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Abstract. Herein, highly oscillatory integrals with hypersingular type singularities are studied. After

transforming the original integral into a sum of line integrals over a positive semi-infinite interval, a Gauss-

related quadrature rule is constructed. The vehicle utilized is the moment’s information. The comparison of

two algorithms (Chebyshev and its modified one) to produce the recursion coefficients that satisfy orthogonal

polynomial with respect to Gautschi logarithmic weight function, is investigated. Lastly, numerical examples

are given to substantiate the effectiveness of the proposed method.

1. Introduction

The main aspect of our interest in this paper is the computational efficiency of hypersingular integral of

the form

(1.1) I [s] [f ;µ] =

∫ b

a

(x− a)
α

(b− x)
β

[ln (x− a) ln (b− x)]
s
f (x) eiωx

(x− µ)
k

dx, (k ∈ N),
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where α, β > −1, s ∈ {0, 1} , |ω| >> 1, a < µ < b,−∞ < a < b <∞ and f is an analytic function of x in an

appropriately large region containing the interval [a, b] . For simplicity let the above integral be written as

(1.2) I [s] [f ;µ] =

∫ b

a

ω(α,β,s) (x) f (x) eiωx

(x− µ)
k

dx,

where ω(α,β,s) (x) = (x− a)
α

(b− x)
β

[ln (x− a) ln (b− x)]
s

is the weight function on [a, b] . While analyzing

the above integral, we encounter the following cases:

1. When s ∈ {0, 1} and k = 0 the integral becomes algebraic (s = 0) or logarithmic (s = 1) singular highly

oscillatory integral,

2. When k = 1 the integral is considered as the Cauchy Principal Value (CPV) integral with a highly

oscillatory kernel,

3. When k = 2 the integral is understood in the Hadamard Finite Part (HFP) sense integral with a highly

oscillatory kernel,

4. When k ≥ 2 the integral is considered as Hypersingular, highly oscillatory integral.

Typically, it is somewhat difficult to evaluate CPV or Hypersingular as ordinary improper integrals due to

the existence of a pole at x = µ. If the order of singularity of the kernel function is higher than the dimension

of integral, then the integral itself is called hypersingular. Having said that, hypersingular integrals play a

vital role in physics and applied mechanics, where they can be utilized to formulate mixed boundary value

problems. Besides these, we may find several applications of finite part integrals also in electrodynamics,

aerodynamics, acoustics, and so on, for more about their applications, please see [1–5].

In an attempt to evaluate the Cauchy Hyperbolic problem for the differentiation of several variables,

Hadamard [6,7] introduced the concept of the finite-part in hypersingular integrals. Consequently, numerous

approximations have been achieved, since then, to obtain the fastest algorithm for hypersingular integrals,

particularly in the case where ω(α,β,s) = 1 and the frequency (ω = 0), for example, Gauss related types

quadrature [8–13]. One may simply rewrite (1.1) in terms of the kth order derivative of the Cauchy principal

value integral [11] as

(1.3) I [s] [f ;µ] =
1

(k − 1)!

dk−1

dµk−1

∫ b

a

ω(α,β,s) (x) f (x) eiωx

x− µ
dx.

In the integral part of the above equality when ω(α,β,s) (x) = 1 and the frequency ω = 0 the integration part

becomes the Hilbert transform and the sufficient condition for the existence of Hilbert transform is that f (x)

has to satisfy a Lipschitz and Hölder condition in a closed interval [a, b] . In recent decades, many scientists

have studied numerous computation methods and applications for numerical evaluation of hypersingular

integral equations (for more details see [17–23] and the references therein). Since such types of integrals

contain a broad range of applications, it is of great interest to provide a fast and accurate algorithm for the

numerical computation of these types of integrals.
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It is essential to mention that our primary goal here is to provide a fast algorithm for the efficient computation

of the algebraic and logarithmic hypersingular type integrals with highly oscillatory kernel. Based on the

assumption that f is a holomorphic function in an appropriately closed large region consisting [a, b], the

original integral is changed into several line integrals in a positive semi-infinite interval. Subsequently,

these line integrals are computed using the construction of a Gauss related quadrature rule. Moreover,

algorithms to produce the recursion coefficients of the three-term recurrence relation that satisfy an

orthogonal polynomial with respect to Gautschi logarithmic weight function over positive half-infinite interval

are compared by employing the moment’s information approach.

This paper is structured as follows. In the next section, we evaluate the integral (1.1) using the proposed

method. In section 3, we give the construction of the Gauss-related quadrature rule. Section 4 comprises

numerical experiments to substantiate the efficiency of our proposed algorithms. Concluding remarks are

provided in Section 5.

