International Journal of Analysis and Applications

Volume 18, Number 6 (2020), 1056-1065 IJ A A

URL: https://doi.org/10.28924/2291-8639 INTERNATIONAL JOURNAL

DOI: 10.28924/2291-8639-18-2020-1056

OF ANALYSIS AND APPLICATIONS

ON MEROMORPHIC FUNCTIONS DEFINED BY A NEW CLASS OF
LIU-SRIVASTAVA INTEGRAL OPERATOR

SYED GHOOS ALI SHAH!, SAIMA NOOR?, MASLINA DARUS*"*, WASIM UL HAQ?,
SAQIB HUSSAIN!

! Department of Mathematics, COMSATS University Islamabad, Abbottabad Campus 22060, Pakistan
2Department of Basic Sciences, Preparatory year deanship, King Faisal University, Hofuf 31982 Al Ahsa,
Saudia Arabia
3 Department of Mathematical Sciences, Universiti Kebangsaan Malaysia, Bangi 43600, Selangor, Malaysia
4 Department of Mathematics, Abbottabad University of Science and Technology, Abbottabad 22010,
Pakistan

*Corresponding author: maslina@ukm.edu.my

ABSTRACT. In this work, we introduce and explore certain new subclasses of meromorphic functions. We
aim to study some important properties such as coefficient estimates, growth rate and partial sums for these
newly defined subclasses. It is important to mentioned that our results are generalization of number of

existing results.

1. INTRODUCTION

Let Zp denote the class of p-valent meromorphic function of the form:

1 o0
(1.1) AMw) = o + tZatwt,
=p
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which are analytic in the punctured open unit disc U* = {w : w € C and 0 < {w} < 1} = U — {0}, where
U=U*u{0}.

Here we are listing some important subclasses of meromorphic functions which will be used in our subsequal
work. In 1936, Roberston [23] introduced the classes of meromorphic starlike and meromorphic convex
functions of order . By ZMS(a) we mean the subclass of ), consisting of all meromorphic starlike functions

of order . Analytically

MS ’
(1.2) Aw)ed(a) s R (“’j(fj)

A closely related class of meromorphic convex functions of order « is denoted by ZMC(a) and defined as:

><oz7 0<a<l; welU").

MC MS
(1.3) Aw) €Y (a) & —wX () € (a).
In 1952, Kaplan [16] introduced and studied an important class of analytic functions in the open unit disc
U known as close-to-convex functions. A function A belongs to ), is in class ZMK(oz, B), of meromorphic

close-to-convex functions of order o and type 8, if there exist & (w) € SM9(5) and

w\ (w)
(1.4) §R< ) ) < —ou

Many differential and integral operators can be written in terms of convolution of certain holomorphic

functions. Let ¢ (w) € >, and having series representation of the form

1,
(1.5) dw)=—+ > b,
t=0
then convolution (Hadamard product) is denoted by A x ¢ and defined as:
1 oo
(1.6) (A#0) (w) = — + D abw' = (5% X) (w),
t=0

where A (w) as given by (1.1).
Following the current work of Liu and Srivastava [18] (see also [1]- [6]), now we defined the integral

operator given below

(1.7) M (a,b)A (w) = % + Z [a-i-b?p—f—t)] aw’ (ab>0;p €N) .

The above integral operator converts into the following operator when p = 1

(1.8) M (a,b)A (w) = 5—!—2 L—%—b?l-i-t)} aw' (a>0,b>0,meN).
It can be easily verified from (1.8)
(1.9) A (w) (M7 (a, b)A (w))/ = aM{"(a, b))\ (w) — (a + b)YM™ ™ (a, b (w) (b > 0).

