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Abstract. Theories of fuzzy set and rough set are powerful mathematical tools for modelling various

types of uncertainty. In this paper, we introduce the notions of bi-hyperideal, fuzzy bi-hyperideals of

hyperquantales and their related properties is given. Furthermore we introduce the notion of generalized

rough fuzzy bi-hyperideals. Moreover, we will describe the set-valued homomorphism and strong set-valued

homomorphism of hyperquantales and some related properties will be study.

1. Introduction

The theory of rough sets was introduced by Pawlak [15,16], to deal with uncertain knowledge in information

systems. The rough set theory has been emerged as another major mathematical approach for managing

uncertainty that arises from inexact, noisy or incomplete information. It has turned out to be fundamentally

important in artificial intelligence and cognitive sciences, especially in fields such as machine learning, knowl-

edge acquisition, decision analysis, expert systems, pattern recognition. With the development of rough set

theory, possible connections between rough sets and various algebraic systems were considered by many au-

thors. Inspired by the construction of Pawlak rough set algebras and the investigation in algebraic properties
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of rough sets in [17,18]. As a combination of algebraic structures and partially ordered structures, the theory

of quantales was initiated by Mulvey [20] to study the spectrum of C-algebras and the foundations of quan-

tum mechanics. Wang and Zhao [22,23] proposed the concepts of ideals and prime ideals of quantales. Yang

and Xu [24], considered quantales as universal sets and introduced the notions of rough (prime, semi-prime,

primary) ideals and prime radicals of upper rough ideals of quantales. Wang in [21] studied prime radical

theorem in quantales. The concept of fuzzy sets was introduced by Zadeh [19] in 1965. The theory of fuzzy

sets has been developed fast and has many applications in many branches of sciences. Luo and Wang in [25],

studied roughness and fuzziness in quantales. Davvaz et al. in [6] applied Atanassov’s intuitionistic fuzzy

set theory to quantales. In [29, 30], Saqib and Shabir studied relationship between generalized rough sets

and quantale by using fuzzy ideals of quantale.

Algebraic hyperstructures represent a natural extension of classical algebraic structures and they were orig-

inally proposed in 1934 by a French mathematician Marty [1], at the 8th Congress of Scandinavian Mathe-

maticians. One of the main reason which attracts researches towards hyperstructures is its unique property

that in hyperstructures composition of two elements is a set, while in classical algebraic structures the com-

position of two elements is an element. Thus algebraic hyperstructures are natural extension of classical

algebraic structures. Since then, hyperstructures are widely investigated from the theoretical point of view

and for their applications to many branches of pure and applied mathematics (see [2–5, 8]). Since then,

there appeared many components of hyperalgebras such as hypergroups in [9], hyperrings etc in [10, 11].

Konstantinidou and Mittas have introduced the concept of hyperlattices in [12], fuzzy ideal of hyperlattices

have been introduced in [7]. The notion of hyperlattices is a generalization of the notion of lattices and there

are some intimate connections between hyperlattices and lattices. In particular, Rasouli and Davvaz further

studied the theory of hyperlattices and obtained some interesting results [13,14], which enrich the theory of

hyperlattices. In [28], Estaji and Bayati studied rough Sets in terms of Hyperlattices. In [26], Khan et al.

introduced the notions of hyperideals and fuzzy hyperideals of hyperquantales.

In this paper, we introduce the notions of bi-hyperideal and fuzzy bi-hyperideals of hyperquantales and give

several characterizations. In addition, we will introduce the notions of generalized rough fuzzy bi-hyperideal

in hyperquantales and some new properties will be obtain.

2. Preliminaries

A map ∗ : S × S → P∗(S) is called hyperoperation or join operation on the set S, where S is a non-empty

set and P∗(S) = P(S)\{∅} denotes the set of all non-empty subsets of S.

A hyperstructure is called the pair (S, ∗) where ∗ is a hyperoperation on the set S.
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Definition 2.1. (see [26]). A hyperquantale is a complete hyperlattice Q with an associative binary operation

∗ satisfying x ∗
(∨

i∈I yi
)

=
∨
i∈I

(x ∗ yi) ,
(∨
i∈I

xi

)
∗ y =

∨
i∈I

(xi ∗ y) for all x, y, xi, yi ∈ Q (i ∈ I) where I is

an index set.

A hyperquantale Q is called commutative if x ∗ y = y ∗ x for all x, y ∈ Q.

Throughout this paper, we denote the least and greatest elements of a hyperquantale denoted by ⊥ and

> respectively.

Definition 2.2. (see [26]). Let Q be a hyperquantale. A non-empty subset A of Q is called a left (resp.

right) hyperideal of Q if it satisfies the following conditions:

(1) x, y ∈ A implies x ∨ y ⊆ A.

(2) (∀ x, y ∈ Q) x ∈ A and y ≤ x imply y ∈ A.

(3) ∀ x ∈ Q and a ∈ A, we have x ∗ a ⊆ A (resp. a ∗ x ⊆ A).

