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ABSTRACT. This paper is concerned with a nonlinear Timoshenko system modeling clamped thin elastic
beams with distributed delay time. The distributed delay is defined on feedback term associated to the
equation for rotation angle. Under suitable assumptions on the data, we establish the exponential stability

of the system under the usual equal wave speeds assumption.

1. INTRODUCTION

In this work, we consider the following non linear Timoshenko system with distributed delay,

prow — k(pz + 1)z =0,
(1.1) prtet = bus + K(0a + 1) + iy
7 pa(s)(a,t — s)ds + F() =0,
where t denotes the time variable and x the space variable along a beam of length 1 in its equilibrium
configuration. Here, ¢ = p(z,t) and 1 = ¢(x,t) denotes the transverse displacement of the beam and the

rotation angle of its filament, respectively. The term p11); represents a frictional damping and f(¢) is a

forcing term. The coefficients, p1, p2, k are positive constants represent the density, the polar momentum
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of inertia of a cross section, shear modulus respectively, and b = EI where FE is the young’s modulus of
elasticity, I is the moment of inertia cross-section.

System (1.1) is supplemented with the following initial conditions

QD(Q?,O) = Yo, QDt(x,O) = P, 1/1(3770) = 1/}07 1/%:(%0) = ¢1
wt(xa _t) = fo(aja t)a

(1.2)

and Dirichlet boundary conditions

(13) @(Ovt) - @(Lt) = ¢(0at) = ?/J(l,t),

where x € (0,1), t € (71, 72). The initial data (¢o, %0, 1,1, fo) belongs to a suitable functional spacial.
This type of problems (without delay), has been considered, first in [15] where p; = po = f = 0. The stability
of this problems has received much attention in last years, we can find in the literature many results about
different stability of Timoshenko systems depending, in particular, on the weights 1 and po (see [14])
Recently also a great consideration ha been addressed to time delay effects. On such problems, it was showed
that a small delay acted on a boundary control, or internal can destabilize a system which is uniformly
asymptotically stable in the absence of delays. See for instance ( [5]) .

In [13] S. Nicaise and C. Pignotti examined a system of wave equation with initial feedback

Ugt — Ugzg + HoUs + f:f a(z)u(s)us(t — s)ds

u=0 on I'o(0, o)
0
(1.4) 871: =0 on T41(0,q)

u(z,0) =up(xz) and ur(x,0) = up (x) in Q

ug(x, —t) = folx, —t) in Q(0,72)

where a € L?(2) is a function chosen with some assumptions. They proved that the above system is

exponentially stable under the condition

po > llalla [77 p(s)ds

Similarly result was obtained by the authors when the distributed delay acted on the part of boundary.
In [11] Mustapha considered a Timoshenko system of thermoelasticity of type III with distributed delay

and establish the stability for the case of equal and non equal speeds of wave propagation .Appalara [1]
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investigated a thermo-elastic system of Timoshenko type with second sound and distributed delay

p1pee — k(pa +90)e + 7100 + [ 72(8) 01 (2,6 —5) =0

p2¢tt - b¢xm + k(%c + w) + 699& =0
(1.5)

p30; + Gz + 6Pz = 0

Tq + Bg+ 0, =0.

in (0,1)(0,«), this system is exponentially stable regardless the speeds of wave propagation. The same
author studied in [2] a one dimensional Timoshenko system with linear frictional damping and a distributed
delay acting on the displacement equation,he showed that dissipation through the frictional damping is
strong enough to uniformly stabilize the system. for other results about different types of time delay

(discrete and continuos delay) we refer the reader to see ( [1-4,8,10]).

B. Feng and H. L. Pelier [6] considered a following non linear Timoshenko system with constant delay

and forcing term:

p1ow — k(@ + 1)z =0,

p2¢tt - bwzx + k(@x + '(/}) + Ml"/}t + MQ(S)'I/Jt(xat - T) + f(/(/)) = 07

(1.6)

and obtained an exponential stability under equal wave speeds.

Recently S. A. Messaoudi, B. Said-Houari [10] established the stability of a thermoelastic Timoshenko system
of type III with past history and distributed delay for the cases of equal and non equal speeds of wave
propagation respectively.

In the present work, we extend the result of Feng and Pelier, [6] where constant delay is replaced by distributed

delay.

