(TE)|| >a forall 0#E e p(ﬁ).
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Lemma (11). Let Pep and R, =X,p [a,oo), Ry = Xprp (—oo,—a], where X, () denotes
the spectral measure of the self-adjoint operator PTP. Then there is an E e p(f ), with
E, = | —E such that RE; are properly infinite and ¢( RE;)=E;, for i=n,n+1.

Proof. Let R=R +R =X 00, a) and let F # 0 be any central projection. If RF were finite,

|PTP| [
we would have

J=(TF)] == (PTPF)]

_WzPTpl R) H
.{h|PTﬂ1 R)F H
<a

Thus RF is infinite and nonzero. Hence R is properly infinite and ¢(R)=n. Now let E, be

the maximal central projection majored by c(R,), such that R F, is properly infinite. Then

n

C(Rn, En):En and Rn(n—En) is finite, hence Rw(n—E ) R .E

11En. 1S properly infinite and

¢(Ryus Ept)=Eps-

n+1? n+1

End of the Proof of Theorem (6). Take any 0+ Q, € p(B) such that B,, has a faithful trace
o, with X, € Q,H and assume ||x,[ =1. Let P e p, y €l be the not decreasing to zero. We are
going to construct inductively a sequence y, €T, F, € p(£),Q, € p(B),U, partial
isometrics in B, X, € H such that
(@) UU; =Q,, UU, =Q,F,. ie.Q, ~QjF,

(b) x,=U Fx,eQH
(c) Q,Q,=0 forn=m

d) 7, > 7 (hence P < Pym) for n>m

() Q,<p,

@ [, %] <%

g) [Tx, %, | =% .
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The induction can be started with an arbitrary Py ; assume we have the construction for n—1.
Let us apply Lemma(11) to P=P, and obtain E; € p(£), Ry e p(B) for i =n,n+1 as defined
there. Then

L=, = [E Xl +]Er.axol
Let F,be (any of) the projection E, or E

., for which ||Eixo||22% and let i be the

corresponding index. Then R,F, is properly infinite and has central support F,. Now Q, is

finite having a finite faithful trace «, , hence so is Q; ~FQ,<Q, for1<j<n-1 and

(ZEQJ ) F,.Let S, =inf {Ri F.. (1—2?:Qj ) Fn} . By the parallelogram law (see [2]) applied to

RiF, S, N[lej)Fn_inf {leijn’(l_Ri)F”}

whence RF, —S, is finite and hence S, is properly infinite and C(Sn) =F, . Since Q,F, is finite

F. we have that

n

and c(QF,)<F, we have QJF, <S, , ie, there is a partial isometry U, eBand a

Q, € p(B),Q, <S, such that (a) holds. Let X, be defined by (b) and choose 7,., > 7, so that (d)
and (f) hold. -Since Q, <R, <P, we have (e), since Q, < (1—2?:(}1.)5 we have (c). Finally
X, =Rx, =P, X, hence (g) follows from

n?“'n

(T, %,)

- ‘(Pynprnx X,)

n?’“'n

- ‘(PynTPyn R X, RX,)

1n? " 7n

17n7 " 1%

Za‘(R.x RX,)

Let now y, =x,—P,_ X,. Bis semi-finite, hence we can apply Lemma (1) to obtain that

X, = gew 0. Since HPMXH —0 we thus have Yy, 4,0 and Yy, ePH, where
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P,=P -P € p(d)and are mutually orthogonal by (d). Clearly for N large enough,

|(Tyn, Yo )= ‘a)yn (T )‘ >%a. Since o, (T)=Mo, (U "5(U )), by the properties of the invariant

mean mentioned, we have thatsup {‘a)yn (U ) (U ))‘ |U IS u} > %0{ . Thus we can find for every N, a

unitary

V, € usuch that ‘(V 5(V, )yn,yn) >1qg.Let A= Z P, then Aed and

yn,yn ‘(PAcS Pyn,yn)
=|(R.(A°AT - ATA)RY,. Y,

(
-l

l
4

PV, 5(V Pyn,yn)

Vo8 (Vo) Yas yn

for all n. Therefore ||5 (A) Y

-+ 0. But because of (II), we have &§(A)gf (B), which

completes the proof.

5. THE PROPERTY OF INFINITE W* SUB-ALGEBRA
Lemma (12). Let 0<beZ(M), s(b)=1 e} (0,.0) be a properly infinite projection and
C(eil (0,00)) =1. Let projection qeP(M) be finite or properly infinite, c(q)=1 and
q==<el(0,0).Let R> g, 4 0. For every N€N we denote by z, such a projection that 1-z, is
the largest central projection, for which (1-2,)q>(1-2,)e? (b, +) holds. We have z, T,1

and for

d:= {le + zfunﬂ (Zn+l —Z, )} b
n=1
the following relations hold:q~<<e}(d,+x), 0<d<ub and s(d)=1. Moreover, if all

projections €] (4,b,+00), n>1 are finite then €] (d,+) is a finite projection as well.