A non empty subset A of Q is called a two sided hyperideal or simply a hyperideal of Q if it is both a left

hyperideal and right hyperideal of Q.

Definition 2.3. Let Q be a hyperquantale. A non-empty subset B of Q is called a bi-hyperideal of Q if it

satisfies the following conditions:

(1) x, y ∈ B implies x ∨ y ⊆ B.

(2) x, y ∈ B implies x ∗ y ⊆ B.

(3) (∀ x, y ∈ Q) x ∈ B and y ≤ x imply y ∈ B.

(4) ∀ y ∈ Q and x, z ∈ B, we have x ∗ y ∗ z ⊆ B.

Example 2.1. Let Q = {⊥, e1, e2, e3,>} and define ∗ and ∨ by the following Cayley tables:

∗ ⊥ e1 e2 e3 >

⊥ {⊥} {⊥} {⊥} {⊥} {⊥}

e1 {⊥} {e1} {e1} {e1} {e1}

e2 {⊥} {e1} {e2} {e1} {e2}

e3 {⊥} {e1} {e1} {e3} {e3}

> {⊥} {e1} {e2} {e3} {>}
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and

∨ ⊥ e1 e2 e3 >

⊥ {⊥} {e1} {e2} {e3} {>}

e1 {e1} {⊥, e1} {⊥, e2} {⊥, e3} {⊥,>}

e2 {e2} {⊥, e2} {⊥, e1, e2} {⊥,>} {⊥, e3,>}

e3 {e3} {⊥, e3} {⊥,>} {⊥, e1, e3} {⊥, e2,>}

> {>} {⊥,>} {⊥, e3,>} {⊥, e2,>} {⊥, e1, e2, e3,>}

Thus all bi-hyperideals of Q are {⊥} , {⊥, e1} , {⊥, e1, e2} , {⊥, e1, e3} and Q.

For A,B ⊆ Q, we have A ∗B :=
⋃
{a ∗ b : a ∈ A, b ∈ B} and

A ∨B :=
⋃
{a ∨ b : a ∈ A, b ∈ B}.

For A ⊆ Q,we denote (A] := {a ∈ Q : a ≤ b for some b ∈ A}.

3. Fuzzy hyperideals of hyperquantale

Let Q be a hyperquantale. A function f from a nonempty set X to the unit interval [0, 1] is called a fuzzy

subset of Q.

Let Q be a hyperquantale and f be a fuzzy subset of Q. Then for every t ∈ [0, 1] the set

U (f ; t) = {x | x ∈ Q, f (x) ≥ t} .

For x ∈ Q, we define Ax = {(y, z) ∈ Q×Q | x ≤ y ∗ z}.

Definition 3.1. (see [26]). Let Q be a hyperquantale and f, g are any two fuzzy subsets of Q. We define the

product f ◦ g of f and g as follows:

(f ◦ g) (x) =


∨

(y,z)∈Ax

{f (y)
∧
g (z)} , if Ax 6= ∅

0, if Ax = ∅
.

For two functions f and g then f ⊆ g if and only if f (x) ≤ g (x) .

Let Q be a hyperquantale and ∅ 6= A ⊆ Q. Then the characteristic function χA of A is defined as:

χA : Q −→ [0, 1] ,−→ χA (x) =

 1 if x ∈ A

0 if x /∈ A

Definition 3.2. (see [26]). Let Q be a hyperquantale. A fuzzy subset f of Q is called a fuzzy subhyperquantale

of Q if it satisfies the following conditions:

(1) (∀x, y ∈ Q)
∧

α∈x∗y
f (α) ≥ f (x)

∧
f (y) .

(2) (∀x, y ∈ Q)
∧

β∈x∨y
f (β) ≥ f (x)

∧
f (y) .
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Definition 3.3. (see [26]). Let Q be a hyperquantale. A fuzzy subset f of Q is called a fuzzy left (resp.

right) hyperideal of Q if it satisfies the following conditions:

(1) (∀x, y ∈ Q)
∧

α∈x∗y
f (α) ≥ f (y) (resp.

∧
α∈x∗y

f (α) ≥ f (x)).

(2) (∀x, y ∈ Q)
∧

β∈x∨y
f (β) ≥ f (x)

∧
f (y) .

(3) (∀x, y ∈ Q) x ≤ y then f (x) ≥ f (y) .

4. Fuzzy bi-hyperideal of hyperquantale

In this section, we introduce the notion of fuzzy bi-hyperideal of hyperquantale and investigate some

related properties.

Definition 4.1. Let Q be a hyperquantale. A fuzzy subset f of Q is called a fuzzy bi-hyperideal of Q if it

satisfies the following conditions:

(1) (∀x, y ∈ Q)
∧

α∈x∗y
f (α) ≥ f (x)

∧
f (y) .

(2) (∀x, y ∈ Q)
∧

β∈x∨y
f (β) ≥ f (x)

∧
f (y) .

(3) (∀x, y, z ∈ Q)
∧

γ∈(x∗y∗z)
f (γ) ≥ f (x)

∧
f (z) .