2. PRELIMINARIES

In this section we present the some assumptions needed later to prove our results. As in [12], we introduce

the following new dependent variable

Z(w7p75at) :Z/Jt(xat_ps)7 US (071)7 pe (071>7 t78€ (7-177-2)'

Then, the above variable z satisfies

sz (x,p,8,t) + 25 (x,p,5,t) =0, (x,p,5,t) € (0,1) x (0,1) x (71, 72) X (0,400).
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Therefore, the problem (1.1) is equivalent to

prpwe — k(ps + 1) =0, 2 € (0,1), ¢ >0,

p2bre — bbus + k(oo + ¥) + pathe

+ [ pa(s)z(x, 1,8, t)ds + f(¢) =0, = € (0,1), ¢ >0,

sz (x,p,8,t) + 2, (x,p,5,t) =0, pe (0,1), s € (11,72), t >0,

(2.1)

with the following initial and boundary conditions

p(2,0) = po, ¢i(x,0) = @1, 2 €(0,1),

P(x,0) = o, Y(x,0) =1y, z € (0,1),

z(z,p,5,0) = fo(z,ps), € (0,1), pe(0,1), s €(0,7),

0(0,1) = (1,1) = ¢(0,1) = ¢(1,1) = 0, £ > 0.
Concerning the weight of the delay, we only assume that

(23 [ lds <.

In addition, we give some hypothesis on the forcing term f(¢(z,t)). We assume that f : IR — IR satisfies

the following condition
(2.4) PN = 1w2)] < ko (J0'] = [u2]”) [ - ¢
for all ¥', % € IR, where ko > 0, § > 0. Also

(2.5) 0< f(¥) < f(¥)y, for all ¥ € IR,

@zfﬂws

H = Hj (0,1) x L*(0,1) x Hg (0,1) x L*(0,1) x L*((0,1) x (0,1) x (11, 72))

with

We introduce the Hilbert space,

~ T
For U = (p,u, 1, v, z)T , (&, u, Y, v, E) equipped with the scalar product

(u,u) g = /01 [muﬂ + 20V + k (0 +9) (% + {Z) + b%im} da

1 T2 1
# [ s [ = ps. )7 w0 dpdsd.
0 T1 0

We introduce two new dependent variables ¢, = w and ¢, = v, then the system (2.1)-(2.2) can be written

as

ou _ AU+ F, t>0
(2.6) ot

U (2,0) = U (z) = (%, 0% 40,91, fo) ",
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and
U
(2.7) AU = v )

B e — K (oo ) — Boo— B[ 1y () 2 (@, p,5,1) d

_%ZP (.’E, Ps Svt)

|
—

|
I
o R O o o

S
N

with the domain
D(A) = {(c,o,u,z/},v,z)T € H:v=2(z,0,s,t) in (0, 1)},
where
H = (H?(0,1)n Hy (0,1)) x Hg (0,1) x (H*(0,1) N Hy (0,1))
x Hy (0,1) x L*((0,1) x (0,1) x (11,72)) -
Clearly, D(A) is dense in H, we have the following existence and uniqueness result (see [6]).

Theorem 2.1. Let Uy € H and assume that(2.4)-(2.5) and pe < py hold. Then, there exists a unique
solution U € C (RT,H) of problem (2.1). Moreover, if Uy € D(A), then U € C (RT,D(A))NC (R, H).

3. STABILITY RESULT

In this section, we use the energy method to show that the solution of problem (2.1)—(2.2) decays expo-

nentially, below we shall give the stability result.

Theorem 3.1. Assume that(2.4)-(2.5) and pz < pi1 hold. Assume that £ = % also holds. Then, with

respect to mild solutions, there exist wy > 0 and wq > 0 such that
(3.1) E(t) < wie ™2t > 0.
To achieve our goal we state and prove the following lemmas.
Lemma 3.1. The energy functional E (t) of problem (2.1)—(2.2), defined by

1 1
P =3 | (net+omt)aess [ {Kr0? +wifan

1 1 T2 1~
. dsdpd d
(3.2) +/O / / sl (3)] = (&, 9, ,1) spx+/0 F(4)de
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satisfies

dE (t)
dt

1
(3.3) < _ml/ Yidx <0,
0
where my = pi — f;z |pz (s)| ds.