Proof. Since, €] (4,,;b,+0)> e} (x,b,+0) we have
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et (1-2z,.,)a=(1-2z,,,)el (4. b, +0)>(1-27,,,)el (u,b,+x). Hence, z,,, > 7, for every NeN.
In addition, €7 (,b,+0) T, € (0,+%) and € (0,+%) is properly infinite projection. Hence, in

the case when ( is finite projection, it follows that z_ Tn 1. Let us consider the case when ( is a

properly infinite projection with c(q)=1 and such that q<<e](0,%). In this case, with

p=q, qg=¢; (0,+oo), q,=¢€’ (,unb,+oo) and deduce \/(::lZn > c(q) =1.
All other statements follow from the form of element d. Since, zd = zb,

(201 —2y) = My (20, —2,)b and z,0=<=<z.€} (1,b,+%0) for every NeN. Observe also that

s(d)=5(b) (2 + X0, (2a-2,)) =1.

Finally, let all projections €2 (b, +0), n>1 be finite. Since
dz, = ub,d(z,,,-2,)= #,..b(z,,,—2,), wehave
&; (d,+00)z, =€ (44, +0)2,,
el (d,+90)(Z,, —2,) =€) (Ly.ab +0)(2,,,— 2,)
for every N € N. There projections standing on the right-hand sides are finite. Hence, €7 (d,+x)

is finite projection as a sum of the left-hand sides [22].

We shall use a following well-known implication

p<<q = zp=<zq, VzeP(Z(M)), 0<z<c(p)vc(q).
We supply here a straightforward argument. Let z'ezeZ(M) be such that
0<z'<c(pz)ve(agz)z(c(p)ve(q)). Then z'<c(p)ve(q) and therefore
7'(zp)=7'p<7'q=17'(zq). This means Zp << zq.

As in [6] we can use Theorem (6) to extend the result to the properly infinite case.

Theorem (13). Let A be a properly infinite W* sub-algebra of B containing the center (of B.

For every derivation §: A —f (B) thereisaT ef (B) suchthat 6=aA T .

Before we start the proof let us recall that if A is properly infinite there is an infinite

countable decomposition of the identity into mutually orthogonal projections of A, all
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equivalent in A to I, and thus a fortify equivalent in B to 1 [8]. Therefore there is a spatial

isomorphism

$:B—>B=B®B(H,)
with H, =1""*(Z) and
¢(A)=A=A®B(H,)
[5]. Recall also that the elements B of B (or A) are represented by bounded matrices
[Bij ] 1, ] € Z with entries in B (or A) by the formula
(1®E;)T(1®E,)=T, ®F,
where E; is the canonical matrix unit of B(H,). In particular if ¢, g are the maximal a
commutative operation subalgebras of B(H,)of Laurent (resp. diagonal) matrices, then
BeB®/ (resp. BeB ®go) iff [Bd is a Laurent matrix with entries in B, i.e., Bij = Bi_j ,where
B, , denotes the entry along the kth diagonal(resp. B, = Bii) forall i, jeZ.
Proof. Let § = goSog™ then
5:d —>g¢(f (B))=f (B)

is a relative compact derivation. Let wus define the following W* algebras:

7=

[osh}

NB, A, =(®(, A, = ¢71(An), A,,=A®(,and An+2 = A, ® . First, let us notice that

A, T (B)=('®)n(B®B(H,)) f(B)
=(B®()n f(B)

0

by [22]. Therefore
AT (B)=¢"(A)nf(B)=¢"(A,f(B))={0}
because ¢ is spatial Now

(=(B®B(H,))n(B'®]1)
—(®lcA cA.
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Thus we can apply Theorem(6) to the derivation S restricted to the a commutative operation

sub-algebra An of B and we obtain a T ef (I§) such that &, =5 —aAT, vanishes on An.

Now

A, CcB®IclQl=A.

n+1

Therefore, for all A, An and A, € A we have

n+1

gn (A1A1+1) = A1 Sn (Awl) :Sn (A1+1A1) = 5n (A1+1)A1

ie., o, (A,.) and A, commute and hence

5,(A,1) = A, f(B)={0}

n+1

Thus 6, also vanisheson A, . Now A, is a commutative operation and hence so are A, and

n+l °

A, ., . Moreover,
TcA cAcB
Implies
€:¢’l(Z)CAn cAcB
and hence

(=(®IcA ®lcA ,cAcB

n+2

Thus we can apply again Theorem(6) to the relative compact derivation &, restricted to A__,.

