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ABSTRACT. The main purpose of this article is to introduce a class of meromorphic functions associated with
the symmetric points in circular domain. We investigate the necessary and sufficient conditions, distortions
theorem for this class. Furthermore, we obtain closure and convolutions properties, radii of starlikeness and

partial sum results for these functions.

1. INTRODUCTION

Denoted by M, the class of functions f which are analytic in the ®* = D\ {0}, where ® = {2z € C : |z] < 1}

and having the following series expansion form

(1.1) flz)= ! + > a, 2", 2D
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We say that an analytic function fi (2) is subordinate to fa () in ©, symbolically represented as fi (z) <
f2 (2), if there exists an analytic function w(z) with conditions |w(z)| < 1 and w(0) = 1 such that f; (z) =

fa (w(2)). Moreover, if f5 (z) is univalent, then we have the following equivalency from [1] and [2],
f1(0)=f2(0) and f1 (D) C f2(D).

For two functions fi(z) = L + 3> 1 a,1 2™ and fo(2) = L + 307 | an2 2" in D* the convolution or

Hadamard prOduCt iS deﬁne(] l)y
(f]*f})(Z)—*‘f’ E an1a ZZL.
n=1 " "

A function f € M is said to be in the class MS™ () of meromorphic starlike functions of order « if it

satisfies the inequality

(1.2) é}e(zﬁg)) <, 2D 0<a<l.

For some recent investigation of meromorphic functions see [3-13]. Motivated by aforementioned and recent
work of [14], we define the functions’ class as below:

Let —1 < B < A < 1. Then the function f is in the class MS** [A, B] if it satisfies

2zf'(z) 1+ Az

1.3 — D"
3 o -7z 1+Bz "SR
or equivalently

2zf'(2)
oy + 1
(1.4) HORED <1 (z€2%).
f)—f(=2)

2. COEFFICIENT INEQUALITIES

Theorem 2.1. Let f € M and assumed as in (1.1) then f € MS* [A, B, if and only if

S 1-(=D" _
(2.1) ;((1+B)n+(1+A) 5 >|an|§A B.

This inequality s sharp.

Proof. Let us assume that condition (2.1) holds. To show f € MS*™ [A, B], we only need to show the

inequality (1.4) holds. For this consider

22f(2) ) f(—z
O e) +1 _ Zf/(Z) + f(2) 2f( )
2z f'(z) f(R)—f(=2)
Bif(z)—f(—z) + A Bzf'(z)+ A 5

S (=5 an
(B—A)+32, (Bntal=510" ),

oo (n+ 17(g1)" )an

n=1

(B-A)-> , (BntA=G10"a,

<1
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Now for other part let suppose f € MS* [A, B]. We are to show that the inequality (2.1), holds true.

Consider
22f'(2) z)—f(==z
f(z)—f(—z)+1 _ zf’(z)—i—f() 2f( )
22f'(2) f(z)=f(=%)
By +4 Bzf'(2) + AZE5—

?:1 (nJ’,#)an

since the $(z) < |z|, we have

(2.2) 3%{ m (r+ G Jann } <1,

(A-B)+35, (Bn+A=G g, 2n 1

221" (2)

(A-B)+>%2 , (BntA=50")a,

now if we choose the value of z on real axis then O] is real. Letting z — 1~ on real axis and some

simple calculation in (2.2), lead us to (2.1).

Theorem 2.2. Let f € M and assumed as in (1.1) then f € MS* [A, B], if and only if

(1-22) (1 + Bew) z (1 + Aew)
Proof. Tt is easy to verify the relations
2 _ ()= f(=2) 1 2
(2.4) f(z) * T2 5 and f(z) * L’(l—z)z - 17

To prove (2.3), if f € MS*™ [A, B] then we write (1.3), by using definition of subordination as

221 (2) 14 Aw(z2)

(2:5) T (%) 14 Bu(a)’

which is equivalent to
221 (2) 1+ Ae?

THo) (2 7 14 B

which implies that

26) —f (o) (1 ) - LEELED (14 a0y 20

Using the relation (2.4), (2.6) become

B lf(z)* ((1—2z) (1+ Be'?) B z(l—l—Aei‘g))] L0, for 2.

2(1—2)° 1— 22

z€9,0¢€]0,2n],

O

Conversly, suppose that the condition (2.3) hold, it follows that zf (z) # 0 for all z € ©. Hence ® (z) =

—% is analytic in © with ® (0) = 1. Since
2:f () 1+ Aet®
2.7 _ o
0 @ (27 1+ B
If we denote
1+ A4
U(2) = + Az

14+ Bz’
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the relation (2.7), show that ® (D) N (D) = (. Therefore the simply connected domain ® (D) is contained
in connected component of C\ ¥ (9D) . The univalence of ”®” togather with the fact ¥ (0) = ® (0) = 1, this
show that ® < ¥ which shows that f € MS*™ [4, B]. O

Theorem 2.3. The class MS*™ [A, B] is closed under convex combination.

