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Abstract. Under suitable assumptions on the initial data, we prove the existence, uniqueness of the strong

solutions to a regularized periodic three-dimensional Lagrangian averaged Boussinesq system, in a Sobolev

spaces. Also, we establish the convergence results of this unique strong solution of this regularized Boussinesq

system to a strong solution of the three-dimensional Boussinesq system, as the regularizing parameter

vanishes.

1. Introduction and statement of main results

We consider the following 3D-Lagrangian averaged Boussinesq-α system:
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(1.1)



∂v

∂t
+ (u · ∇)v +∇uT · v +∇p = ν∆v + θe3, (t, x) ∈ R+ × T3

∂θ

∂t
− κ∆θ + (u · ∇)θ = 0, (t, x) ∈ R+ × T3

v = (1− α2∆)u, (t, x) ∈ R+ × T3

div u = div v = 0, (t, x) ∈ R+ × T3

(u, θ)|t=0
= (u0, θ0), x ∈ T3,

where by T3 we refer to the 3D-torus, ν > 0 represents the viscosity of the fluid and κ > 0 its thermal

conductivity. The unknown vector field u, the scalars p and θ stand respectively for the velocity, the

pressure and the temperature of the fluid at the point (t, x) ∈ R+ × T3. The superscript MT denotes

the transpose of the matrix M . The data (u0, θ0), are respectively the initial free divergence velocity and

the initial temperature. The Lagrangian averaged Boussinesq-α model (1.1) is the first to use Lagrangian

averaging to address the turbulence closure problem and also in geophysical modeling [4]. The Boussinesq

equations were derived in the nineteenth century by Joseph Boussinesq, despite intense study, there still

remain many difficulties and open questions concerning them. Namely, the Boussinesq system have an

incomplete solution theory. It is not known whether global in time strong solutions exist, and although

we know weak solutions exist, we are still unable to prove their uniqueness. Regularization models are a

way to come up with a rather well-posed problem theory. The first attempt to regularize the Navier-Stokes

equations was made in [9] via smoothing the convective velocity by taking the convolution product against

a mollifier. Here, and among many others methods of regularization presented in the literature, we note

that α-regularization models are obtained by applying a smoothing via taking the inverse of the Helmholtz

operator I − α2∆. The interested reader is referred to [3, 5, 6]. Especially, the LANS-α model acts by

modifying the nonlinearity in the Navier-Stokes equations without introducing any extra dissipation [6]. It

can be seen as a systematic method for modelling the mean circulatory effects of small-scale turbulence,

while preserving the mathematical properties that guarantee existence of a unique, regular solution [3, 5].

The inviscid Lagrangian averaged Euler-α equations were originally derived as Euler–Poincaré equations

in the framework of Hamilton’s principle for geometric fluid mechanics [7]. The existence, uniqueness and

continuous dependance of solutions to initial date, as well as convergence results of various α-models, as

α vanishes can be found in [1, 2, 8, 10, 12] and references therein. Before stating our main results, let us

introduce some notations that will be used throughout the paper.
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• For n ∈ N, we denote by Pn the projection into Fourier modes of order up to n, that is

Pn(
∑
k∈Z3

ûk e
ikx) =

∑
|k|≤n

ûk e
ikx.

• For s > 0, we define the operator Λs acting on Hs(T3) as follows. Let u ∈ Hs(T3) having the Fourier

series

u(x) =
∑
k∈Z3

ûk e
ikx ∈ Hs(T3).

Then, we define

Λsu(x) =
∑
k∈Z3

|k|sûk eikx ∈ L2(T3).

• We denote by ‖ · ‖Ḣs the seminorm ‖Λs · ‖L2 . This is compatible with the definition of the Sobolev

norm. In fact, ‖ · ‖Hs is equivalent to ‖ · ‖L2 + ‖ · ‖Ḣs . Note that in the Fourier setting it is more

usual to define an equivalent norm on Hs by

‖u‖ =
( ∑
k∈Z3

(1 + |k|2s)|ûk|2
)1/2

.

• We refer to the fractional Laplacian
√
−∆ by Λ.

• We denote

B(u, v) = [(u · ∇)v], u, v ∈ H1(T3),

B̃(u, v) = [(∇× v)× u], u, v ∈ H1(T3).