(4) (∀x, y ∈ Q) x ≤ y then f (x) ≥ f (y) .

Example 4.1. Let Q = {⊥, e1, e2,>} and define ∗ and ∨ by the following Cayley tables:

∗ ⊥ e1 e2 >

⊥ {⊥} {⊥} {⊥} {⊥}

e1 {⊥} {e1} {⊥} {e1}

e2 {⊥} {⊥} {e2} {e2}

> {⊥} {e1} {e2} {>}

and

∨ ⊥ e1 e2 >

⊥ {⊥} {e1} {e2} {>}

e1 {e1} {⊥, e1} {>} {e2,>}

e2 {e2} {>} {⊥, e2} {e1,>}

> {>} {e2,>} {e1,>} Q

Let us define a fuzzy subset f : Q −→ [0, 1] as follows:

f (x) =

 1 if x = ⊥

0.4 if x ∈ {e1, e2,>}

Then it is easy to verify that f is a fuzzy bi-hyperideal of Q.
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Theorem 4.1. Let B be a non empty subset of a hyperquantale Q. Then B is a bi-hyperideal of Q if and

only if χB is a fuzzy hyperideal of Q.

Proof. Suppose that B is a hyperideal of Q. Let x, y ∈ Q. If x, y ∈ B then x ∨ y ⊆ B and x ∗ y ⊆ B. Since

x, y ∈ B, we have χB (x) = χB (y) = 1, for any α ∈ x∨ y ⊆ B, we have
∧

α∈x∨y
χB (α) = 1 = χB (x)

∧
χB (y) .

Also for any β ∈ x ∗ y ⊆ B, we have
∧

β∈x∗y
χB (β) = 1 = χB (x)

∧
χB (y) . If x /∈ B or y /∈ B. Then x∨ y ⊆ B

or x ∨ y * B and x ∗ y ⊆ B or x ∗ y * B. In all the cases we have χB (x)
∧
χB (y) = 0 ≤

∧
α∈x∨y

χB (α) and

χB (x)
∧
χB (y) = 0 ≤

∧
β∈x∗y

χB (β) . Let now x, y ∈ Q, x ≤ y. Then χB (x) ≥ χB(y). In fact, if y ∈ B, then

χB(y) = 1. Since Q 3 x ≤ y ∈ B, by hypothesis we have x ∈ B, then χB (x) = 1. Thus χB (x) ≥ χB (y) .

If y /∈ B, then χB(y) = 0. Since x ∈ Q, we have χB (x) ≥ 0 = χB(y). Let x, y and z be any elements

of Q. If x, z ∈ B, then χB (x) = χB (z) = 1 and since for every α ∈ x ∗ y ∗ z ⊆ B, we have χB (α) =

1 = χB (x)
∧
χB (z) . Thus

∧
α∈x∗y∗z

χB (α) = 1 = χB (x)
∧
χB (z) . If x /∈ B or z /∈ B, then χB (x) = 0 or

χB (z) = 0, and so we have χB (α) ≥ 0 = χB (x)
∧
χB (z) . Thus

∧
α∈x∗y∗z

χB (α) ≥ χB (x)
∧
χB (z) . Therefore

χB is a fuzzy bi-hyperideal of Q.

Conversely, assume that χB is a fuzzy bi-hyperideal ofQ. Let x, y ∈ B. Then
∧

α∈x∨y
χB (α) = χB (x)

∧
χB (y) =

1, and thus α ∈ x∨y ⊆ B. Since x, y ∈ B. Then for any z ∈ x∗y, we have
∧

z∈x∗y
χA (z) ≥ χA (x)

∧
χA (y) = 1.

Implies that
∧

z∈x∗y
χA (z) = 1. Thus x ∗ y ⊆ A. If x ≤ y and y ∈ B, then χB (x) ≥ χB (y) = 1, implies that

x ∈ B. Let x, z ∈ B and y ∈ S such that for any α ∈ x ∗ y ∗ z, we have Since∧
α∈x∗y∗z

χB (α) ≥ χB (x)
∧
χB (z)

= 1
∧

1

= 1.

Hence for each α ∈ x ∗ y ∗ z, we have χB (α) = 1, and so α ∈ B. Thus x ∗ y ∗ z ⊆ B. Thus B is a

bi-hyperideal of Q. �

Theorem 4.2. Let Q be a hyperquantale. A fuzzy subset f of Q is a fuzzy bi-hyperideal of Q if and only if

for each t ∈ [0, 1], U(f ; t) 6= ∅ is a bi-hyperideal of Q.