Proof. Multiplying the first equation in (2.1) by ¢, the second equation by v, integrating over (0,1) and

summing them up we get

1d (! 9 1d (! 2 2

3t ), (19t +p2wt)dx+§% {K(%er) +b¢z}dw
(3.4) = —Ml/ T/)tdx—/h/ f@ ¢td$—/ / Yrpz () 2 (z,1, 5,t) dsda.
Multiplying the third equation of (2.1) by |us2 (s)| z (z, p, s,t) and integrating over (0,1) x (0,1) x (71, 72),
we obtain

2dt/ / / s |ua (s (z,p,s,t)dsdpdx
/ / 2 (8)] 22 (z,1, 8, ) dsdx

(3.5) —f/ / |2 (5)] 22 (2,0, 8, 1) dsdx = 0,

by summing (3.5), (3.4) and using the fact that z (z,0, s,t) = ¢ (z,t), we have

dE (t 1 [ !
dt( ) - <u1 - §/T |12 (S)Id8> /0 vide
— f/ / |2 (8)] 22 (,1, 8, ) dsdx

(3.6) / " / o () 2(x, 1, 5, 1) dsda.

Now, using Young’s inequality, we arrive at

/ @th/ wo (s) z (z, 1, s,t) dsdz
(3.7) S%/ |2 (s |ds/ Yidr + - / / |2 (s)] 22 (z,1, s, ) dsda.

Inserting (3.7) in (3.6) and using (2.3), we have (3.2) and (3.3). The proof is complete. O
Lemma 3.2. Let (p,1),2) be the solution of (2.1)~(2.2). Then, the functional

1
(3.8) I () = — / (pror + patiibe)da — 12 / Pda.
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satisfies
dI t 1 1 1
;t( ) < —/ (p1¢?+pzw?)dl‘+00/ ¢id9€+k/ (02 +¥)*dz
0 0 0
1 T2
(3.9) A2 [ [ e 0121, 0dsds,
0 T1

Proof. Differentiating I (t), we obtain

dI t 1 1 1
;( ) :*pl/ w?dw*m/ thdfv*pz/ Ypd
t 0 0 0

1 1
. / Ypudz — / Piyde,
0 0
and using (2.1)1, (2.1)2, we get

dIl(t) 1 1 1 1
T — oy [(dn—pn [ wpdors [ 2ok [ (ot
0 0 0 0

dt
1 1 To
. d dsdzx.
(3.10) +/O F) x+/0 w/ﬁ o (5) 22,1, 5, t)dsdz

Applying Young’s and Poincaré inequalities, we have

1 T2
/ w/ |2 (8)| z (2,1, s,t) dsdx
0 T1

1 1 T2
(3.11) < / Yida + %/ / |2 (s)] 2% (z,1, s, ) dsdz,
0 0 T1

[ 1t < [ ol ac
< [ll30 1) 1% lago11) 191
(3.12) < cl/olqudx.
By substituting (3.11), (3.12) in (3.10), we obtain (3.9). O
Now, let w be the solution of

(3.13) —Way = Uy, w(0) =w (1) =0,

w(x,w=—/Ozw<y,t>dy+x(/Olmze)dy).

We have the following inequalities.

then we get

Lemma 3.3. The solution of (3.13) satisfies

1 1 1 1
/ w2dr < / Y3dr and / wide < / Yid.
0 0 0 0
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Proof. We multiply equation (3.13) by w, integrate by parts and use the Cauchy—Schwarz inequality to

obtain

1 1
(3.14) / wdx < / 2 dx
0 0

Next, we differentiate (3.13) with respect to ¢ and by the same procedure as above, we obtain

1 1
(3.15) / w?dwﬁ/ Yidr.
0 0

This completes the proof of Lemma (3.3). O

Lemma 3.4. Let (p,1,z) be the solution of (2.1)—(2.2). Then, for any e > 0, the functional

1
(3.16) B (t) = [ (s + provw + B102) d
0
satisfies
dls ( !
(3.17) Z s——/ P2da +<4pl +p2>/ 1/1tdx+p152/ o2dx
0

s ( / 2 <s>|z2<x,1,s,t>ds> dx — / F(w)de

Proof. By differentiation I (¢), we obtain and by using (2.1), (2.1)2, we have

dly(t) ' ' ! ' by
L —pg/o wtd:r—b/o wmdx—}—pl/o cptwtd:v—k/o wdx—l—k/o widz
1 1 To
(3.18) —/0 f(i/))wdx—/o w</ a2 (s) z(x,l,s,t)ds) dx