• We define the space H̃s = {u ∈ Hs, divu = 0}. We remark that, for u, v and w ∈ H̃1(T3)(
B(u, v), w

)
= −

(
B(u,w), v

)
.

• Due to the identity

(1.2) (u · ∇)v +

3∑
j=1

vj∇uj = −u× (∇× v) +∇(v · u),

we obtain (
B̃(u, v), w

)
=
(
B(u, v), w

)
−
(
B(w, v), u

)
.

• By the definitions of the operators B(u, v) and B̃(u, v), we deduce the following properties:

Lemma 1.1. i) Let u, v, w ∈ H̃1(T3), then

(1.3)
(
B(u, v), w

)
= −

(
B(u,w), v

)
which in turn implies that

(1.4)
(
B(u, v), v

)
= 0, u, v ∈ H̃1(T3).
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Also,

(1.5)
(
B̃(u, v), w

)
=
(
B(u, v), w

)
−
(
B(w, v), u

)
, u, v, w ∈ H̃1(T3)

and hence

(1.6)
(
B̃(u, v), u

)
= 0, u, v ∈ H̃1(T3)

ii) Let u ∈ H̃1(T3), v ∈ H̃2(T3), and w ∈ L2(T3), then

(1.7) |
(
B(u, v), w

)
| ≤ c ‖∇u‖L2‖∇v‖1/2L2 ‖4v‖1/2L2 ‖w‖L2 .

iii) Let u, v, w ∈ H̃1(T3), then

(1.8) |
〈
B̃(u, v), w

〉
H̃−1(T3)

| ≤ c ‖∇u‖L2‖∇v‖L2‖w‖1/2L2 ‖∇w‖L2 .

Here < ., . > denotes the duality pairing of H̃1(T3) and H̃−1(T3).

iv) Let u ∈ H̃1(T3), v ∈ L2(T3) and w ∈ H̃2(T3), then

(1.9)
|
〈
B̃(u, v), w

〉
H−2
| ≤ c

(
‖u‖1/2L2 ‖∇u‖1/2L2 ‖v‖L2‖∆w‖L2

+ ‖v‖L2‖∇u‖L2‖∇w‖1/2L2 ‖∆w‖1/2L2

)
.

Proof. See [10] and references therein. �

Using the above notations and the identity (1.2), we obtain the following equivalent systems of equations:

(1.10)



∂v

∂t
+ B̃(u, v)− ν4v = θe3, (t, x) ∈ R+ × T3

∂θ

∂t
− κ4θ +B(u, θ) = 0, (t, x) ∈ R+ × T3

v = (1− α24)u, (t, x) ∈ R+ × T3

div u = div v = 0, (t, x) ∈ R+ × T3

(u, θ)|t=0
= (u0, θ0), x ∈ T3,

Our first result is the following existence and uniqueness theorem.

Theorem 1.1. Let θ0 ∈ Ḣ1(T3) and u0 ∈ Ḣ2(T3) a divergence free vector field. Then, there exists a unique

strong solution (uα, θα) of system (1.10), such that

uα ∈ C(R+, Ḣ
2(T3)) ∩ L2

loc(R+, Ḣ
3(T3))

and

θα ∈ C(R+, Ḣ
1(T3)) ∩ L2

loc(R+, Ḣ
2(T3)).
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Moreover, ∀ 0 ≤ t ≤ T , this solution satisfies the following energy estimates

(1.11)
‖∇θα‖2L2(T3) + ‖∇uα‖2L2(T3) + α2‖∆uα‖2L2(T3) + κ

∫ t

0

‖∆θα‖2L2(T3)dτ

+ ν

∫ t

0

(‖∆uα‖2L2(T3) + α2‖∇∆uα‖2L2(T3))dτ ≤ Kα(T ),

where

Kα(T ) =
K(T )

2µ
+
K3(T )

2µα6
(1 + α2) + ‖∇θ0‖2L2(T3) + ‖∇u0‖2L2(T3) + α2‖∆u0‖2L2(T3),

and µ = min(ν, κ). Here, the function K(t) stands for

K(t) = ‖u0‖2L2 + α2‖∇u0‖2L2 + ‖θ0‖2L2 + φα(t)

and φα is a positive increasing function of time t, defined by

(1.12) φα(t) =
(
‖u0‖2L2 + α2‖∇u0‖2L2 + ‖θ0‖2L2

)
(e2t − 1).