Proof. Assume that U(f ; t) is a bi-hyperideal of Q. Let x, y ∈ Q such that x ≤ y. If f (y) = 0 then

f (x) ≥ f (y) . If f (y) = t then y ∈ U(f ; t). Since x ≤ y and U(f ; t) is a bi-hyperideal of Q, we have

x ∈ U(f ; t). Then f (x) ≥ t = f (y) . Since U(f ; t) 6= ∅ is a bi-hyperideal of Q. If
∧

α∈x∗y
f (α) < f (x)

∧
f (y)

for some x, y ∈ Q, then there exists t0 ∈ [0, 1] such that
∧

α∈x∗y
f (α) < t0 ≤ f (x)

∧
f (y) , which implies that

x, y ∈ U(f ; t) and x ∗ y * U(f ; t). It contradicts the fact that U(f ; t) is a bi-hyperideal of Q. Consequently,∧
α∈x∗y

f (α) ≥ f (x)
∧
f (y) for all x, y ∈ Q. Next we show that

∧
B∈x∨y

f (α) ≥ f (x)
∧
f (y) for all x, y ∈ Q.

If there exist x, y ∈ Q and t0 ∈ [0, 1] such that
∧

β∈x∨y
f (β) < t0 ≤ f (x)

∧
f (y). Then x, y ∈ U(f ; t) and
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β ∈ x ∨ y * U(f ; t). It is again contradicts the fact that U(f ; t) is a bi-hyperideal of Q. Thus
∧

β∈x∨y
f (β) ≥

f (x)
∧
f (y) . Now let x, y, z ∈ U(f ; t). Then x ∗ y ∗ z ⊆ U(f ; t). Since x, z ∈ U(f ; t). Then f (x) ≥ t and

f (z) ≥ t. So for any α ∈ x ∗ y ∗ z, we have f (α) ≥ t. Thus f (x)
∧
f (z) = t ≤

∧
α∈x∗y∗z

f (α). Therefore f is

a fuzzy bi-hyperideal of Q.

Conversely, suppose that f be a fuzzy bi-hyperideal of Q. Let x, y ∈ U(f ; t). Then f(x) ≥ t, f(y) ≥ t.

Since f is a fuzzy bi-hyperideal of Q, so we have
∧

α∈x∗y
f (α) ≥ f(x)

∧
f (y) = t. Hence f(α) ≥ t for all

α ∈ x ∗ y, this implies α ∈ U(f ; t) that is x ∗ y ⊆ U(f ; t). As f is a fuzzy bi-hyperideal of Q. Then∧
w∈x∨y

f (w) ≥ f (x)
∧
f (y) ≥ t. Hence f (w) ≥ t for any w ∈ x ∨ y implies that w ∈ U(f ; t). Thus

x ∨ y ⊆ U(f ; t). Now let x, y, z ∈ U(f ; t). Then f(x) ≥ t, f(y) ≥ t and f(z) ≥ t. Since f is a fuzzy

bi-hyperideal of Q, we have
∧

β∈x∗y∗z
f (β) ≥ f (x)

∧
f (z) = t. So f (β) ≥ t. Hence x ∗ y ∗ z ⊆ U(f ; t). Let

x ∈ U(f ; t) and y ∈ Q with y ≤ x. Then t ≤ f (x) ≤ fA (y) , we get y ∈ U(f ; t). Therefore U(f ; t) is a

bi-hyperideal of Q. �

Theorem 4.3. Let {fi | i ∈ I} be a family of fuzzy bi-hyperideals of Q. Then f =
⋂
i∈I fi is a fuzzy bi-

hyperideal of Q where
(⋂

i∈I fi
)

(x) =
∧
i∈I

(fi (x)) .

Proof. Let x, y ∈ Q. Then, since each fi (i ∈ I) is a fuzzy bi-hyperideal of Q, so
∧

α∈x∨y
fi (α) ≥ fi (x)

∧
fi (y) .

Thus for any α ∈ x ∨ y, fi (α) ≥ fi (x)
∧
fi (y) , and we have

f (α) =

(⋂
i∈I

fi

)
(α)

=
∧
i∈I

(fi (α))

≥
∧
i∈I

(
fi (x)

∧
fi (y)

)

=

(∧
i∈I

(fi (x))

)∧(∧
i∈I

(fi (y))

)

=

(⋂
i∈I

fi

)
(x)
∧(⋂

i∈I
fi

)
(y)

= f (x)
∧
f (y) ,

which implies that
∧

α∈x∨y
f (α) ≥ f (x)

∧
f (y) . Let β ∈ x ∗ y and

∧
β∈x∗y

fi (β) ≥ fi (x)
∧
fi (y) . Thus for any

β ∈ x ∗ y, fi (β) ≥ fi (x)
∧
fi (y) . Then



Int. J. Anal. Appl. 18 (6) (2020) 1005

f (β) =

(⋂
i∈I

fi

)
(β)

=
∧
i∈I

(fi (β))

≥
∧
i∈I

(
fi (x)

∧
fi (y)

)

=

(⋂
i∈I

fi

)
(x)
∧(⋂

i∈I
fi

)
(y)

= f (x)
∧
f (y) .

Thus
∧

β∈x∗y
f (β) ≥ f (x)

∧
f (y). Now let x, y, z ∈ Q. Then for any γ ∈ x ∗ y ∗ z, we have

f (γ) =

(⋂
i∈I

fi

)
(γ)

=
∧
i∈I

(fi (γ))

≥
∧
i∈I

(
fi (x)

∧
f (z)

)

=

(∧
i∈I

fi (x)

)∧(∧
i∈I

fi (z)

)

=

(⋂
i∈I

fi

)
(x)
∧(⋂

i∈I
fi

)
(z)

= f (x)
∧
f (z) .