2. A method for the evaluation of the integral (1.1)

In this section, we demonstrate a method based on contour integration in the complex plane for the integral

(1.1). For k, s = 0, the application of the steepest descent or Clenshaw-Curtis methods are straightforward

[24, 25]. However, for k ≥ 0 and s = 1, some modifications will be required inasmuch as some of the

integrands will contain multi-valued functions that cannot be computed directly. Here, let z be defined

as z = |z| ei(θ+2nπ), for n = 0,±1, ..., to get a single-valued function, we define our principal branch as

ln |z|+ iθ, 0 ≤ θ ≤ 2π. Recall that the principal value of ln z is the value obtained when n = 0. For instance,

ln (±i) = ln 1 +
(
2n± 1

2

)
πi, which is equal to ±π2 i for n = 0.

Figure 1. Integration path for hypersingular integral (1.1).
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Let’s define the region < bounded by Γ =
8
∪
j=1

Γj , such that

(2.1)

Γ1 : ϕ1 (x) = a+ εeix, 0 ≤ x ≤ π
2 , Γ2 : ϕ2 (x) = x, a+ ε ≤ x ≤ µ− ε,

Γ3 : ϕ3 (x) = µ+ εeix, 0 ≤ x ≤ π, Γ4 : ϕ4 (x) = x, µ+ ε ≤ x ≤ b− ε,

Γ5 : ϕ5 (x) = b+ εeix, π2 ≤ x ≤ π, Γ6 : ϕ6 (x) = b+ ix, ε ≤ x ≤ L,

Γ7 : ϕ7 (x) = x+ iL, a ≤ x ≤ b, Γ8 : ϕ8 (x) = a+ ix, ε ≤ x ≤ L.

Theorem 1 ([ [26], p. 114]). Let f (z) be analytic in the region < and on its boundary Γ, then∮
Γ

f (z) = 0.

The above theorem (Cauchy-Goursat), which is the focal theorem in this section, is used to prove the

following theorem:

Theorem 2. Let f be analytic inside and on a simply-connected curve in a complex plane, briefly denoted

by <, in Fig. 1. For a sufficiently large L, suppose that there exist two nonnegative constants M and ωo

such that
∫

Γ
|f (x+ iL)| dx ≤ MeωoL, for ωo ∈ [0, ω). Then, the hypersingular oscillatory integral (1.1) can

be transformed in the following form:

(2.2) I [s] [f ;µ] = Ia [f ;µ] + Ib [f ;µ] +
iπ

(k − 1)!

dk−1

dµk−1

(
ω(α,β,s) (µ) eiωµf (µ)

)
, k = 1, 2, ...

where

(2.3) Ia [f ;µ] =

(
i

ω

)1+α

eiωa
∫ ∞

0

(
b− a− i

ωy
)β

ln
(
i
ωy
)

ln
(
b− a− i

ωy
)
f
(
a+ i

ωy
)
yαe−y(

a− µ+ i
µy
)k dy

and

(2.4) Ib [f ] =
(−i)
ω1+β

1+β

eiωb
∫ ∞

0

(
b− a+ i

ωy
)α

ln
(
− i
ωy
)

ln
(
b− a+ i

ωy
)
f
(
b+ i

ωy
)
yβe−y(

b− µ+ i
ωy
)k dy.

Proof: Let’s denote the integrand φ (z) as

φ (z) =
ω(α,β,s) (z) f (z) eiωz

(z − µ)
k

, k = 1, 2, ...,

and let < be the region in the domain D = {z ∈ C : a ≤ Re (z) ≤ b, 0 ≤ Im (z) ≤ L} , bounded by Γ as

defined in (2.1). Since φ (z) is analytic, by employing the Cauchy-Goursat integral theorem, we have

(2.5)

∫
AB

φ (x) dx+

∫
CD

φ (x) dx = −
(∫

HA

+

∫
BC

+

∫
DE

+

∫
EF

+

∫
FG

+

∫
GH

)
φ (z) dz,

with the direction being taken in the positive sense (counterclockwise), as depicted in Fig. 1. We can show,

with ease, that the integral over quarter circles HA and DE tend to zero as epsilon goes to zero. More
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precisely, let Γ1 : z = a+ εeix, x ∈
[
0, π2

]
, this yields

∣∣∣∫Γ1
φ (z) dz

∣∣∣ =

∣∣∣∣∣− ∫ π20 iε1+α e
ix(1+α)(b−a−εeix)

β
ln(εeix) ln(b−a−εeix)f(a+εeix)e

iω(a+εeix)

(a−µ+εeix)k
dx

∣∣∣∣∣
≤ ε1+α |ln ε|

∫ π
2

0 |G (ε, x)| dx+ ε1+α
∫ π

2
0 |x| |G (ε, x)| dx,

where

G (ε, x) =

(
b− a− εeix

)β
ln
(
b− a− εeix

)
f
(
a+ εeix

)
eiω(a+εeix)

(a− µ+ εeix)
k

.