The proof is based on a Galerkin approximation scheme. While trying to close the energy estimates, the

buoyancy force presents some difficulties that we overcome by a Gronwall’s type technique. After that, we

run a compactness method based on Aubin-Lions lemma [11].

Our second result is a convergence theorem, as α→ 0:

Theorem 1.2. Let T > 0, u0 ∈ Ḣ2(T3) a divergence free vector field, θ0 ∈ Ḣ1(T3) and (uα, θα), the solution

in [0, T ] of system (1.10) and vα = uα − α2∆uα subject of Theorem 1.1. Then, there exists a time T ∗ such

that 0 < T ∗ ≤ T and subsequences uαk
, vαk

, θαk
, a scalar function θ and a divergence free vector field u

belonging both of them to L∞([0, T ∗], Ḣ1(T3)) ∩ L2([0, T ∗], Ḣ2(T3)) such that as αk → 0+, one has

(1) uαk
converges to u and θαk

converges to θ weakly in L2([0, T ∗], Ḣ2(T3)) and strongly in

L2([0, T ∗], Ḣ1(T3)).

(2) vαk
converges to u weakly in L2([0, T ∗], Ḣ1(T3)) and converges strongly in L2([0, T ∗], L2(T3)).

(3) uαk
(t) converges to u(t) and θαk

(t) converges to θ(t) weakly in Ḣ1(T3) and uniformly over [0, T ∗].

Furthermore, (u, θ) is the unique strong solution of the Boussinesq system (Bq) on [0, T ∗] associated

to the initial data (u0, θ0) and satisfies, for all t ∈ [0, T ∗], the energy inequality

‖u(t)‖2L2(T3) + ‖θ(t)‖2L2(T3) + 2

∫ t

0

ν‖∇u(τ)‖2L2(T3) + κ‖∇θ(τ)‖2L2(T3)dτ

≤ ‖u0‖2L2(T3) + ‖θ0‖2L2(T3) + 2φ(T ∗).

Here, (Bq) and φ denote respectively (1.10) and φα, for α = 0.

Note that the solution of the regularized Lagrangian averaged Boussinesq-α system satisfies an energy

inequality that depends on the parameter alpha which provide a singularity, as alpha goes to zero. This is a

serious impediment that has to be dealt with when taking the limit as αk → 0. We shall use a compactness
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method to obtain strong convergence.

The remainder of this paper is divided into two sections; the first is assigned to prove the existence and

uniqueness result. The second is concerned by the proofs of convergence results.

2. Well-posedness result

To study the existence and the regularity of strong solutions. We approximate (1.10) by the following

system of ordinary differential equations:

(2.1)



∂vn
∂t + PnB̃(un, vn)− ν4vn − θne3 = 0, (t, x) ∈ R+ × T3

∂θn
∂t − κ4θn + PnB(un, θn) = 0, (t, x) ∈ R+ × T3

vn = (1− α24)un, (t, x) ∈ R+ × T3

div un = div vn = 0, (t, x) ∈ R+ × T3

(un, θn)|t=0
= (Pnu0, Pnθ0), x ∈ T3.

Both the bilinear operators on the left are continuous on L2×L2. Then, the above system appears as a system

of ordinary differential equations on L2. Thus, the usual Cauchy–Lipschitz theorem yields the existence of a

strictly positive maximal time Tn such that a unique solution exists which is continuous in time with value in

L2. Next, we obtain uniform estimates, with respect to the approximating parameter n, on the approximate

solutions. To do so, we use conservation laws and product lemmas. Taking the L2(T3)-inner product of the

equation satisfied by θn in (2.1) against −∆θn and the one satisfied by un against −∆un, to obtain

1

2

d

dt
‖∇θn‖2L2(T3) + κ‖δθn‖2L2(T3) = 〈B(un, , θn),∆θn〉(2.2)

(2.3)

1
2

d

dt

(
‖∇un‖2L2(T3) + α2‖∆un‖2L2(T3)

)
+ ν

(
‖∆un‖2L2(T3) + α2‖∇∆un‖2L2(T3)

)
= 〈B̃(un, vn),∆un〉+ 〈θne3,−∆un〉.