Thus
∧

γ∈x∗y∗z
f (γ) ≥ f (x)

∧
f (z) .

Furthermore, if x ≤ y, then f (x) ≥ f (y) . Indeed: Since every fi (i ∈ I) is a fuzzy bi-hyperideal of Q, it

can be obtained that fi (x) ≥ fi (y) for all i ∈ I. Thus

f (x) =

(⋂
i∈I

fi

)
(x)

=
∧
i∈I

(fi (x))

≥
∧
i∈I

(fi (y))

=

(⋂
i∈I

fi

)
(y)

= f (y) .

Thus f =
⋂
i∈I

fi is a fuzzy bi-hyperideal of Q. �
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5. Homomorphism and generalized rough fuzzy bi-hyperideals of hyperquantales

Definition 5.1. (see [27]). Let X and Y be two nonempty universes. Let F be a set-valued mapping given by

F : X −→ P (Y ), where P (Y ) is the power set of Y . Then the triple (X,Y, F ) is referred to as a generalized

approximation space or generalized rough set. Any set-valued function from X to P (Y ) defines a binary

relation from X to Y by setting ρF = {(a, b) | b ∈ F (a)}. Obviously, if ρ is an arbitrary relation from X to

Y , then a set-valued mapping Fρ : X −→ P (Y ) can be defined by Fρ (a) = {b ∈ Y | (a, b) ∈ ρ} where a ∈ X.

For any set A ⊆ Y , the lower and upper approximations represented by F− (A) and F+ (A) respectively, are

defined as

F− (A) = {a ∈ X | F (a) ⊆ A} ,

F+ (A) = {a ∈ X | F (a) ∩A 6= ∅} .

We call the pair (F− (A) , F+ (A)) generalized rough set, and F−, F+ are termed as lower and upper

generalized approximation operators, respectively.

Definition 5.2. Let (Q1, ∗1) and (Q2, ∗2) be two hyperquantales. A set-valued mapping F : Q1 −→ P∗ (Q2) ,

where P∗ (Q2) represents the collection of all nonempty subsets of Q2 is called a set-valued homomorphism

if, for all ai, a, b ∈ Q1 (i ∈ I) ,

(1) F (a) ∗2 F (b) ⊆ F (a ∗1 b) .

(2)
∨
i∈I

F (ai) ⊆ F
(∨
i∈I

ai

)
.

A set-valued mapping F : Q1 −→ P∗ (Q2) is called a strong set-valued homomorphism if we replace ⊆ by

= in (1) and (2).

Definition 5.3. Let (Q1, ∗1) and (Q2, ∗2) be two hyperquantales and let F be a set-valued homomorphism.

Let f be any fuzzy subset of Q2. Then for every x ∈ Q1, we defines

F− (f) (x) =
∧

y∈F (x)

f (y) ,

F+ (f) (x) =
∨

y∈F (x)

f (y) .

Here F− (f) is the generalized lower approximation and F+ (f) is the generalized upper approximation of

the fuzzy subset of f. The pair (F− (f) , F+ (f)) is called generalized rough fuzzy subset of Q1, if F− (f) 6=

F+ (f) .

Definition 5.4. Let F be a set-valued homomorphism. A fuzzy subset f of the hyperquantale Q2 is called

a lower (resp. upper) generalized rough fuzzy bi-hyperideal of Q2 if F− (f) (resp. F+ (f)) is a fuzzy bi-

hyperideal of Q1. A fuzzy subset f of Q2, which is both an upper and a lower generalized rough fuzzy

bi-hyperideal of Q2, is called generalized rough fuzzy bi-hyperideal of Q2.
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Theorem 5.1. Let F be a strong set-valued homomorphism and let f be a fuzzy bi-hyperideal of Q2. Then

set F− (f) is a fuzzy bi-hyperideal of Q1.

Proof. Assume that f is a fuzzy bi-hyperideal of Q2, then we have
∧

α∈x∨y
f (α) ≥ f (x)

∧
f (y) imply that

f (α) ≥ f (x)
∧
f (y) ∀x, y ∈ Q2 and α ∈ x∨ y. Also F is a strong set-valued homomorphism, so F (x ∨ y) =

F (x) ∨ F (y) ∀x, y ∈ Q1. Therefore for any α ∈ x ∨ y

F− (f) (α) = F− (f) (x ∨ y) =
∧

α∈F (x∨y)

f (α) =
∧

α∈F (x)∨F (y)

f (α) .

Since α ∈ F (x) ∨ F (y), there exist a ∈ F (x) and b ∈ F (y) such that α ∈ a ∨ b. Hence

F− (f) (x ∨ y) =
∧

a∨b∈F (x)∨F (y)

f (a ∨ b)

≥
∧

a∈F (x),b∈F (y)

(
f (a)

∧
f (b)

)

=


 ∧
a∈F (x)

f (a)

∧ ∧
b∈F (y)

f (b)


= F− (f) (x)

∧
F− (f) (y) .