Using Young’s inequality and (3.15), we have

1 1
p1/ prwidr < p1€2/ dx—l— fda:
0 0 4 €2

(319) < p1€2/ d.CE+ / 1,[}15 dx
0

Using Young’s, Cauchy-Schwarz, Poincaré inequalities, we get

—/w(/ 26) 2, 1,.0) ds )

1 T2
(3.20) <51/ Yida +45 (/ |2 (s)|z2(x71,s,t)ds> dx

1

Cauchy-Schwarz and Poincaré’s inequalities, give
1 Lo
[ 1swwlas < [l il s
0 0
0
< P llag41y 1Pll2¢041y 19

1
(3.21) gcl/ V2dz.
0
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b
By substituting (3.19), (3.20), (3.21) in (3.18), recalling (3.14), (3.15), (2.5) and letting §; = 20 We obtain

(3.17). The proof is now complete.
Lemma 3.5. Let (p,1),2) be the solution of (2.1)~(2.2). Then, the functional

1 1
(3.22) I3(t) == pz/o wt(<pm+¢)+pz/0 Ypprde,

satisfies

dI 2 1 k 1
W <vlwpdidos (st 1) [Cutao -5 [ o0

—i—cl/ wdx—l-m// |2 (s $71,5td5d$—/ f
(3.23) + (M>/ Vo (0 + 1), d

where ¢y is a positive constant.

Proof. By differentiation I5 (t) and using (2.1)1, (2.1)2, we obtain

I ' ' 1
2 =ty [ wtdek [ on o= [ ot v)da

(3.24) - / /T2u2<s><%+w>z<w,1,s,t>dsdx— / F() (s + )de

By using Young’s inequality, we have

1 k 1
(3.25) o [ Wtatlar <X [ v v+ 1 [ oan

Using Young’s and Cauchy Schwarz inequalities, we get

1 -
/ (¢ + 1/))/ |2 (8) z(x, 1, s,t)| dsdx
0 -

k
(3.26) SZ/ (2 + ) %de + 5L / / |2 ()] 2%(2, 1, 5, t)dsdz.
0

Young’s, Cauchy Schwarz and Poincaré inequalities lead to

1
0
/0 F)padz < 10l 101201, 16 l30s

S [P, [
<2 d d
— 2b2 /0 SDI T+ 250/\1 /0 1/}1 T
50 1 6 1 ) b2 1 )
g | (errwrdo s g [ e g [ it
s (! ) do b v,
o+ (g0 + g5 ) | v

2b2
1
Inserting (3.25)-(3.27) in (3.24) and letting dp = §kb2, we obtain (3.23).

<

(3.27) <

O
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Next, in order to handle the boundary terms, appearing in (3.23) , we define the function
q(z) =—4x+2, x€(0,1)
So, we have the following result.

Lemma 3.6. Let (p,1),2) be the solution of (2.1)—(2.2), then for any €1 > 0, the following estimate holds

b e 1
1 9p2 pPie1 2
b[bapuly < e dt/ Wipede — —— dt Qi padr + 61/0 pypdx

2 2.2 1
+( ”;El+’;ﬂ>/ w?dx+<“1+i1>/ (0o + 0)da
€1 0

1
4// iz ()| 22 (2,1, 5, 1) da

1 B2 b b2
3.28
(3:28) (5 2+4)\b2+851)\1+451+43

1
+61)/ ¢§d$
0

Proof. By using Young’s inequality, we easily see that, for e; > 0,

329 bliwenly < 21 [ () + 2 O] 4 1 (42 (1) + 020

we need the following fact
1

d 1 1
- / bpaqueibnds = bps / Wecadz + bpa / rtharda.
0 0 0

On the other hand

1 1 1
bos /0 Writhadz = B / (onthada — kb / a0 + V) uda

0

b / / Qhatiz (5) 2 (2,1, 5,1) dsda — b /Oquwmczx

1 1
< 6% [92 (1) + 3 (0)] +2b2/ wgdx+(k2g2+b%)/ (0n + ) 2ds
0

b2 € b2
b) 2d
(3.30) +b/ / |2 (8)| 2% (x,1, 5,t) dsd.
Therefore
1 1
O T T
0 0
Similarly

d 1 1 1
%/ plqs&t%dx:/ Q(cthrw)sazder/ P14PtPatdT
0 0 0

1
< —k[pZ(1)+¢2(0)] + 3k/ prdx
0

1 1
+k/ ¢§d:p+2p1/ Yidx
0 0
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which, along with (3.29)-(3.30), gives us (3.28). The proof is now complete. O
Lemma 3.7. Let (¢,1,z) be the solution of (2.1)—(2.2). Then, for 1 > 0, the functional

(3.31) (t) —/ / / 5 |y (8)| 2% (x, p, 5, t) dsdpda,

satisfies

F(t) < 171/ / / s |pa(s)| 2%(x, p, 5, t)dsdpdx

(3.32) —771/ / g2 (s (x,1,s t)dsda:—l—ul/ Yida.