Now, let us first estimate the right hand sides of (2.2) and (2.3). To do so, we recall the following Sobolev

inequalities [11]: for every ϑ ∈ Ḣ1(T3), we have

‖ϑ‖L3 ≤ ‖ϑ‖1/2L2 ‖ϑ‖1/2Ḣ1
(2.4)

and

‖ϑ‖L6 ≤ c‖ϑ‖Ḣ1 .(2.5)

Using Hölder’s inequality, (2.4) and (2.5), it holds that

|〈B(un, θn),∆θn〉| ≤ ‖un‖L6(T3)‖∇θn‖L3(T3)‖∆θn‖L2(T3)

≤ c‖un‖Ḣ1‖∇θn‖1/2L2 ‖∇θn‖1/2Ḣ1
‖∆θn‖L2 .



Int. J. Anal. Appl. 19 (1) (2021) 116

Hence, one obtains

|〈B(un, θn),∆θn〉| ≤ c‖un‖Ḣ1‖∇θn‖1/2L2 ‖∆θn‖3/2L2 .(2.6)

For every ϑ ∈ Ḣ2(T3), the Agmon’s inequality [11] reads

‖ϑ‖L∞ ≤ ‖ϑ‖1/2Ḣ1
‖ϑ‖1/2

Ḣ2
.(2.7)

The fact that vn = un − α2∆un yields∣∣∣〈B̃(un, vn),∆un〉
∣∣∣ = |〈B(un, vn),∆un〉 − 〈B(∆un, vn), un〉|

≤ |〈B(un, un),∆un〉|+ α2 |〈B(un,∆un),∆un〉|

+ |〈B(∆un, un), un〉|+ α2 |〈B(∆un,∆un), un〉| .

The first nonlinear term is to be dealt with as follows:

|〈B(un, un),∆un〉| ≤ ‖un‖L∞(T3)‖∇un‖L2(T3)‖∆un‖L2(T3)

≤ c‖un‖1/2Ḣ1
‖un‖1/2Ḣ2

‖∇un‖L2(T3)‖∆un‖L2(T3)

≤ c‖un‖1/2Ḣ1
‖∇un‖L2(T3)‖∆un‖

3/2
L2(T3)

≤ c‖un‖Ḣ1(T3)‖∆un‖
1/2
L2(T3)‖∇∆un‖3/2L2(T3),

where we used Hölder’s inequality, inequality (2.7) and the facts that ‖∇un‖L2 ≤ ‖∆un‖L2 and ‖∆un‖L2 ≤

‖∇∆un‖L2 . Similarly, we have

|〈B(∆un, un), un〉| ≤ c‖un‖Ḣ1(T3)‖∆un‖
1/2
L2(T3)‖∇∆un‖3/2L2(T3).

The second nonlinear term is to be dealt with, in the following manner:

|〈B(un,∆un),∆un〉| ≤ ‖un‖L6(T3)‖∇∆un‖L2(T3)‖∆un‖L3(T3)

≤ c‖un‖Ḣ1‖∇∆un‖L2(T3)‖∆un‖
1/2
L2(T3)‖∇∆un‖1/2L2(T3)

= c‖un‖Ḣ1(T3)‖∆un‖
1/2
L2(T3)‖∇∆un‖3/2L2(T3).

Similarly, we have

|〈B(∆un,∆un), un〉| ≤ ‖∆un‖L3(T3)‖∇∆un‖L2(T3)‖un‖L6(T3)

≤ c‖un‖Ḣ1(T3)‖∆un‖
1/2
L2(T3)‖∇∆un‖3/2L2(T3).

It turns out that ∣∣∣〈B̃(un, vn),∆un〉
∣∣∣ ≤ c(1 + α2)‖un‖Ḣ1(T3)‖∆un‖

1/2
L2(T3)‖∇∆un‖3/2L2(T3).(2.8)

By Cauchy-Schwarz and Young’s inequalities, we get

|〈θne3,−∆un〉| ≤ ‖∇θn‖2L2 + ‖∇un‖2L2 .(2.9)
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Summing up (2.2) and (2.3) and using (2.6), (2.8) and (2.9), it follows that

1

2

d

dt

(
‖∇θn‖2L2(T3) + ‖∇un‖2L2(T3) + α2‖∆un‖2L2(T3)

)
+κ‖∆θn‖2L2(T3) + ν(‖∆un‖2L2(T3) + α2‖∇∆un‖2L2(T3))

≤ c‖un‖Ḣ1‖∇θn‖1/2L2 ‖∆θn‖3/2L2 + ‖∇θn‖2L2 + ‖∇un‖2L2

c(1 + α2)‖un‖Ḣ1(T3)‖∆un‖
1/2
L2(T3)‖∇∆un‖3/2L2(T3).