Hence
∧

α∈x∨y
F− (f) (α) ≥ F− (f) (x)

∧
F− (f) (y) ∀x, y ∈ Q1.

Again since F is a strong set-valued homomorphism, so we have F (x ∗1 y) = F (x) ∗2 F (y) ∀x, y ∈ Q1.

Thus for any β ∈ x ∗1 y we have,

F− (f) (x ∗1 y) =
∧

β∈F (x∗1y)

f (β) =
∧

β∈F (x)∗2F (y)

f (β) .

Since β ∈ F (x) ∗2 F (y), there exist a ∈ F (x) and b ∈ F (y) such that β ∈ a ∗2 b. Hence

F− (f) (β) = F− (f) (x ∗1 y)

=
∧

a∗2b∈F (x)∗2F (y)

f (a ∗2 b)

≥
∧

a∈F (x),b∈F (y)

(
f (a)

∧
f (b)

)

=


 ∧
a∈F (x)

f (a)

∧ ∧
b∈F (y)

f (b)


= F− (f) (x)

∧
F− (f) (y) .

Hence
∧

β∈x∗1y
F− (f) (β) ≥ F− (f) (x)

∧
F− (f) (y) ∀x, y ∈ Q1. Again since f is a fuzzy bi-hyperideal of

Q2, so for any γ ∈ x ∗1 y ∗1 z, we have
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F− (f) (γ) = F− (f) (x ∗1 y ∗1 z) =
∧

γ∈F (x∗1y∗1z)

f (γ) =
∧

γ∈(F (x)∗2F (y)∗2F (z))

f (γ) .

Since γ ∈ F (x)∗2F (y)∗2F (z), there exist a ∈ F (x) and b ∈ F (y) and c ∈ F (z) such that γ ∈ a∗2 b∗2 c.

Hence

F− (f) (γ) = F− (f) (x ∗1 y ∗1 z)

=
∧

a∗2b∗2c∈F (x)∗2F (y)∗2F (z)

f (a ∗2 b ∗2 c)

≥
∧

a∈F (x),c∈F (z)

(
f (a)

∧
f (c)

)

=


 ∧
a∈F (x)

f (a)

∧ ∧
c∈F (z)

f (c)


= F− (f) (x)

∧
F− (f) (z) .

Hence
∧

γ∈(x∗1y∗1z)
F− (f) (γ) ≥ F− (f) (x)

∧
F− (f) (z) ∀x, y, z ∈ Q1. �

Theorem 5.2. Let F be a strong set-valued homomorphism and let f be a fuzzy bi-hyperideal of Q2. Then

F+ (f) is a fuzzy bi-hyperideal of Q1.

Proof. Assume that f is a fuzzy bi-hyperideal of Q2, then we have
∧

α∈x∨y
f (α) ≥ f (x)

∧
f (y) imply that

f (α) ≥ f (x)
∧
f (y) ∀x, y ∈ Q2 and α ∈ x∨ y. Also F is a strong set-valued homomorphism, so F (x ∨ y) =

F (x) ∨ F (y) ∀x, y ∈ Q1. Therefore for any α ∈ x ∨ y

F+ (f) (α) = F+ (f) (x ∨ y) =
∨

α∈F (x∨y)

f (α) =
∨

α∈F (x)∨F (y)

f (α) .

Since α ∈ F (x) ∨ F (y), there exist a ∈ F (x) and b ∈ F (y) such that α ∈ a ∨ b. Hence

F+ (f) (α) = F+ (f) (x ∨ y)

=
∨

a∨b∈F (x)∨F (y)

f (a ∨ b)

≥
∨

a∈F (x),b∈F (y)

(
f (a)

∧
f (b)

)

=


 ∨
a∈F (x)

f (a)

∧ ∨
b∈F (y)

f (b)


= F+ (f) (x)

∧
F+ (f) (y) .

Hence
∧

α∈x∨y
F+ (f) (α) ≥ F+ (f) (x)

∧
F+ (f) (y) ∀x, y ∈ Q1.

Again since F is a strong set-valued homomorphism, so we have F (x ∗1 y) = F (x) ∗2 F (y) ∀x, y ∈ Q1.

Thus for any β ∈ x ∗1 y we have,
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F+ (f) (β) = F+ (f) (x ∗1 y) =
∨

β∈F (x∗1y)

f (β) =
∨

β∈F (x)∗2F (y)

f (β) .

Since β ∈ F (x) ∗2 F (y), there exist a ∈ F (x) and b ∈ F (y) such that β ∈ a ∗2 b. Hence

F+ (f) (β) = F+ (f) (x ∗1 y)

=
∨

a∗2b∈F (x)∗2F (y)

f (a ∗2 b)

≥
∨

a∈F (x),b∈F (y)

(
f (a)

∧
f (b)

)

=


 ∨
a∈F (x)

f (a)

∧ ∨
b∈F (y)

f (b)


= F+ (f) (x)

∧
F+ (f) (y) .