For more details see [7-9,12,15,20,21, 24].
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Definition 1.1. A function X\ (w) is subordinate to 6 (w) in U and written as: A (w) < 0 (w) , if there exists a
Schwarz function k(w), which is holomorphic in U* with |k(w)| < 1, such that A (w) = §(k (w)). Furthermore,

if the function § (w) is univalent in U*, then we have the following equivalence (see [22]):
(1.10) Aw) <0 (w) and X(U) C o (U).
Further, X (w) is quasi-subordinate to 6 (w) in U* and written as:
Aw) <40 (w) (welUr),
if there exist two analytic functions ¢ (w) and k (w) in U* such that % is analytic in U* and
lo(W)]| <1 and k(w) <|lw| <1 weU",

satisfying

(1.11) Aw)=pWw)d(kw)) welU".

Definition 1.2. For —1 < S < T < 1 the function \ € Zp is in the class N;"(a,b;d, S, T) if it satisfies

the inequality

1 M™(a,b)A / 1
L e 05 @A W) | 1+ S )
d M7 (a,b)A (w) 1+ 7T (w)
or, equivalently to:
w(M (@ b))
(1.12) O <1

w( M7 (a,b)A(w))
Q) ) (5 1) + 1]

Let Z; denote the subclass of functions Zp consisting of functions of the form:
1 oo
(1.13) A(w) = JJFZWW (peN={1,2,..}).
t=p

Now, we define the class N;™(a,b;d,S,T) = N} (a,b;d, S, T) N Z; For recent work on meromorphic
functions we refer [10, 11,13, 14, 17, 19]. Motivated, from the above cited work we obtained the following

results.

2. MAIN RESULTS

In this section, in present the work to acquire sufficient conditions in which (1.13) gives the function A (w)
within the class N;™ (a,b;d, S,T), as well as demonstrates that this condition is required for function which
belong to this class. In our first theorem, we begin with the necessary and sufficient condition for function

Ain N;™ (a,b;d, S, T). We also prove some other related theorems.
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Theorem 2.1. Let the function A (w) is of the form (1.1). Then A (w) € N;™(a,b;d, S, T) if and only if
oo a m

2.1 _ 1+t—{|d|(S—-T 1+)TH<A-p)(T-1 dl(S—-1T).

(2.1) Z;L+b@+w] (41— (] (S = 1)+ (1 + ) TY < (- p) (T~ 1) + |d] (5 - T)

Proof. Assuming that (2.1) holds true, we obtain

w(M (a,b)A(w))
MA@ T

w( M (a,H)Aw))

R I CROM ey [[d (S =T) +T]

w (M(a,b)A (@) + M (a,b)A ()
Tew (M7 (a, b)A (w)) + [|d] (S — T) + T] M7 (a, b)A (w)

1 = a m
(1 — p) I + t;j [W} atwt

T 0T+ ST+ o (+ DT +1d (5 - D) ot |

Then, by maximum modulus theorem, we have A (w) € N;™(a,b;d, S, T).
Conversely, assume that A (w) is in the class N;™(a,b;d, S,T) with A (w) of the form (1.13), then we find
from (1.12) that
w (M;)”(a, b)A (w)) + M;”(a, b)A (w)
Tw (M™(a,b)A (w))/ +[|d[ (S = T) +T] M (a,b)\ (w)

(1 — p) ﬁ + t;p {m} Cbtu.}t

[(L=p)T +1d[ (S = T)wr + 3272, (E+ 1) T +|d| (S = T)) || w*

since the above inequality is genuine for all w € U, let the value of w on the real axis. Letting w — 1~

through real values, we get

S|y ] el = (5 =D+ A+ OTH S 0= p) (T =) +}d (5 - )

Which complete the proof. O

Corollary 2.1. If the function A (w) is of the form (1.1) is in the class Ny™ (a,b;d, S,T) then
Q1-—p)(T-1)+|d[(5-T)

lad| < = m ; (t=>1).
> [amten) [+t {ldl(S = T)+ (14+0)T)]
=p
The result is sharp for the function