Using Young’s inequality, we absorb the remaining diffusion term in the right hand side and we obtain

d

dt

(
‖∇θn‖2L2 + ‖∇un‖2L2 + α2‖∆un‖2L2

)
+κ‖∆θn‖2L2 + ν

(
‖∆un‖2L2 + α2‖∇∆un‖2L2

)
≤ c‖un‖4Ḣ1‖∇θn‖2L2 + ‖∇θn‖2L2 + ‖∇un‖2L2 ,

where c is a generic constant that may change from line to line. Integrating over time, we obtain, for all

t ∈ [0, T ∗n),

‖∇θn(t)‖2L2(T3) + ‖∇un(t)‖2L2(T3) + α2‖∆un(t)‖2L2(T3) + κ

∫ t

0

‖∆θn(τ)‖2L2dτ

+ν

∫ t

0

(
‖∆un(τ)‖2L2(T3) + α2‖∇∆un(τ)‖2L2(T3)

)
dτ

≤ c
∫ t

0

‖un(τ)‖4
Ḣ1(‖∆un(τ)‖2L2 + ‖∇θn(τ)‖2L2)dτ

+

∫ t

0

(‖∇θn(τ)‖2L2 + ‖∇un(τ)‖2L2)dτ + ‖∇θ0‖2L2 + ‖∇u0‖2L2 + α2‖∆u0‖2L2 .

At this point, we give the theorem below that states the existence weak solution. The proof follows exactly

the lines of the proof given in [12]:

Theorem 2.1. Let θ0 ∈ L2(T3), and u0 ∈ H1(T3) be a divergence-free vector field. Then, for any T > 0

there exists a unique weak solution (uα, θα) to (1.1) in the interval [0, T ], where

uα ∈ C([0, T ], H1(T3)) ∩ L2([0, T ], H2(T3)),

and

θα ∈ C([0, T ], L2(T3)) ∩ L2([0, T ], H1(T3)).

Moreover, we have for all t ∈ [0, T ] :

(‖u(t)‖2L2(T3) + α2‖∇u(t)‖2L2(T3) + ‖θ(t)‖2L2(T3))

+2µ

∫ t

0

(‖∇u(τ)‖2L2(T3) + α2‖∆u(τ)‖2L2(T3) + ‖∇θ(τ)‖2L2(T3))dτ(2.10)

≤ ‖u0‖2L2 + α2‖∇u0‖2L2 + ‖θ0‖2L2 + φα(t)︸ ︷︷ ︸
K(t)

where by φα(t) we refer to the function
(
‖u0‖2L2 +α2‖∇u0‖2L2 + ‖θ0‖2L2

)
(e2t− 1). Furthermore, this solution

is continuously dependent on the initial data (u0, θ0). Moreover, this solution is continuously dependent on

the initial data (u0, θ0). In particular, it is unique.
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Using the energy estimate for weak solution (uα, θα) in theorem above, and the expression of the function

ρα given by equation (1.12), we infer that∫ t

0

(‖∇θn(τ)‖2L2 + ‖∇un(τ)‖2L2)dτ ≤ K(T )

2min(ν, κ)

and ∫ t

0

‖un‖4Ḣ1(‖∆un‖2L2 + ‖∇θn‖2L2)dτ ≤ ‖un‖4L∞T (Ḣ1)
(‖θn‖2L2

T (Ḣ1)
+ ‖un‖2L2

T (Ḣ2)
)

≤ K2(T )
α4

(
K(T )
2κ + K(T )

2να2

)
≤ K3(T )(1+α2)

2min(ν,κ)α6
,

where K(t) = ‖u0n‖2L2 + α2‖∇u0n‖2L2 + ‖θ0n‖2L2 + φα(T ).