It can be easily shown that the function G (t, θ) is continuous on t ∈ [0, ε] and θ ∈
[
0, π2

]
. Thus, taking

the limit on both sides as ε → 0, we get
∣∣∣∫Γ1

φ (z) dz
∣∣∣ → 0. The same technique can be applied to obtain∣∣∣∫Γ5

φ (z) dz
∣∣∣→ 0, as ε→ 0. Moreover, by letting Γ7 : z = x+ iL, x ∈ [a, b] , it follows that

∣∣∣∫Γ7
φ (z) dz

∣∣∣ =
∣∣∣−e−ωL ∫ ba (x−a+iL)α(b−x−iL)β ln(x−a+iL) ln(b−x−iL)f(x+iL)eiωx

(x−µ+iL)k
dx
∣∣∣

≤ e−ωL
∫ b
a
|ψ (x+ iL)| |f (x+ iL)| dx

≤MM1e
−L(ω−ω0−ω1) (b− a)→ 0, asL→∞,

wherein the above expressions

ψ (x+ iL) =
(x− a+ iL)

α
(b− x− iL)

β
ln (x− a+ iL) ln (b− x− iL)

(x− µ+ iL)
k

.

Note that for any nonnegative constants M1, ω1 such that ω > ω0 + ω1 and for sufficiently large L, we can

choose|ψ (x+ iL)| ≤M1e
ω1L.

Also, on Γ6, letting Γ6 : z = b+ ix for x ∈ [ε, L] and applying the change of variable where ωx = y, we get∫
Γ6

φ (z) dz =
(−i)
ω1+β

1+β

eiωb
∫ L

ε

(
b− a+ i

ω
y
)α

ln
(
− i
ω
y
)

ln
(
b− a+ i

ω
y
)
f
(
b+ i

ω
y
)
yβe−y(

b− µ+ i
ω
y
)k dy,

similarly on Γ8, we have∫
Γ8

φ (z) dz =

(
i

k

)1+α

eiωa
∫ L

ε

(
b− a− i

ω
y
)β

ln
(
i
ω
y
)

ln
(
b− a− i

ω
y
)
f
(
a+ i

ω
y
)
yαe−y(

a− µ+ i
µ
y
)k dy.

Integral over Γ3 : z = µ+ εeix for 0 ≤ x ≤ π we apply the formula (1.3) to get∫
Γ3

φ (z) dz =
iπ

(k − 1)!

dk−1

dµk−1

∫
Γ3

ω(α,β,s) (z) eiωzf (z)

z − µ dz.

The above right-hand side integral part gives∫ π

0

(
µ− a+ εeix

)α (
b− µ− εeix

)β
ln
(
µ− a+ εeix

)
ln
(
b− µ− εeix

)
f
(
µ+ εeix

)
eiωµeiωεe

ix

iε

εeix
dx,

as ε→ 0, the integral over Γ3 becomes∫
Γ3

φ (z) dz =
iπ

(k − 1)!

dk−1

dµk−1

(
ω(α,β,s) (µ) eiωµf (µ)

)
.

Taking the limits as ε→ 0, and L→∞ of the above results and substituting all in (2.5) completes the proof.
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3. Computation of (2.2) by Gaussian quadrature rule

In this section, we construct a Gaussian rule for efficiently computing the integral (2.2). The technique applied in

this paper is based on the recent development of Walter Gautschi in his paper [28], followed the paper by Ball J.S.

et al. [29]. For simplification let us rewrite (2.2) as

(3.1) I [f ;µ] = G1

∫ ∞
0

F1 (y) ln
(
i
ω
y
)
yαe−ydy +G2

∫ ∞
0

F2 (y) ln
(
− i
ω
y
)
yβe−ydy +H (µ) ,

where

G1 =
(
i
ω

)1+α
eika, F1 (y) =

(
b−a− i

ω
y

)β
ln

(
b−a− i

ω
y

)
f

(
a+

i
ω
y

)
(
a−µ+

i
µ
y

)k ,

G2 = (−i)
ω1+β

1+β
eikb, F2 (y) =

(
b−a+

i
ω
y

)α
ln

(
b−a+

i
ω
y

)
f

(
b+

i
ω
y

)
(
b−µ+

i
ω
y

)k
and

H (µ) = iπ
(k−1)!

dk−1

dµk−1

(
ω(α,β,s) (µ) eiωµf (µ)

)
for k = 1, 2, ....