Hence
∧

β∈x∗1y
F+ (f) (β) ≥ F+ (f) (x)

∧
F+ (f) (y) ∀x, y ∈ Q1. Again since f is a fuzzy bi-hyperideal of

Q2, so for any γ ∈ x ∗1 y ∗1 z, we have

F+ (f) (γ) = F+ (f) (x ∗1 y ∗1 z) =
∨

γ∈F (x∗1y∗1z)

f (γ) =
∨

γ∈(F (x)∗2F (y)∗2F (z))

f (γ) .

Since γ ∈ F (x)∗2F (y)∗2F (z), there exist a ∈ F (x) and b ∈ F (y) and c ∈ F (z) such that γ ∈ a∗2 b∗2 c.

Hence

F+ (f) (γ) = F+ (f) (x ∗1 y ∗1 z)

=
∨

a∗2b∗2c∈(F (x)∗2F (y)∗2F (z))

f (a ∗2 b ∗2 c)

≥
∨

a∈F (x),c∈F (z)

(
f (a)

∧
f (c)

)

=


 ∨
a∈F (x)

f (a)

∧ ∨
c∈F (z)

f (c)


= F+ (f) (x)

∧
F+ (f) (z) .

Hence
∧

γ∈(x∗1y∗1z)
F+ (f) (γ) ≥ F+ (f) (x)

∧
F+ (f) (z) ∀x, y, z ∈ Q1. �

Proposition 5.1. Let F be a strong set-valued homomorphism and let {fi}i∈I be a family of fuzzy bi-

hyperideal of Q2. Then F−
(∧
i∈I

(fi)

)
is a fuzzy bi-hyperideal of Q1.
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Proof. Since every fi is a fuzzy bi-hyperideals for every i ∈ I, and for every x, y ∈ Q1,

F−

(∧
i∈I

(fi)

)
(α) = F−

(∧
i∈I

(fi)

)
(x ∨ y)

=

(∧
i∈I

F− (fi)

)
(x ∨ y)

=
∧
i∈I

F− (fi) (x ∨ y)

≥
∧
i∈I

(
F− (fi) (x)

∧
F− (fi) (y)

)

=

{(∧
i∈I

F− (fi)

)
(x)
∧(∧

i∈I
F− (fi)

)
(y)

}

= F−

(∧
i∈I

fi

)
(x)
∧
F−

(∧
i∈I

fi

)
(y) .

Hence
∧

α∈x∨y
F−

(∧
i∈I

fi

)
(α) ≥ F−

(∧
i∈I

fi

)
(x)
∧
F−

(∧
i∈I

fi

)
(y) ∀x, y ∈ Q1.

Now,

F−

(∧
i∈I

(fi)

)
(β) = F−

(∧
i∈I

(fi)

)
(x ∗1 y)

=

(∧
i∈I

F− (fi)

)
(x ∗1 y)

=
∧
i∈I

F− (fi) (x ∗1 y)

≥
∧
i∈I

(
F− (fi) (x)

∧
F− (fi) (y)

)

=

{(∧
i∈I

F− (fi)

)
(x)
∧(∧

i∈I
F− (fi)

)
(y)

}

= F−

(∧
i∈I

fi

)
(x)
∧
F−

(∧
i∈I

fi

)
(y) .

Hence
∧

β∈x∗1y
F−

(∧
i∈I

fi

)
(β) ≥ F−

(∧
i∈I

fi

)
(x)
∧
F−

(∧
i∈I

fi

)
(y) ∀x, y ∈ Q1.
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Again since F is a strong set-valued homomorphism, and f is a fuzzy bi-hyperideal of Q2, so for any

γ ∈ x ∗1 y ∗1 z, we have,

F−

(∧
i∈I

(fi)

)
(γ) =

(
F−

∧
i∈I

(fi)

)
(x ∗1 y ∗1 z)

=
∧
i∈I

F− (fi) (x ∗1 y ∗1 z)

≥
∧
i∈I

(
F− (fi) (x)

∧
F− (fi) (z)

)

=

{(∧
i∈I

F− (fi)

)
(x)
∧(∧

i∈I
F− (fi)

)
(z)

}

= F−

(∧
i∈I

fi

)
(x)
∧
F−

(∧
i∈I

fi

)
(z) .

Hence
∧

γ∈x∗1y∗1z
F−

(∧
i∈I

fi

)
(γ) ≥ F−

(∧
i∈I

fi

)
(x)
∧
F−

(∧
i∈I

fi

)
(z) ∀x, y, z ∈ Q1. �

For the following Theorem we define the set fα where α ∈ [0, 1] as following

fα = {x ∈ Q | f (x) ≥ α} .

Theorem 5.3. Let F be a strong set-valued homomorphism and f be a fuzzy bi-hyperideal of Q2. Then

F− (f) (resp. F+ (f)) is a fuzzy bi-hyperideal of Q1 if and only if for each α ∈ [0, 1] , F− (fα) (resp.

F+ (fα)), where fα 6= ∅, is a bi-hyperideal of Q1.