In conclusion, we obtain the energy estimate

(2.11)
‖∇θn(t)‖2L2 + ‖∇un(t)‖2L2 + α2‖∆un(t)‖2L2 + κ

∫ t

0

‖∆θn(τ)‖2L2dτ

+ν

∫ t

0

(‖∆un(τ)‖2L2 + α2‖∆∇un(τ)‖2L2)dτ ≤ Kα(T ),

where

Kα(T ) =
K(T )

2µ
+
K3(T )

2µα6
(1 + α2) + ‖∇θ0‖2L2(T3) + ‖∇u0‖2L2(T3) + α2‖∆u0‖2L2(T3),

where by µ = min(ν, κ).

Notice that the upper bound K(t) in (2.11) is continuous and does not include any singularity with respect

to time t. Hence, K(t) rules out the finite time blow-up of the solution near T and the solution can be

extended to a global in time solution. The estimation (2.11) provides uniform bounds, with respect to n, of

the solution un in L∞T (Ḣ2(T3)), L2
T (Ḣ3(T3)) as well as in L∞T (Ḣ1(T3)) and L2

T (Ḣ2(T3)) for θn. This allows

to use the Aubin-Lions lemma so that we can take the limit as n tends to infinity and then obtain existence.

As strong solutions are also weak, uniqueness of strong solution simply follows from uniqueness of weak

solution.

3. Convergence result

Already, we have proved that an initial data (u0, θ0) gives rise to a global solution (uα, θα). This section

is aimed to deal with the convergence result, as the parameter α vanishes. It must be said that the upper

bound in the energy estimate (2.11) depends singularly on α and it will fail to control the solution’s norms,

as α goes to zero. From (2.10), it is worth mentioning that the dependence of the upper bound in the weak

solution’s energy estimate is polynomial, so that such impediment is absent in the weak solution case. To

overcome this difficulty, we need to get uniform bounds, with respect to α on

‖∇θα(t)‖2L2(T3) + ‖∇uα(t)‖2L2(T3) + α2‖∆uα(t)‖2L2(T3),
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and

κ

∫ t

0

‖∆θα(τ)‖2L2dτ + ν

∫ t

0

(
‖∆uα(τ)‖2L2(T3) + α2‖∇∆uα(τ)‖2L2(T3)

)
dτ.

To do so, firstly we mention that

∣∣∣〈B̃(uα, vα),∆uα〉
∣∣∣ ≤ c‖uα‖1/2Ḣ1

‖uα‖1/2Ḣ2
‖∇vα‖L2(T3)‖∆uα‖L2(T3)

≤ c‖uα‖1/2Ḣ1
‖uα‖1/2Ḣ2

(‖uα‖Ḣ1(T3) + α2‖∇∆uα‖L2(T3))‖∆uα‖L2(T3)

≤ c(‖uα‖6Ḣ1 + α6‖∆uα‖6L2) + ν/2‖∆uα‖2L2(T3) + α2ν/2‖∇∆uα‖2L2(T3),

where we used Agmon’s inequality and Young’s inequality twice.

Secondly, using Hölder inequality and Young’s inequality twice, it turns out that

|〈(uα · ∇)θα,∆θα〉| ≤ c‖uα‖4Ḣ1‖∇θα‖2L2 + κ/2‖∆θα‖2L2

≤ c(‖uα‖6Ḣ1 + ‖∇θα‖6L2) + κ/2‖∆θα‖2L2 .

Thirdly, the bouancy force can be dealt with via Cauchy-Schwarz inequality:

|〈θαe3,−∆uα〉| ≤ ‖∇θα‖2L2 + ‖∇uα‖2L2 + α2‖∆uα‖2L2 .

