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ABSTRACT. In this paper, two known theorems dealing with |N,py|x summability of infinite series and

Fourier series have been generalized to ¢ — | N, pp; 8|r summability.

1. INTRODUCTION

A sequence (A,,) is said to be d-quasi-monotone if A, — 0, A, > 0 ultimately and AA, > —d,, where
AA,=A, — Apy1 and § = (0,,) is a sequence of positive numbers (see [1]). A sequence (g,,) is said to be of
bounded variation, denoted by (g,) € BV, if >~ | |Ag,| < co. Let Y a,, be a given infinite series with the
partial sums (s,). Let (¢,) be a sequence of positive real numbers. The series > a,, is said to be summable

© — |N,pn; Blk, k> 1 and B > 0, if (see [22])

oo
Z O, — o |F < 00

n=1

where (py,) is a sequence of positive numbers such that

Pn:va—Mx) as n—oo (P;=p_;=0, i>1),

v=0
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and

1 n
Up = Fn ;pvsv-

For ¢, = —: and 8 = 0, ¢ — |N, pn; B|x summability reduces to | N, p,|r summability (see [2]). Taking
©n =n, =0 and p, = 1 for all values of n, ¢ — |N, p,; B|x summability reduces to |C,1|; summability
(see [8]).

If we write X,, = Z pv/ Py, then (X,,) is a positive increasing sequence tending to infinity with n.

In [3], the followirfg? }cheorem on d-quasi-monotone sequences has been proved.

Theorem 1.1. Let (A\,) — 0 as n — oo and (p,,) be a sequence of positive numbers such that P, = O(npy,)
as n — co. Suppose that there exists a sequence of numbers (A,) which is §-quasi-monotone with

> nX, 0, < 00, >, A, X, is convergent, and |AM,| < |A,| for all n. If the condition

(1.1) Z

is satisfied, where (t,) is the n-th (

t *=0(X,m) as m — 00

“U‘ﬁ

Q

,1) mean of the sequence (nay), then the series > an\, is summable

|N7pn|k7 k Z 1.

Lemma 1.1. [3] Under the conditions of Theorem 1.1, we have that

(1.2) An|Xn=0(1) as n— oo,
(1.3) nXpA, =0(1) as n— oo,
(1.4) > nXa|AA4,| < oo

n=1

2. MAIN RESULT

There are some papers on absolute summability (see [4-6,9-12,16-18,23-25]). Now we generalize Theorem

1.1 as in the following form.

Theorem 2.1. Let (¢,,) be a sequence of positive real numbers such that

(2'1) PnPn = O(Pn)a

m—+1
1
2.2 Pk 17 O(f’“ ) as m — oo.
(2.2) n;ﬂ o o
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If all conditions of Theorem 1.1 are satisfied with the condition (1.1) replaced by
m

(2.3) Z OO P = O(X,n) as m — oo,

then the series . ap\, is summable ¢ — |N,pn; Ble, k> 1 and 0 < 3 < 1/k.

3. PROOF OF THEOREM 2.1
Let (I,,) indicates (N, p, ) mean of the series _ a,\,. Then, for n > 1, we obtain

A Pn - Pn Pvfl)\v
AIn:In_Inf = 5 B P,_1ayhy = v
! PnPn—l 1)2::1 1 Pnpn 1 }z::l v e

Applying Abel’s transformation, we get

n—1

n—1
N Pn Avt1 DPn v+1
A_[n = P’utv — v)\vtv
PTLPTL—l,L; v PnPn—lg v P
n—1
Dn v+1 (n+1)
P,t, AN, Antn
+PnPn71 UZ:; » vt nP, — 0  PnAn

= In,l + In,2 + In,3 + In,4-

For the proof of Theorem 2.1, it is sufficient to show that

> QR 1, F< oo, for r=1,2,3,4.

First,
m—+1 m+1 P c n—1 |)\ +1|
_ n v
I LT S v (S pge e
n=2 - v=1

m+1 onp ko n—1 Do k
— Bk—1 nFn P t v+
Soar (2) g (S 2]

k
Here (2.1) gives (ﬂg—f") = O(1), also using Holder’s inequality, we obtain

m+1 m+1 1 n—1 . ‘)\ +1|k 1 n—1 k-1
Bk+k—1 I ko _ O(1 Bk—1__ - P, |t, v v .
;% | L | <>n§:j2wn P(Z s [t =2 Pg

Now using the fact that P, = O(vp,),

m—+1

m+1 n—1 k-1
S et = oSt (Santiat) (5 50)
n=2
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Then, we have

m—+1

Do et L |

n=2

Here, by using (2.2) and (1.2),

m—+1

Y PR Ly
n=2

Again, from (2.1), we obtain

I k

m+1
k+k—1
Z SDEL + | In,l
n=2
Hence, we get
m—+1
k+k—1 koo
doent T L b =
n=2

m—1

DY Avia] Xos1 + O At X

v=1

m—+1 n—1

niyﬁl Zmn\mmk
n=2

m—+1

m 1
_ k _
0D R L PN T L N e

P .
v=1 n=v+1 n—1

Pv
= Z@ﬂk |)‘v+1| It

gt (PP
omZﬁ“(P>mmw

v=1

_ k
F o= 0 el gl [t
v=1

m

m—1 v
1) Z AlXp 1] Z @Ek_1|tr|k + O(1)[Am1] Z ‘pgk_l‘tv|k
v=1 r=1

v=1

=0(1) as

by using Abel’s transformation, hypotheses of Theorem 2.1, and Lemma 1.1.