LetT

a1 Since

ef (lg) be such that 5, agrees withad T, on A

n+2°
A RICARICA®(I=A,,

and J, vanisheson A, weseethatad T, , vanisheson A, ®1,ie,

n+l7’

Tae(A,®1) A f(B)=(A,®B(H,)) fg(B)

n

Then forall i, j € Z,(TM)J_ e A} and

(Tz)i,- ®E,, =(I ® Eni)T

n+l

(1®E,)e f(B)
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whence by Lemma(12)(a) (Tn+1)ij e f(B). But we saw that d/ " f (B)={0}, hence (Tn+1)ij =0
forall i,jeZ, so T,,, =0. Therefore §, vanishes also on A_,, and hence on | ® p. Now (
and @ generate B(H,), whence A, ,=A®/( and | ®p generate A. Thus by the o -weak
continuity of 5, (see [6]) we see that
5,=6-aAT,=0,ie,d=aAT,.Clearly s =ad¢ ' (T,) and ¢ (T,) e A(B).

Let us assume in this part that B is semi-finite and let 7 be a fsn trace on it. Beside the

closed ideal f(B) we can also consider the (non closed) two-sided norm-ideals

C,,(B,7) for1<l+¢ < oo defined by

C...(B.7)={BeB|7(|B

1+g) < oo}

|B 1) for BeC,,, (B,z).

~z(|8

1+&
Obviously,
C..,(B,7)=BnL"(B,7),

where the latter is the non commutative L'**-space of B relative to 7 (see [14]).

Recall the following facts about L*** (M) spaces in the case of a general W* algebra M and
1<1+e<ow (L*(M) is identified with M ): L'**(M) is a Banach space, its dual is isomorphic
to L (M) (with %,.+%% =1), and the duality is established by the functional tr on L'(M),
where if Ae L1+5(M), Be Lﬁ(M) we have AB, BAe L”(IVI) and

tr(AB)=tr(BA), [tr(AB)|<|A

B, .
l+e

1+e

Al =il Af*) " = max{ rag][B < L (M), |8 <1}

1+&
(see [14]). Of course, if M =B we can identify L'"*(M) with L'**(B, 7) and tr with 7. The

following inequality will be used here only in the semi-finite case and in the context of C, -

ideals, but since the same proof holds for L*** -spaces, we shall consider the general case.
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Corollary (14). Let M be a W* algebra, £ >0,Ae ke (M) and

Qn lQn+1 € p (M )1 QnQn+1 = Ol Qn +Qn+1 :1. Then

1+ 1+ 1+

” A||1+g = ”Qn AQn ||1+g + ||Qn+lAQn+1”1+g

Proof. Let us first note that

1+¢

n+1 n+1 1+e

2. QAQ| = 2.[QAQ)]
And

n+1 e nn e

Z Qi AQi = Z ||Q| AQ, ||1+£

I=n Lre =N

Consider first 1+ & =N and take the polar decomposition's

Q,AQ, =U, [Q,AQ;|, i =n,n+1.
Then UU; and U/U; are majored by Q, and hence U; commutes with Q. Therefore
B=(U,+U n+l)* commutes with Q; and ||B|=1. Then

| A, =[trAB

(Some)

i=n

=tr (nzﬂQ. AQ; ]

= g”Q- AQ, ” .

Consider now & >0.Let B e L!*¢ (I\/I ) be such that ||B

. <land

l+e

| v{(Barale)

, then VU are in M and |A||B| are in

n+l

S0.AQ

Take the polar decomposition's A=U |A| and B=V |B

L (M ), L (M), respectively. Let
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f( tr(nzﬂQU |A (e QV |B (1) ) ]

Then by standard arguments, it is easy to see that f is analyticon 0 <Re z <n and continuous

and bounded on 0 < Re z <n. Then by the three-line theorem (see [4]) we have

f(Z) < Max f (it)™ Max f (1+it) "

Nowf( j HZ““Q AQ,|

and by Holder’s inequality

+&

It (it)| =tr [inu A" Qv |B|‘i[ﬁ} B 1)
<[Sou Aoy ol | fer|
( QU|A™ q, H)‘Mm (i B[

l+e
<n.

Again by Holder’s inequality applied twice and by the result already obtained in the £ =0 case,

[ZQ U |A| i(1+e)t 1+£ Q vV |B| (1+sj j‘
<3 A | e

‘f(1+|t‘_tr

1+g

1+£ 1+£

%w

1

1+£ l+e

Hu A"

l+e

<||A

1+¢

Thus f ( ) < ||A || whence by the second equality in this proof,

l+e

l+e l+e

A

l+e 1+&

=Y oA

l+e
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