N Z ) B (S =D+ 0T

=p
Growth and distortion bounds for functions belonging to the class N;™(a,b;d, S,T) will be given in the

following result:
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Theorem 2.2. If a function A (w) given by (1.1) is in the class N;™(a,b;d, S, T) then for |w| = r, we have:

1_( (1-p) (T = 1)+ 1| (- T) )TSA(M)I
"\ |asm] 2 {d (8- T)+ 27

(2.3) < +( (1-p T -1 +[d(S-T) )r
"\ ] 211l (5 ) +21)]
and
—p _( (1—p)(T—1)+|d|(S—T) )
" [m} [2 — {|d| (S —T) + 2T}]
(2.4) S‘)\,(w)‘ < —p Jr( 1-p)(T-1)+|d|(S-T) )
A7\ [ | (2 {11 (5 - 1) + 27)]

Proof. In view of Theorem 2.2, we have

[ “ ] 2 {d] (S —T) +27)] 3 o

a + 2bp =

Z{HMH} Jad [L+t = {d] (S = T) + (1 + ) T}]

(1=p) (T =1) +1d[ (S =T),

<
which yield
- )(T—1)+|d\(5—T)
|ag| < (teN).
Z [a+2bp} 2~ {ld] (S —T) +2T}]
Therefore,
(I-p)(T-1)+|d(S-T)
(2.5) A (w)] < p+|W\ |a:| < p+| w| :
“ Z Wl g - (i (s - )+ 21y)
and
(2.6) |,\(w)\zﬁ_|w\z|at|§ﬁ_|w| (1—p)(T—1)+d[(S-T)

g - (1l (5 - 1)+ 2my))

Now, by differentiating(1.13), we have

(2.7) ’ ’7‘ ‘p+1+Z|at|,| =8 [ (1—p)(T=1)+d[(S=T)

A=p)(T=1)+d[(5-T)

(2.8) N @) 2 o thlf| T

5] 2= {ldl(S—T) + 27y

5] 2= {ldl (5 - T)+ 21}
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We have thus completed the proof.

Theorem 2.3. Let the function X (w) given by (1.18) is in the class N;™(a,b;d,S,T). Then we have

(1) A is meromorphically starlike of order q in the disc |w| < r3, that is

%(—W)\ (w)) >q (wl<rs, 0<g<1),

Aw)
where
00 m i
3 [amtrn] L+t (S =T + (1 +0)TY
2.9 = inf |——"
29 S (=T =D+ E-T)
(i7) X is meromorphically convez of order q in the disc |w| < ry, that is
W (w)
_ <
8‘%{ (1+ N W) )} >q (w|<ry, 0<g<1),
where
o0 m ==
> [atr) L+t = {1 (S =D+ A +0THp(L -0
2.10 = inf | —
(2.10) o= A-p T -1+ E-T) F(+a)]
Proof. (i) In order to the inequality (2.9), we set
N o
el | Q) T fad el
) 1y og| T (20— p— 1)+ oy (g — 14 1) fadlJe
Then we have
w)\/(w)
+1
AT <1 0<q<),
NN 1+ 2q
if
(2.11) > ag] ol P < -1
t=1
Thus, by Theorem 2.1, the inequality (2.11) will be true if
> [awmtorn] Lt = {dl (S =T)+ (1 +0)T)]
t+p =p
w S - 9
“ OGSV
then
00 m ﬁ
> [wstorn) L=l (S =T)+ (1 +0)T)
ol = | -2

(1 =p)(T=1)+d[(S-T)

The last inequality leads us immediately to the disc |w| < 73, where r3 is given by (2.9).
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(ii) in order to prove the second affirmation of Theorem 2.3, we find from (1.1) that:

p(p— 1)+ 372, 4t + 1) la] [w] ™"

w/\”(w) 492
N ()
77 S — R
Sl 42 p(p+1—2g) W'~ + 3272, 1t — 1 —2) |ag| ] 7

Thus we have desired inequality:
cu)\” (w)
M <1

wA”’ (w)
V) T2

(0<g<1),

2\ 0

it
= /t(1
(2.12) <(+Q)> g W] < 1.
= 9)