Now, we have

m+1

Z (pTﬁLkJrkfl | In,2 |k —

n=2

Using Holder’s inequality, we get

m—+1

Z (pgk-‘rk—l ‘In,Q k
n=2

m—+1

M3

Zmuwﬁzwﬁb—

ma1 » E /n—1 k
Bk+k—1 n A t
Z‘p <PnPn1> <UZ_:1PU| v|v|>
m+1 Onp 1 n—1 k
Z k=1 (nn) B <Z Do [ Ao |tv|>
n _1 v=1
n—1 k
PE (va [ Aw] |tv>
*1 v=1

1 n—1 1 n—1 k-1
v >\vk t F o v
e (St (5 5

m—+1

m+1

Zwﬁk 1

(pﬂk 1

n=v+1 nl

m — 00,
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By (2.2), (2.1) and (1.2), we get

m+1

Qh¥

+k—1 |In,2 |k

= O(1) )@l o[t
v=1

Here, using Abel’s transformation as in I,, 1, we have

m+1

> o
n=2

Again, using Holder’s inequality, we

m—+1
‘ —

Z (pgk-‘rk:—l ‘In,3 k
n=2

Using (1.3), we get (v|A,|)F~! =
m—+1
Z (pﬁk+k 1 | I
Now using the conditions (2.2) and

m—+1

have

m—+1

Z (pﬂk-&-k 1

m—+1

Z@Bk 1

m+1

Z Bk— 1P7

m—+1

Z<p5k 1

O(1), then

(2.1), we get

Z pOkHh=1 | |

Then, we have

m—+1

Z SOEL]{:*HC*I | In,S

n=2

ko=

by using Abel’s transformation,

k+k—1 | 1”72 |k

(

A@]A) Y @ ]+ o()m

Av|Ay]) X, + O(1)m

= O(1) as m — oco.

() (ZP 1A, |>

Onp k 1 n—1
) (le””"A“O

(v A (v ]Au])-

va It, |

v=1
m—+1
va|t |]C |Ay| Z ‘Pﬁk 17
n=v+1 n71

Zwv"“ HtoFo Ayl

r=1 v=1
[ Am| Xom

m—1

111

hypotheses of Theorem 2.1, and Lemma 1.1.

n—1

(ZPUIt v]Ay)) )(P va

=

m
‘Am|z¢gkil|tv|k
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Finally, we get

. m k
— - p -
Sl L = 0030 el (B ) Pl
n=1 "

n=1
= 0(1) Z ‘ng_1|)‘n”tn|k~
n=1

Here, as in I,, 1, we get

Z@gkﬂcﬂ | Lal* = O@1) as m— .

n=1

Hence, the proof of Theorem 2.1 is completed.

4. APPLICATIONS

There are some different papers dealing with applications of Fourier series (see [14,15,19-21]). Let f be
a periodic function with period 27 and Lebesgue integrable over (—m, 7). The trigonometric Fourier series

of f is defined as

flx) ~ %ao + Z(an cosnx + by, sinnx) = Z Ch(x)

n=1 n=0
where
1" 1" L
w=1 [ wir. a1 [ st ama b=t [ s
Write
80 = 3@ +0) + @~ 1)
and

ot =5 [ ot

If ¢1(t) € BV(0,7), then t,(z) = O(1), where t,(x) is the n-th (C,1) mean of the sequence (nC,(z))

(see [7]). By using this, the following theorem has been obtained in [3].

Theorem 4.1. If ¢1(t) € BV(0,7), and the sequences (pn), (An) and (X,,) satisfy the conditions of Theorem
1.1, then the series Y. Cp(x)\, is summable | N,p,, |,, k > 1.

The following theorem gives a generalization of Theorem 4.1 for ¢ — |N, p,,; B|x summability.

Theorem 4.2. If ¢1(t) € BV(0,7), and the sequences (py), (An), (An), (¢n) and (X,,) satisfy the conditions
of Theorem 2.1, then the series Y Cpn(x)\, is summable o — |N,pn; Blr, k> 1 and 0 < B < 1/k.
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5. CONCLUSIONS

If we take ¢, = 5—: and § = 0 in Theorem 2.1, then the condition (2.3) reduces to the condition (1.1),

and the conditions (2.1) and (2.2) are provided. Thus, Theorem 2.1 reduces to Theorem 1.1. If we take
on =n, B =0and p, = 1 for all values of n, then we have a result for |C,1|; summability of an infinite

series (see [13]). Also, if we take ¢, = % and = 0 in Theorem 4.2, then we get Theorem 4.1.

Conflicts of Interest: The author(s) declare that there are no conflicts of interest regarding the pub-

lication of this paper.
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