Finally, summing up, one obtains

(3.1)

1

2

d

dt
(‖∇θα‖2L2(T3) + ‖∇uα‖2L2(T3) + α2‖∆uα‖2L2(T3))

+κ/2‖∆θα‖2L2(T3) + ν/2(‖∆uα‖2L2(T3) + α2‖∇∆uα‖2L2(T3))

≤ c(‖∇θα‖6L2 + ‖∇uα‖6L2 + α6‖∆uα‖6L2

+‖∇θα‖2L2 + ‖∇uα‖2L2 + α2‖∆uα‖2L2),

where c is a constant that does not depend on the parameter α. Let g(t) = ‖∇θα(t)‖2L2(T3)+‖∇uα(t)‖2L2(T3)+

α2‖∆uα(t)‖2L2(T3). It is clear that g3 + g ≤ c(g + 1)3. Let h(t) = g(t) + 1. The function g is a non-negative

function, so h(0) 6= 0. The estimation (3.1) can be written as
dh

dt
≤ ch3.We integrate this ordinary differential

inequality, to obtain for 0 ≤ t ≤ 1
4Ch2(0) ,

h(t) ≤ ch(0).

Finally, it turns out that for all time t, such that

0 ≤ t ≤ T ∗ = min(T,
1

4C(1 + g(0))2
),

we have

(3.2)
‖∇θα‖2L2(T3) + ‖∇uα‖2L2(T3) + α2‖∆uα‖2L2(T3)

≤ c(1 + ‖∇θ0‖2L2(T3) + ‖∇u0‖2L2(T3) + α2‖∆u0‖2L2(T3)).
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Integrating (3.1) over (0, T ∗) and using (3.2), we obtain

(3.3)

∫ T∗

0

(
κ‖∆θα‖2L2) + ν(‖∆uα‖2L2 + α2‖∇∆uα‖2L2

)
dt

≤ c(1 + ‖∇θ0‖2L2(T3) + ‖∇u0‖2L2(T3) + α2‖∆u0‖2L2(T3)).

These are non singular bounds with respect to the parameter α. Since α is intended to vanish, then there

exists some fixed value α0, such that 0 < α ≤ α0. We take α = α0 in (3.2) and (3.3), to obtain a uniform

bound with respect to α. Namely, the functions θ and u are uniformly bounded in L2([0, T ∗], Ḣ2(T3)), as

for v, it is uniformly bounded in L2([0, T ∗], Ḣ1(T3)). Hence, Banach-Alaoglu theorem [11] allows to extract

subsequences (uαk
)k, (vαk

)k and (θαk
)k (that we relabel (uk), (vk) and (θk)) respectively of uα, vα and θα

such that (θk, uk) ⇀ (θ, u) in L2([0, T ∗], Ḣ2(T3)) and vk ⇀ u in L2([0, T ∗], Ḣ1(T3)), as k → +∞. At this

step, we proved the two first results of statements 1 and 2 of Theorem 1.2.

To investigate the two second results of these statements, we establish uniform estimates, independent of

α, for
d

dt
θαk

and
d

dt
uαk

. For a fixed positive time, since θαk
is uniformly bounded with respect to α, in

L2([0, T ∗], Ḣ2(T3)), the diffusion ∆θαk
belongs to L2([0, T ∗], L2(T3)). Using Sobolev norm definition and

product laws we infer that

∫ T∗

0

‖div θkuk‖2L2dτ ≤
∫ T∗

0

‖θk‖2Ḣ1‖uk‖2Ḣ2dτ ≤ ‖θk‖2L∞
T∗ (Ḣ

1)
‖uk‖2L2

T∗ (Ḣ
2)
.

Since uk and θk are, respectively, subsequences of uα and θα, then the energy estimates (3.2) and (3.3)

apply also for uk and θk and one can control the advection in L2([0, T ∗], L2(T3)). The above temperature

diffusion and convection estimates lead to ‖ ddtθk‖L2
T∗ (L

2) ≤ K1, where K1 is a real positive constant. To

handle the time derivative of the velocity field uk, we apply the Helmholtz operator (I − α2∆)−1 on the

equation satisfied by u = uk in the system (1.10). So,

(3.4)

d

dt
uk = ν∆uk − (I − α2∆)−1B̃(uk, vk)

− (I − α2∆)−1∇pk + (I − α2∆)−1θke3.