Thus, by Theorem 2.1, the inequality (2.12) will be true if
[t L+t = () (S = T) + (1 +6)TY

(L0 o &
p(1—q) B 1=p)(T=1)+1d[(5-T) ’
then
3 [mtr) = (S -+ A+ T -0)]
= T-pT-D+1dS-T) E1+a)

The last inequality readily yields the disc |w| < r4, where 74 is given by (2.10), which complete the
]

proof.
Theorem 2.4. The class N;m(a, b;d, S, T), is closed under convez linear combinations.

.:172)a

Proof. Let the function
)\-(w):i—ﬁ—i\a Jwt (i
7 P 4 t,2
=p

are in N;™(a, b;d, S, T), it suffices to show that the function h defined by

h(w)=(10-c)h(w) +eha(w) (0<e<T),
is in the class N;m(a, b;d,S,T). Since
1 oo

hw)=—+> [(1=dla| +elagle’  (0<e<1).

t=p
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In view of Theorem 2.1, we have

a—i—b(p—i—t)] [1 + t— {|d| (S - T) + (1 + t) TH [(1 - C) |at,1| + C‘at,QH

= > [HZ)?M] L+t—{ld[(S—T)+Q+t)T}H (1 -c)|ar]

Lﬂ,(pﬂ)} [T+t —{ld (S—T)+ (1 +t) T} clagzl
)

p)(T=1)+[d[(S=T)]+c[1 =p) (T =1) +[d| (S =T)]

IN
—~
—_

|

o
—
[a—

|

= [A-p)(T=1)+[d](S-T)],
which show that h (w) € N;™(a,b;d, S, T), which is required. |

Theorem 2.5. Let A\ (w) = L and

1 1-— T-1 =T
)‘t(w):a+ — ( mp)( )+‘d|(5 ) wt tZL
> [amten) [+t {ldl(S = T)+ (14+0)T)]
=p
then \ € N;m(a, b;d,S,T). If and only if it can be expressed in the form
(2.13) AMw) = th/\t (w),
t=p
where vy > 0, and Y vy = 1.
t=p
Proof. Let the function A (w) be expressed in the form given by (2.13), then
NP PR DR (i | B [ -
w a
> [emtrs] W+ t—{ldI (S -T)+ (1 +0)TY]

t=p

and for this function, we have

Z{ a }[1+t—{|d(S—T)+(l+t)T}]

- a+blp+t)

(1=9) (T = 1) +]d| (S = T) r

2 {m]m[lﬂ—{ldl (S—T)+(1+t)T}

= D u(l-p)(T-1)+d(S-T)

= Q=w]A=p)(T-D)+d(§-T)<(1-p)(T-1)+1d(5-T),
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the condition (2.1) is satisfied. Thus, A € N;™(a,b;d,S,T). Conversely, we suppose that A\ €

Ny™(a,b;d, S, T). Since

(1=p)(T=1)+|d[(5=T)

la:| < = o ;o (=1
3 [mmaten) DHt-(d(S-T)+ (1 +0T)
=p
we set -
3 [t 1+t = (IS =) + (1 +0)T)]
=p
- t>1),
" T D+ 1) ol =y
and
vo=1— th,
t=p
so it follows that
Aw) = veh ().
t=p
This completes the assertion of Theorem 2.5. O

3. CONCLUSION

In our current investigation, we have presented and studied thoroughly some new subclasses of p—valent

functions related with meromorphic convex and meromorphic starlike functions, in connection with the

integral operator given by (1.7). We have obtained sufficient and necessary conditions in relation to these

classes, including growth and distortion theorem along with a radius problem. The technique and ideas of

this paper may stimulate further research in the theory of multivalent meromorphic functions.
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of this paper.
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