Drawing from the Gautschi analysis, we can transform the complex logarithmic multi-valued function that appeared

in (3.1) as

(3.2) ln
(
i
ω
y
)

= ln (i)− lnω + ln (y) =
(π

2
i− lnω − 1 + y

)
− (y − 1− ln y)

and

(3.3) ln
(
− i
ω
y
)

= ln (−i)− lnω + ln y =
(
−π

2
i− lnω − 1 + y

)
− (y − 1− ln y) .

Substituting the above equations (3.2) and (3.3) into (3.1) leads us to the new form of (3.1) which can be denoted as

(3.4)
I [f ;µ] = G1

∫∞
0
F11 (y) yαe−ydy −G1

∫∞
0
F1 (y) (y − 1− ln y) yαe−ydy

+ G2

∫∞
0
F22 (y) yβe−ydy −G2

∫∞
0
F2 (y) (y − 1− ln y) yβe−ydy +H (µ)

where

F11 (y) =
(π

2
i− lnω − 1 + y

)
F1 (y)

and

F22 (y) =
(
−π

2
i− lnω − 1 + y

)
F2 (y) .

Moreover, analyzing (3.4) we came across the following related (nonnegative) weight functions:

(3.5)
w(α) (y) = yαe−y, w(α,LG) (y) = yαe−y (y − 1− ln y) ,

w(β) (y) = yβe−y, w(β,LG) (y) = yβe−y (y − 1− ln y) .

Here w(α,LG) and w(β,LG) should be recognized as logarithmic Gautschi-Laguerre weight functions over a positive

half-infinite interval whereas the rest are known to be the conventional Generalized Gauss Laguerre weight functions

y → w (y;m) = yme−yfor (m = α, β > −1) .
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By combining logarithmic Gautschi-Laguerre with the traditional Generalized Laguerre weight functions, a Gauss-

related quadrature rule for the integral (3.4) can be formulated as follows

(3.6)
In [f ;µ] = G1

∑n
p=1 w

(α)
p F11

(
y

(α)
p

)
−G1

∑n
p=1 w

(α,LG)
p F1

(
y

(α,LG)
p

)
+ G2

∑n
p=1 w

(β)
p F22

(
y

(β)
p

)
−G2

∑n
p=1 w

(β,LG)
p F2

(
y

(β,LG)
p

)
+H (µ)

In the above summations (3.6) y
(m)
p , y

(m,LG)
p and w

(m)
p , w

(m,LG)
p for (m ∈ {α, β}) are the nodes and weights for the

rule, respectively.

The problem left is the computation of the approximation In( the abscissas y
(m)
p , y

(m,LG)
p and the weights

w
(m)
p , w

(m,LG)
p for (m ∈ {α, β})). However, before that, we first require the knowledge of the recursion coefficients

αi, βi. To do so, let ℘ be the space of real polynomials of degree at most n and suppose that w : (a, b) → [0,∞) is

the nonnegative weight function with w (y) > 0 and all moments µr =
∫ b
a
yrw (y) dy, µ0 > 0 exist and are finite. The

generalization of the dot product known as the inner product is defined as

(3.7) (u, v) =

∫
R

u (y) v (y)w (y) dy.

Provided that u is orthogonal to v if (u, v) = 0 and the norm of u is obtained if u = v which yields

(3.8) ‖u‖ =

(∫ b

a

u2 (y)w (y) dy

)1/2

.

The monic orthogonal polynomials with respect to (3.7) are denoted by πi (.) = πi (., w (y)) ,

i = 0, 1, and they satisfy the three-term recurrence relation

(3.9)
πi+1 (y) = (y − αi)πi (y)− βiπi−1 (y) , i = 0, 1, ..

π0 (y) = 1, π−1 (y) = 0,

where

αi =
(yπi, πi)

(πi, πi)
, i = 0, 1, 2, .. .

and

βi =
(πi, πi)

(πi−1, πi−1)
, i = 1, 2, ... .

The coefficient β0 may be arbitrary but, by definition, is defined as β0 = µ0 =
∫

R
w (y) dy. Automatic computation

of the above coefficients plays a significant role in the construction of the numerical quadrature rule (3.6). Moreover,

their information will facilitate the roots of orthogonal polynomials to be quickly evaluated as characteristic values

(eigenvalues) of the Jn (Jacobi) matrix. Among numerous algorithms that exist, that of Golub and Welsch [30] is

the most popular. Their algorithm is based on the calculation of the eigenvalues, and corresponding eigenvectors of

the matrix J of order n [31] whose diagonal elements are {αi}n−1
i=0 and sub-diagonal elements are

{√
βi
}n−1

i=1

(3.10) J =



α0

√
β1 0

√
β1 α1

. . .