Proof. Let f; (z) € MS™ [A, B], such that
1 o0
fi(z) = . + 2an7i2”, i1 € N.

Then by equation (2.1), we have

ZH@+BM+Q+Af_g4)y%ASA_B

For Y72, 6; =1,0<§ < 1, we have

;@fz‘ (2) = % + ; (; 5z‘an,z'> 2",

Using 2.1, we have

— [ 1-(-1"
Z (Z ((1+B)”+(1+A) — )6i|an,i|>

< z;ai{zl(uw)nﬂuml‘(;”) |an,i|}

< (AfB)icSi:AfB.

i=1

Hence MS™ [A, B] is convex. O

Theorem 2.4. Let f € MS™ [A, B], |z| =r. Then

1 A-B 1 A-B

2. Lo A=B <ty 4B,
(2:8) ey S LI UGl el oy S 14

Proof. As

=

=
N

-
I

1 oo
L + 2 s
n=1
1 oo
;+2¥MWW
n—=

1. A-B
r A+B+2T’

IN

Where we have used Theorem 2.1, on similar argument we have
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1 =~ .
lf(2)] = ‘Z+Zanz
n=1
1 n
>~ =3 el
n=1
1 A-B
> -
- r A+ B+2
Thus prove the result. O

Theorem 2.5. Let f(z) € MS™ [A, B], |z| =r. Then

1 2(A-DB) , 1  2(A-B)
: — - < <422,
(2.9) r2 A+B+2r_|f(z)|_r2+A+B+2T
Proof. As
1 o0
FE = |+Zn‘
n=1
1 (oo}
< Y fal "
n=1
. 1.,24-B)

2T A¥B+2

Where we have used Theorem 2.1, and

 R— .
FE@ = ’—ZﬁZnanz ‘
n=1
1 "
> E—Z|an||r|
n=1
. 1 2(A-B)

2 A+Bt2

Thus prove the result. O

Theorem 2.6. Let f (z) € MS*™ [A, B] of the form (1.1), and h (z) = % + 2211 bpz" € MS* (A, B) with
b,| < 1, then f(2) xh(2) € MS*™ [A, B].

Proof. Since by Theorem 2.1, we have

;((1—1—3)71—1—(14—14)1_(2_1)) lan| < A - B.
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Since
> 1—(=D)"
Z ((1 +B)n+(1+ A) <2)) |an by
n=1
- 1— (="
-y ((1 +B)n+(1+4) (2)) (@] [l
n=1
= 1—(=)"
< ) ((1+B)n—|—(1+A) (2)) lan] < A— B.
n=1
Thus f (z) * h(z) € MS™[A, B]. O
Theorem 2.7. If f € MS™[A, B]. Then f € MS* («) for |z| < ri, where
1
(1—a)((1+B)n+(1+A)ﬂ) nHl
2.1 — 2 .
(2.10) = < W) (A-B)
Proof. Let f € MS**[A, B]. To prove f € MS” (a), we only need to show
2(2) + 1(2) X
2f'(z) = (1 = 2a) f(2)
Using (1.1) along with some simple computation yields
. n + « n
(2.11) > T, lanll2] <.
n=1
As f is in the class MS*[A, B] so we have from (2.1),
= (1+ B)n+ (1+4) =G0 -
2 A-B lan] < 1.
n=1
Now inequality (2.11) will be true, if the following holds
Yoy 12 Jag| 2" <
[eS) 14+ B)n+(14+A4)1=C0"
Zn:l 0B +(AjB) 2 |an‘7
which implies that
ne1 | (=) ((+B)n+(1+4) =G0
"7 < ( I AE ) ;
and so
1
(1—a) (14 Byn+(14+4) =GR ) | 7
2] < (n+a)(A—B)
=T,
we get the required condition. (]
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Theorem 2.8. If fy (2) = % and forn>1

1 A-B .
fu(2) =+ —(—n"~ -
Z  (1+B)n+(1+A)—5

Then f € MS*[A, B] if and only if
(2'12) f (Z) = Z 5nfn (Z),
n=0

where 6, >0 and > 6, = 1.
n=1

Proof. Let f (z) be expressed in the form (2.12), then

*+Z A-B o
=1+ B+ (1+A4) =G0

and for above function, we have

i{htB )n+ ( +A)ﬂ

A-B
(14 B)n+ (14 4) =G0
— (A-B)(1-6)<A-B.

X0,

Thus by Theorem 2.1, f (z) € MS™[A, B].