Proof. Assume that F− (f) is a fuzzy bi-hyperideal of Q1. We need to show that F− (fα) is a bi-hyperideal

of Q1. Let x1, x2 ∈ F− (fα) . Then F− (f) (x1) ≥ α and F− (f) (x2) ≥ α. But since F− (f) is a fuzzy

bi-hyperideal, so
∧

z∈x1∨x2

F− (f) (z) ≥ F− (f) (x1)
∧
F− (f) (x2) ≥ α. Implies that F− (f) (z) ≥ α. Hence

x1 ∨ x2 ⊆ F− (fα) . Let y ∈ F− (fα) , x ∈ Q1, and x ≤ y. Then F− (f) (x) ≥ F− (f) (y) ≥ α. Hence

F− (f) (x) ≥ α. Hence x ∈ F− (fα) . Let y1, y2 ∈ F− (fα) , then F− (f) (y1) ≥ α and F− (f) (y2) ≥ α. Since

F− (f) is a fuzzy bi-hyperideal of Q1, so we have
∧

z∈y1∗1y2
F− (f) (z) ≥ F− (f) (y1)

∧
F− (f) (y2) = α. Hence

F− (f) (z) ≥ α, for all z ∈ y1 ∗1 y2, this implies that z ∈ F− (fα) . Hence y1 ∗1 y2 ⊆ F− (fα) . Now let

u, v, w ∈ F− (fα) . Then F− (f) (u) ≥ α, F− (f) (v) ≥ α and F− (f) (w) ≥ α. Again since F− (f) is a fuzzy

bi-hyperideal of Q1, so we have
∧

β∈u∗1v∗1w
F− (f) (β) ≥ F− (f) (u)

∧
F− (f) (w) = α. Hence F− (f) (β) ≥ α.

Thus u ∗1 v ∗1 w ⊆ F− (fα) . Therefore F− (fα) is a bi-hyperideal of Q1.

Conversely, assume that F− (fα) is a bi-hyperideal of Q1. We shall show that F− (f) is a fuzzy bi-

hyperideal of Q1. For any x, y ∈ Q1, let α = F− (f) (x)
∧
F− (f) (y) ∈ range(F− (f)) . Then F− (f) (x) ≥ α

and F− (f) (y) ≥ α. So x, y ∈ F− (fα) . Hence x ∨ y ⊆ F− (fα) .

Consider
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F− (f) (x ∨ y) =
∧

z∈F (x∨y)

f (z) =
∧

z∈F (x)∨F (y)

f (z) .

Since z ∈ F (x) ∨ F (y), there exist a ∈ F (x) and b ∈ F (y) such that z ∈ a ∨ b. Hence

F− (f) (x ∨ y) =
∧

a∨b∈F (x)∨F (y)

f (a ∨ b)

≥
∧

a∈F (x),b∈F (y)

(
f (a)

∧
f (b)

)

=


 ∧
a∈F (x)

f (a)

∧ ∧
b∈F (y)

f (b)


= F− (f) (x)

∧
F− (f) (y) .

Hence
∧

z∈x∨y
F− (f) (z) ≥ F− (f) (x)

∧
F− (f) (y) ∀x, y ∈ Q1.

Now for x, y ∈ F− (fα), we have x ∗1 y ⊆ F− (fα) . Hence for β ∈ x ∗1 y, we have F− (f) (β) ≥ α. Since,

x, y ∈ F− (fα) , so F− (f) (x) ≥ α and F− (f) (y) ≥ α. Thus
∧

β∈x∗1y
F− (f) (β) ≥ F− (f) (x)

∧
F− (f) (y) .

Let x, y ∈ Q1 such that x ≤ y. If F− (f) (y) = 0 then F− (f) (x) ≥ F− (f) (y) . If F− (f) (y) = α then

y ∈ F− (fα) . Since x ≤ y and F− (fα) is a bi-hyperideal of Q1, we have x ∈ F− (fα) . Then F− (f) (x) ≥ α =

F− (f) (y) . Now let x, y, z ∈ F− (fα) . Then x∗1y∗1z ⊆ F− (fα) . Since x, z ∈ F− (fα) . Then F− (f) (x) ≥ α

and F− (f) (z) ≥ α. So for any γ ∈ x ∗1 y ∗1 z, we have F− (f) (γ) ≥ α. Thus F− (f) (x)
∧
F− (f) (z) = α ≤∧

γ∈(x∗1y∗1z)
F− (f) (γ). Therefore F− (f) is a fuzzy bi-hyperideal of Q1. �

6. Conclusion

In the present paper, we introduced the notion of bi-hyperideals of hyperquantales. Furthermore we

introduced the notions of fuzzy bi-hyperideals and generalized rough fuzzy bi-hyperideals of hyperquantales

and their related properties is provided. Finally we discussed the strong set-valued homomorphism and set-

valued homomorphism of hyperquantales and generalized rough fuzzy bi-hyperideals and shown that how

they are related. In our future study of hyperquantales, we will apply the above new idea to other algebraic

structures for more applications.
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