...
. . .

. . .
√
βn−1

0
√
βn−1 αn−1


.

Furthermore, Golub and Welsch demonstrated that we only need to determine eigenvalues and the first component

of the corresponding normalized eigenvector vp,1 and their algorithm only cost O
(
n2
)

operations. The nodes
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yp (p = 1, 2, .., n) are the eigenvalues of J and the weights wp (p = 1, 2, .., n) are calculated by taking wp = λn,p =

β0v
2
p,1 for p = 1, 2, ...., n, where β0 is defined by β0 = µ0,

J (w) vp = ypvp, vTp vp = 1,

vp,1 is the first component of the normalized eigenvector vp
(

= [vp,1, vp,2, ..., vp,n]T
)

associated with the eigenvalue

yp. Furthermore, in the determination of the eigenvalues of the matrix J , the QR method proposed by Francis [32]

is deemed the best method available since it converges very rapidly for symmetric matrices.

There exist several methods for generating the n recursion coefficients. As stated previously, we employ the method

based on the moment’s information.

It is well known that the first n recursion coefficients αi, βi, i = 0, 1, .., n−1 can be evaluated by the first 2n moments

µr =
∫ b
a
yrw (y) dy, r = 0, 1, ...., 2n − 1. Consequently, the moments associated with the weight functions in (3.5)

(taking α as an example) can be calculated exactly in an efficient way as

(3.11)
µ

(α)
r =

∫∞
0
yα+re−ydy = Γ (α+ r + 1) ,

µ
(α,L)
r =

∫∞
0
yα+re−y (y − 1− ln y) dy = Γ (α+ r + 1) [α+ r − ψ (α+ r + 1)] ,

where Γ (z) =
∫∞

0
yz−1e−ydy is the Gamma function and ψ (z) is the logarithmic derivative of the Gamma function

ψ (z) = Γ′ (z) /Γ (z) known as Digamma function [33], and it can be implemented in Mathematica as PolyGamma[z].

Several formulas exist, for instance, by expressing the coefficients in terms of Hankel determinants in these moments,

we obtain the n recursive coefficients. However, the sensitivity of the formula to small errors increases with n due

to the condition number that grows with n if an extended precision is not employed [34]. For constructing recursive

coefficients that satisfy three-term recurrence relation for orthogonal polynomials with respect to the given weight

functions w (y;m) = yme−y and w (y;m) = (y − 1− ln y) yme−y for m = α, β > −1, the moments obtained in (3.11)

are sufficient.

3.1. Algorithm 1: Computation of the coefficients
{
αLGi , βLGi

}n−1

i=0
using ordinary moments.

Input values: n;α; prec (*Precision*); dig (*Working Precision*);

Outputs:

1: Compute µ
(α,L)
r as given in (3.11) for r = 0, 1, ... ;

2: Evaluate α0 = µ
(α,L)
1

/
µ

(α,L)
0

;

3: Evaluate β0 = µ
(α,L)
0 ;

4: Do λ−1,d = 0, d = 1, 2, ..., 2n− 2;

5: Do λ0,d = µ
(α,L)
d , d = 0, 1, ..., 2n− 1;

6: For i = 1, 2, ..., n Do λi,d = λi−1,d+1 − αi−1λi−1,d − βi−1λi−2,d, d = i, i+ 1, ...., 2n− i− 1;

7: Evaluate αi = λi,i+1/λi,i −
λi−1,i/λi−1,i−1

;

8: Evaluate βi = λi,i/λi−1,i−1
;

9: Return αi;βi for i = 0, 1, ..., n− 1;
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Table 1: Coefficients
{
αLGi , βLGi

}14

i=0
corresponding to the weight w(α,LG) (y) = yαe−y (y − 1− ln y) , for

α = −1/4, obtained by executing program 1, CPU=0.015625.

i αLGi βLGi

0 0.45090716524038707962219237449708 1.0242778830275809860335715955718

1 4.4026356977629687472295132612258 1.2587291457146847219809737953640

2 6.4462609107426586575051423712921 4.3437841029461997884958893605676

3 8.0993469536298673147110463146371 10.727459601510999531760131065961

4 9.6565521442501219312044582407037 20.266321990048429475466086706460

5 11.487385620636749776309299477905 31.808060947238646026307463203268

6 13.660865631852677441998498517609 43.433947558394725076095085656902

7 15.923546713504372605163548843941 55.456655209891862267583643063180

8 18.103197479766207329491573123388 69.425911108055039576435436564038

9 20.172145438709609898281127079405 86.132945475939104712802024368667

10 22.148685896189116656533807126260 105.72362050316907059519290527165

11 24.054429060576049496535522934793 128.17144559395119262200846729860

12 25.914735451923003844755927791835 153.38231588056735603882297667714

13 27.766370023209773725154094863369 181.08839565056932241218160342789

14 29.653839520173234572797220416703 210.76020051420847765662219483336

Another alternative is to utilize the modified moments where instead of evaluating moments by the power yr in