Conversly, let f (z) € MS™[A, B], since by Theorem 2.1, we have
A-B

‘an‘ S 1_(_1)n ) n Z 17
1+B)n+ (1+A) —5

we set
5 (1+B)n+A(i+BA)1(1)n al. n> 1,
and
do=1- ién,
n=1

so, it follows that

Hence proof is complete. O
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3. PARTIAL SuMS

Silverman [17] determined sharp lower bounds on the real part of the quotients between the normalized
starlike or convex functions and their sequences of partial sums. As a natural extension, one is interested to
search results analogous to those of Silverman for meromorphic univalent functions. In this section, motivated
essentially by the work of Silverman [17] and Cho and Owa [15]( also see [16,18]) we will investigate the

ratio of a function of the form

1 o0
3.1 = - n2",
(3.1) (ORERDICE
to its sequence of partial sums
1 1 &
3.2 =~ and - - 2"
(32) R =S and ) = S+ Y o
when the coefficients are sufficiently small to satisfy the condition analogous to
- 1-(-1)"
> (1+B)n+(1+4) ——— | |an| < A- B.
n=1
For the sake of brevity we rewrite it as
(oo}
(3.3) > dnlan| < A- B,
n=1
where
1—(=1)"
(3.4) dn(A, B) := (1+B)n+(1+A)#

More precisely we will determine sharp lower bounds for R{f(z)/fx(2)} and R{fx(z)/f(2)}. In this con-

nection we make use of the well known results that# { }fzgz;} >0 (z €% if and only if w(z) = n21 cnz"

satisfies the inequality |w(z)| < |z|. Unless otherwise stated, we will assume that f is of the form (1.1) and

its sequence of partial sums is denoted by f,(z) = 1 + 22:1 anz".

Theorem 3.1. Let f € MS™ [A, B] be given by (1.1)satisfies condition (2.1),then

SO LTS e
(3.5) f {fk(2> = dk+1(4, B) (z€27)
where
A— B, if n=1,2,3,....k
(3.6) d.(A, B) >

di+1(A, B), if n=k+1,k+2,....

The result (3.5) is sharp with the function given by

(3.7) flz) ==+ ———zFF1L
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Proof. Define the function w(z) by

1+ w(z) _ dii(A,B) { f(2)  dini(AB)+B-A
1—w(z) A-B fe(2) dr+1(A, B)

k =)

d A,B

1+ 2: anszrl + (%B,)) E anszrl
n=1 n=k+1

(3.8) = -
14+ > apznt!

n=1

It suffices to show that |w(z)| < 1. Now, from (3.8) we can write

dkH(A,B)) i": o Zn+l
w(z) = P — . .
2423 apz"tl + <7’“JX£B’ )> > apzntl

n=1 k=n-+1
Hence we obtain
LgiB)) 5 a
( A-B k=n-+1 "
lw(z)] <

2_22 |an| (lerl(AB)) Z |an|

n=k+1

Now |w(z)] <1 if

dis1(A,B) o :
Q(A—B Z \%\SQ*?ZWH

n=k+1 n=1
or, equivalently,
dy, AB =
Zlnl+ SIS <1,
n=k+1

From the condition (2.1), it is sufficient to show that

dk+1 (A, B) > =, d.(A, B)
< - ' 7
§ lan| + § lan| < A_B |an|
n=1 n=k+1 n=1

which is equivalent to

N i1< A dgl(A,B)> ]
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To see that the function given by (3.7) gives the sharp result, we observe that for z = re'™/*
f(2) A—-B A-B
= 1422 oy 22
fi(2) dr+1(4, B) dr+1(A, B)
dp+1(A,B)+ B — A _
= when r — 17
di+1(A, B)
which shows the bound (3.5) is the best possible for each k € N. O

We next determine bounds for fi(2)/f(2).

Theorem 3.2. If f of the form (3.2) satisfies the condition (2.1), then

fk(Z) dk-i-l(AvB) *
(310 b el R = SIS
where

A- B, if k=1,2,3,...,n
(3.11) dy(A, B) >

drpt1(A,B), if k=n+1n+2,....

The result (3.10) is sharp with the function given by (3.7).

Proof. We write

1+w(z)  de1(A,B)+B—-A[fu(z) di+1(4A, B)
1—w(z) A-B f(z)  dg1(A,B)+B—-A
k )
n+1 [ de+1(A,B) n+1
1+ n2=:1 anz ( e ) n:Zk:H an2

b

o0
14 > apz™t!
n=1

where

dps1(A,B)+B—A &
(smtampmesy £
n=k+1

[w(2)] <

- k [eS)
d A,B)+B—A
2-2 3 Ja| - (22GEEA) S a,)|
n=1 n=k+1

<1.

This last inequality is equivalent to

k 00
d+1(A, B)
_ <1.
E |an| + ) E lan| <1
n=1 n=k+1

Make use of (2.1) to get (3.9). Finally, equality holds in (3.10) for the extremal function f(z) given by
(3.7). 0
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