Proof. Differentiating Fy (t) and using (2.1)3, we obtain
1 1 T2
=2/ | / e s (3)] 2(2,py 5, 0)2 (3, p, 5, )dsilpd

0
T |pa(s 2*(x, p, s,t)|dsdpdx
== [ e g s
Integration by parts gives and using the fact that z(z,0,s,t) = ¢y and e™® < e7°? < 1, we get for all p € [0, 1]

1 T2 T2 1

—/ / e |pa(s)| 22(x, 1, s, t)dsdx + / l2(s)] ds/ Yida
T1 0

/ / / - |:U/2 (xap787t)d8dpdx

Since —e™* is an increasing function, we have —e™® < —e™™ for all s € [r,72]. Finally, setting n; =

e~ ™ and recalling (2.3), we obtain (3.32). O
Now, we define the Lyapunov functional L(t) by

(3.33) L(t):=NE(t)+ éll () + Nio (t) + Is (£) + No L (£),

where N1, No and N are positive constants.

Lemma 3.8. Let (p,1),2) be the solution of (2.1)—(2.2). Then, there exists two positive constants 1 and

B2 such that the Lyapunov functional L(t) satisfies
(3.34) BE(t) <L(t)<BE(),  Vt>0,

and

(3.35) L'(t) < —ME () + (M)/ ba (0 + ), d
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Proof. Let
1
L (t) =NFE (t) + gIl (t) + N1IQ (t) + Id (f) + N2I4 (t) s
then
P1 ! P2 ! M1 !
L@ -NEW <2 [opldr 2 [(pulde+ 5 [ vt
8 Jo 8 Jo 16 J,
1 1 [t
+ N1P2/ [Ye)| do + N1P1/ lrw| dx + N17/ P2da
0 0 0
1 1

+ P2/ [Vt (pe + )| dx + P2/ [aipr| da

+ N2/ / / % |u2 (s)] 2 (x, p, 5, 1) dsdpdze.
Exploiting Young’s, Poincaré and Cauchy—Schwarz inequalities, we obtain

1 1 T2
Lo-NE@l e [ (avtaets ot [ [ sl @ns0dd) d
0 0 T1
1 ~
+ [ Fw)ds
0
<CE(t),
Now, combining (3.3), (3.9), (3.17), (3.23) and (3.32), we get
By differentiating L (t), exploiting (3.3), (3.9), (3.17), (3.23), (3.28), (3.32) and setting e3 = IGLJIV’ we get
1
dL (t 2pi€ b
%:_ (le—N1(4N1+p2)—N2u1— (p2+‘;€1> —( p]i L +ﬂ +p2)/ Pida

b c b 1 b b W oy
—( =M -= — d
( 1 ( +4b2+ 2+451+45§+€1) Olbmx

- (g —& (k e1+ b12>> /Ol(s@z-l-w)de

1 1 T2
N [ [ sl 9] 5. ) dsdpds

0 0 T1
U
_ <Nzﬁ — 4ANZpy — 3—; - — - 4€1> / / |2 (s)] 2%(x, 1, 5, t)dsdx
1
~ k b
~ [ e — (N 1) / f<w>dx,+(”2”1) / b (9u + ), d
0 0

First, we choose €1 small enough such that

k 1
g — &1 <k251 + b2> > 0.

After, we take Ny large so that

b Co b2 1 b2 ,U,1b b2
*Nl_g( +— +82+ 4€?+61>0.

2 2 4h? 4eq
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Then, we select Ny large to satisfies

b
N25—4N12M1—&—&—

— > 0.
32 ko 4de ”

By finally choose N large enough (even larger so that 1.1 remains valid) such that

2
1 I 2p1e1 | bp2
Nmq, — Ny | — — Nopg — ) (=4 = >0,
my 1(482+p2) a1 <p2+k) ( - +2€1)+p2

we obtain (3.35). The proof is complete. O
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