(3.11), we substitute it with an appropriate orthogonal polynomial of degree i. That is given a set of polynomials

{Pi (y)}∞i=0 degree (Pi = i), the modified moments µ̂i of the weight function w is defined by

µ̂i, =

∫ b

a

Pi (y)w (y) dy, i = 0, 1, 2, 3, ....

In this case, let L̂mi (y) be the monic generalized Laguerre polynomials [35] and suppose that
{
L̂mi

}
are monic

polynomials satisfying a three-term recurrence relation similar to (3.9)

(3.12)
L̂mi+1 (y) = (y − ai) L̂mi (y)− biL̂mi−1 (y) , i = 0, 1, ..

L̂m0 (y) = 1, L̂m−1 (y) = 0.

In the above recurrence relation, the coefficients ai ∈ R, bi ≥ 0 can be determined in the following way: We already

know that

(3.13)
(i+ 1)Lmi+1 (y) = (2i+m+ 1− y)Lmi (y)− (i+m)Lmi−1 (y) ,

Lm0 (y) = 1, Lm1 (y) = m+ 1− y.

Inserting Lmi (y) =
L̂mi (y)

(−1)ii!
in the above recurrence relation (3.13) we get

(3.14)
L̂mi+1 (y) = [y − (2i+m+ 1)] L̂mi (y) + i (i+m) L̂mi−1 (y) ,

L̂m0 (y) = 1, L̂m−1 (y) = 0.
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Equating (3.12) and (3.14) we observe that the coefficients ai ∈ R, bi ≥ 0 are

(3.15)
ai = 2i+m+ 1 and bi = i (i+m) ,

b0 = µ0 = Γ (m+ 1) .

Thus, the modified moments related to the weight function w(m,LG) (y) = yme−y (y − 1− ln y) , over [0,∞) for

(m = α, β > −1) is expressed in the Gamma and its logarithmic derivative function as

(3.16) µ̂i =

∫ ∞
0

w(m,LG) (y) L̂mi (y) dy =


mΓ (m+ 1)− Γ (m+ 1)ψ (m+ 1) , if i = 0

mΓ (m+ 1) , if i = 1

(−1)i (i− 1)!Γ (m+ 1) , if i ≥ 2.

Thanks to the modified Chebyshev algorithm [ [36], p. 76], which directly takes 2n modified moments and the

2n− 1 coefficients {ai, bi}2n−2
i=0 in (3.12) to produce the coefficients αi (w) , βi (w) , i = 0, 1, ..., n− 1 that we strongly

desired. In order to generate coefficients using the modified moments’ approach, we provide an algorithm that can

be implemented in any mathematical software. Our implementation was done using Mathematica version 9.0.

3.2. Algorithm 2: Computation of the coefficients
{
αLGi , βLGi

}n−1

i=0
using the modified moments.

Input values: n;α = m; prec (*Precision*); dig (*Working Precision*);

Outputs:

1: Compute ai = 2i+ α+ 1; i = 1, 2, ..., 2n− 1;

2: Evaluate bi = If i = 0,Γ (α+ 1) else i (i+ α) ;

3: Evaluate µ̂i = If i = 0, µ̂0 else If i = 1, µ1 else (−1)i (i− 1)!Γ (α+ 1) ;

4: Approximate α0 = a0 + µ̂1/̂µ0
;

5: Approximate β0 = µ̂0 as shown in step 3;

6: Do λ−1,d = 0, d = 1, 2, ..., 2n− 2;

7: Do λ0,d = µ̂d, d = 0, 1, ..., 2n− 1;

8: For i = 1, 2, ..., n− 1 Do

λi,d = λi−1,d+1 − (αi−1 − ad)λi−1,d − βi−1λi−2,d + bdλi−1,d−1, d = i, i+ 1, ...., 2n− i− 1;

9: Evaluate αi = ai + λi,i+1/λi,i −
λi−1,i/λi−1,i−1

;

10: Evaluate βi = λi,i/λi−1,i−1
;

11: Return αi;βi for i = 0, 1, ..., n− 1;

Coefficients obtained from Algorithm 2 by using modified moments are in full agreement with the ones provided

by Algorithm 1 using ordinary moments. Although both algorithms lead to the same results, the first algorithm

requires the employment of extended precision compared to the second algorithm, resultantly, a slight computation

time difference between the two algorithms may be observed. This problem is due to the ill-conditioning that grows

exponentially with n.