For a fixed positif time, since uk is uniformly bounded with respect to α in the space L2([0, T ∗], Ḣ2(T3)),

then ∆uk belongs to L2([0, T ∗], L2(T3)). For the remaining terms, we recall that operator (I − α2∆)−1 is

bounded from H−2(T3) into L2(T3). Moreover, a direct frequencies computation implies that its norm is

uniformly bounded and satisfies

(3.5) |||(I − α2∆)−1||| ≤ 1.
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Since θα ∈ L2
T∗(Ḣ

2), one infers that ‖(I −α2∆)−1θe3‖L2
T∗ (Ḣ

4) ≤ K ′2, where K ′2 is a real positif constant. To

estimate the nonlinear term, one has∫ T∗

0

‖(I − α2∆)−1B̃(uk, vk)‖2L2 ≤
∫ T∗

0

‖B̃(uk, vk)‖2H−2 ≤ c‖uk‖2L∞
T∗ (Ḣ

1)
‖vk‖2L2

T∗ (Ḣ
1)

≤ c‖uk‖2L∞
T∗ (Ḣ

1)

(∫ T∗

0

‖∆uk(τ)‖2L2 + α2‖∇∆uk(τ)‖2L2dτ

)
.

Inequalities (3.2) and (3.3) provide uniform bounds to the non-linearity above. Using precedent uniform

bounds, thanks to the divergence free-condition, one infers that ‖(I−α2∆)−1∇p‖L2
T∗ (Ḣ

4) ≤ K ′′2 . So, equation

(3.4) implies that

‖ d
dt
uk‖L2

T∗ (L
2) ≤ K2.

Using Aubin-Lions lemma, we extract two subsequences relabeled uk and θk, that converge strongly in

L2([0, T ∗], Ḣ1) and in L2([0, T ∗], L2), respectively. We have

‖vk − uk‖2L2([0,T∗],L2) = α4

∫ T

0

(
∑
k∈Z3

|∆̂uk|2) = α4‖uk‖2L2([0,T∗],Ḣ2)
.

As uk belongs to L2([0, T ∗], Ḣ2), vk converges strongly to u in L2([0, T ∗], L2), we have already proved the

statements 1 and 2 of Theorem 1.2.

Now, we turn to the third statement of Theorem 1.2. For the first result, since (uk, θk) converges strongly

to (u, θ) in (L2([0, T ∗], Ḣ1))2, then by Cauchy-Schwarz inequality it converges weakly for almost every

t ∈ [0, T ∗]. In particular, this holds for the supremum. That is (uk(t), θk(t)) converges to (u(t), θ(t)) weakly

in Ḣ1(T3) and uniformly over [0, T ∗]. To prove the second result, using the precedent bounds of time

derivatives, Banach-Alaoglu theorem in Hilbert spaces implies that

(
d

dt
θk,

d

dt
uk) ⇀ (

d

dt
θ,
d

dt
u) weakly in L2([0, T ∗], L2(T3)), as k → +∞,

and
d

dt
vk ⇀

d

dt
u weakly in L2([0, T ∗], Ḣ−2(T3)), as k → +∞.

Let Λ ∈ Ḣ2 be a vector divergence free and Ξ ∈ L2 a scaler test functions. Taking the inner product and

integrating over [0, t], for t ∈ [0, T ∗], we obtain

〈θk(t),Ξ〉 − 〈θk(0),Ξ〉 −
∫ t

0

〈θk,∆Ξ〉dτ +

∫ t

0

〈B(uk, θk),Ξ〉dτ = 0,

〈vk(t),Λ〉 − 〈vk(0),Λ〉 −
∫ t

0

〈vk,∆Λ〉dτ +

∫ t

0

〈B̃(uk, vk),Λ〉dτ −
∫ t

0

〈θke3,Λ〉dτ = 0.

To handle the nonlinear terms, we use a standard compactness argument (thanks to the uniform bounds

obtained with respect to αk above) so that B̃(uk, vk)→ B(u, u) and B(uk, θk)→ B(u, θ). Hence, taking the

limit, for every t ∈ [0, T ∗]\E, to obtain

〈θ(t),Ξ〉 − 〈θ(0),Ξ〉 −
∫ t

0

〈θ,∆Ξ〉dτ +

∫ t

0

〈B(u, θ),Ξ〉dτ = 0,
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〈u(t),Λ〉 − 〈u(0),Λ〉 −
∫ t

0

〈u,∆Λ〉dτ +

∫ t

0

〈B(u, u),Λ〉dτ −
∫ t

0

〈θe3,Λ〉dτ = 0.

Especially, every strong solution fulfills the energy estimates (1.11), so one deduces the energy estimates

(1.13) by taking the lower limit as αk → 0+.
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