As an example, by considering the Gautschi logarithmic weight function, for each n < 15 Algorithm 1 requires a

precision level of 60 in 0.015625 seconds, whereas Algorithm 2 requires precision equal to 50 in 0.015625 seconds. In

order to obtain n < 20 recurrence coefficients, Algorithm 1 requires a precision level of 75 in 0.06250 seconds, whereas
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Algorithm 2 requires a precision level of 50 in 031250 seconds. Better illustrative examples are provided in the next

section.

Figure 2. Convergence rate for hypersingular integral (1.1) with α = −1/4, β = −1/5, µ =

0, k = 2 and f (x) = sinx.

Figure 3. Errors for the integral
∫ 1

−1
(1+x)−0.25(1−x)0.5 ln(1+x) ln(1−x)eiωxex

x−0.1 dx, for a fixed ω = 103.

4. Numerical Experiments

Herein, selected numerical experiments are manifested to examine the effectiveness of the proposed method to

hypersingular integrals. All performed experiments were carried out using programs written in Mathematica with

32-digits arithmetic. Nevertheless, we will require exact values to calculate errors. Furthermore, the so-called exact

values were computed in Mathematica version 9.0 on a personal laptop with 4GB RAM. Computation time in seconds

is given in some examples.

Example 1. We compute the following hypersingular integral

(4.1) I [1] [f ;µ] =

∫ 1

−1

ω(α,β,1)(x)eiωx sinx

(x− µ)2 dx, |µ| < 1,

for α = −1/4, β = −1/5, µ = 0. Table 2 shows errors and execution time for the integral (4.1) with n = 4.
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Table 2: Absolute errors and execution time in seconds for the integral (4.1) with n = 4.

ω Absolute Errors CPU

10 1.85x10−9 0.031

102 6.74x10−18 0.046

103 1.90x10−22 0.031

104 7.40x10−23 0.031

105 1.10x10−23 0.140

Example 2. Consider the hypersingular integral

(4.2) I [1] [f ;µ] =

∫ 1

−1

ω(α,β,1)(x)eiωx tanx

(x− µ)3 dx, |µ| < 1,

for α = −0.3, β = 0.6, µ = 0.5. Table 3 shows the approximation values obtained using the proposed method with

different values of n and ω fixed. Moreover, Table 3 exhibits that as n increases, the computation accuracy also

increases.

Table 3: Approximated values for the hypersingular integral (4.2) with ω fixed.

ω = 1000

n Approximated values

2 64532.688961214841864763359257867-125250.851427138988397399906359252 i

3 64532.688961214841228930837308266-125250.851427138987821012698178167 i

4 64532.688961214841228950454220065-125250.851427138987821049554599396 i

5 64532.68896121484122895045299769-125250.851427138987821049550931783 i

6 64532.68896121484122895045299781-125250.85142713898782104955093231 i

7 64532.6889612148412289504529978-125250.85142713898782104955093231 i

Example 3. We compute the following Hadamard finite part efficiently

(4.3) I [1] [f ;µ] =

∫ 1

−1

ω(α,β,1)(x)eiωx
(
x cosx+ x6 + 3x− 1

)
(x− µ)2 (1 + x2)

dx, |µ| < 1,

for α = 1/100, β = −1/4, µ = 0. Table 4 shows errors and time in seconds obtained using the proposed method for

different values of ω.

Table 4: Errors and CPU time in seconds for the integral (4.3) with n = 5.

ω Absolute Errors CPU

50 1.80x10−14 0.046

102 1.00x10−17 0.062

103 9.00x10−28 0.218

104 1.30x10−28 0.203

105 6.80x10−28 0.187
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Example 4. We consider the computation of hypersingular integral

(4.4) I [1] [f ;µ] =

∫ 1

−1/4

ω(α,β,1)(x)eiωx1000 ln (1 + x)

(x− µ)2 (1 + x)
dx,

for α = −0.31, β = 0.69, µ = 0 using the two algorithms. Table 5 shows the errors and CPU time in seconds using

the proposed algorithms with ω = 350 (frequency) fixed.

Table 5: Errors and CPU time in seconds for the integral (4.4) with ω = 350 fixed.

Absolute Errors CPU

n Algorithm 1 Algorithm 2 Algorithm 1 Algorithm 2

3 3.15x10−11 1.41x10−9 0.015 0.031

4 7.12x10−15 3.32x10−13 0.031 0.031

5 2.60x10−18 1.21x10−16 0.062 0.062

6 1.36x10−21 6.32x10−20 0.078 0.062

7 1.00x10−22 4.47x10−23 0.093 0.062

Exact value=

64.62366062387822499728716115895+ 260.37702535680375105841469872353i of the integral obtained in

3.70s.

In Table 5, precision was fixed and equal to 40 for each algorithm. Table 6 exhibited that the accuracy of the two

algorithms improved with n, although it can be seen that as n increases, the computation time in Algorithm 1

increased proportionally. Moreover, all the results were found to be entirely satisfactory.

Example 5. Consider the following algebraic singular Hadamard finite part:

(4.5) I [0][f ;µ] =

∫ 1

−1

ω(α,β,0)(x)xexeiωx

(x− µ)2 dx, |µ| < 1,

with α = −1/4, β = −1/2, µ = {0, 0.5} . Table 6 shows Errors and CPU time in seconds using the proposed method

with ω = 100 fixed and µ = 0. Additionally, Table 7 shows the approximation values for µ = 0.5 using the method

proposed.

Table 6: Absolute errors and execution time in seconds for the hypersingular integral (4.5) with ω fixed.

ω = 1000

n Absolute Values CPU

1 1.32x10−5 0.000

2 3.65x10−9 0.000

3 2.77x10−12 0.015

4 3.81x10−15 0.015

5 8.00x10−18 0.031
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Exact value=

0.1032823315565069232725554772316+2.7394850984212037657826989262612i of the integral obtained in

2.93s.

Table 7: Approximated values for the hypersingular integral (4.5) with ω fixed and µ = 0.5.

ω = 100

n Approximated values

2 -223.68541472625086941647497358478+66.22139453813281267943681246412 i

4 -223.68541471558410137770140552331+66.22139373617587608195331122318 i

6 -223.68541471559458881378939193463+66.22139373615812273686197320247 i

8 -223.68541471559459171525944292159+66.22139373615812216947300856366 i

10 -223.68541471559459171603849043769+66.22139373615812217051001846092 i

12 -223.68541471559459171603764119079+66.22139373615812217051097259341 i

14 -223.68541471559459171603763949306+66.22139373615812217051097099077 i

16 -223.68541471559459171603763949889+66.22139373615812217051097098696 i

18 -223.6854147155945917160376394989+66.22139373615812217051097098699 i

20 -223.6854147155945917160376394989+66.22139373615812217051097098699 i

Taking n = 20 as a reference, we can easily see that as n increases, the computational accuracy also increases.

Example 6. We consider the computation of

(4.6) I [1][f ;µ] =

∫ 1

−1

ω(−1/4,1/3,1)(x)eiωxfj(x)dx

(x− µ)2
, j = 1, 2

for

f1(x) =
ex

1 + x2
, f2(x) =

xex

1 + x2
, andµ = 0.

Table 8 exhibits the accuracy of the proposed method for n = 4 fixed. Furthermore, Table 8 shows the absolute errors

and the executed time in seconds for both functions f1 and f2 with ω = 102,103,104,105,106. We observe that the

proposed method can guarantee at least |errors| ≤ 10−15 for both functions f1 and f2. It can be also seen through

Table 8 that the proposed method is more efficient for large values of frequency.

Table 8: Absolute errors and execution time for (4.6) with different values of ω and n = 4 fixed.

f1(x) = ex

1+x2
f2(x) = xex

1+x2

ω Absolute Errors CPU Absolute Errors CPU

102 4.82x10−15 0.031 6.83x10−17 0.156

103 9.00x10−23 0.125 8.00x10−23 0.140

104 1.90x10−23 0.203 1.90x10−23 0.140

105 6.10x10−24 0.125 6.10x10−24 0.140

106 1.40x10−25 0.140 1.30x10−25 0.109
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Conclusions

Herein, the computational efficiency of algebraic and logarithmic hypersingular type singular integrals with highly

oscillatory kernel was discussed. The approach employed proved that it can easily yield better approximation

accuracy as n increases. Furthermore, the used approach also exhibited that taking n as fixed, increasing the

frequency resultantly increases approximation accuracy. Also, two algorithms to produce the recursion coefficients

that satisfy orthogonal polynomial with respect to Gautschi logarithmic weight function were given and compared.

Moreover, both algorithms showed that they can give satisfactory results when one among them is used. The tables

and convergence rate figures given hereinbefore provide evidence in support of our analysis.

Conflicts of Interest: The author(s) declare that there are no conflicts of interest regarding the publication of this

paper.
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