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ABSTRACT. In this paper, we introduce a new contraction via C'p-simulation function and prove the existence
and the uniqueness of our mapping defined on a metric-like space. Our work generalizes and extends some
theorems in the literature. An example and application of second type of Fredholm integral equation are

given.

1. INTRODUCTION

Many problems in mathematics and other sciences such as physics, chemistry, computer science and
engineering resolved by using fixed point theory. The Banach contraction mapping principle [1] is one of
the essential results in fixed point theory. Thus, a huge number of mathematical researchers generalized and
extended it in a lot of spaces that appeared after 1922. One of the most spaces introduced in this decade is
metric-like space that was presented by Amini-Harandi [11] in 2012. After that, a lot of researchers proved
(common) fixed point results by using different types of contractive conditions in the setting of metric-like

spaces, for example see( [2], [3], [6]- [10]).

Definition 1.1. [11] Let x is a nonempty set. A function o : x X x — [0,00) is said to be a metric like

space (or dislocated metric) on x if for any a,v, & € x, the following conditions hold:
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The pair (x, o) is called a metric-like space.

Let (x, o) be a metric-like space. A sequence {a,} in ¥, if and only if

nll—{gc; olan,a) =o(a,a)

A sequence {ay,} is called o-Cauchy if the limit lim,, 00 0 (@, ouy,) exists and is finite. The metric-like

space (x, o) is called complete if for each o-Cauchy sequence {«,,}, there is some « € x such that

nll}ngo oy, a) =0c(a,a) = n)}yllrgooo(amam).

Lemma 1.1. [12] Let (x,0) be a metric-like space. Let {a,} be a sequence in x such that o, — u where

a € x and o(a,a) = 0. Then, for all £ € x, we have lim, o 0(an, &) = o(a, §).

Definition 1.2. [2/] Let x be a nonempty set. A function B : x x x = [0,00) is a partial metric if for all

o, &, w € x, the following conditions are satisfied:

(1) a=¢ < B, a) =B(a,§) = B(&,§),
(2) B(e, @) < B(a, ),

(3) B(e, &) = B(E, €),

(4) B(e,§) < Bla, w) +B(w, ) = B(w, w).

In this case, the pair (x,B) is called a partial metric space.
It is known that each partial metric is a metric-like, but the converse is not true in general.
Example 1.1. Let x ={0,1} and o : x x x — [0,00) defined by
0(0,0) =2, o(u,v) =1 if (a, &) # (0,0)
Then, pair (x,o) is a metric-like space. Note that o is not a partial metric on x because (0,0) £ o(1,0).

Remark 1.1. Let x = {0,1}, and o(a,&) = 1 for each o, € x and o, =1 for each n € N. Then it is
easy to see that a,, — 0 and o, — 1 and so in metric-like spaces the limit of a convergent sequence is not

necessarily unique.

Definition 1.3. [27] A function ¢ : [0,00) X [0,00) — R is called an extended simulation function if ¢

satisfies the following conditions:

(¢1) ¢, &) < a—¢& for all a,& > 0,
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(C2) if {an} and {&,} are sequences in (0,00) such that lim, . o, = limy, oo &, = £ € (0,00) > 0, and

an > 1, n €N, then

lim sup ¢(an,&,) < 0.
n—oQ

(C2)let {an} be a sequences in (0,00) such that

lim a, =¢€[0,00) >0, ((an,l) >0, neN,

n—oo

then | =0.

Many researchers have used the above notation to prove some fixed and common fixed point results, see
for example ( [13], [23]).

In 2014, Ansari [26] introduced the concept of C-class functions as follows:

Definition 1.4. [26] A mapping F : [0,00)? — R is called a C-class function if for any o, & € [0,00), the
following conditions hold:

(i) Fa,§) < o,

(i) F(a, &) = a implies that either o =0 or £ = 0.

As examples of C-class functions, we state:
(1) Fla,§) = a—¢ for all a,ax € [0, 00);
(2) F(a,§) =la for all a,& € [0,00) where 0<i<1;

Definition 1.5. [5] A mapping F : Rt x R* — R has the property Cr, if there exists Cr > 0 such that

(Fi) F(a,§) > Cr = a > ¢,
(Fii) F(§,6) < Cr for all § € [0, 00).

The following example of C'-class functions that have property Cg
(1) Fi(o,&) = %5, Cr=1,2.
(2) F2<aa£) = _67 C’F =rre [0,00)

Liu [5] linked between a C-class function and Cp-simulation function and presented it as the following:

Definition 1.6. [5] A mapping ¢ : RT x RT — R is Cr-simulation function if satisfying the following

conditions:

(Gi) €(0,0) =0
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(i) C(a, &) < F(, &), where o, & > 0, with property Cp
(Cizi) if {an},{&n} are sequences in (0,00) such that

lim o, = lim &, >0,
n—oo n—oo

and oy, < &,, then

limsup ((cn, &n) < Cr,

n— oo

Example 1.2. [5] Let ¢ : RT x RT — R be a function defined by ((a, &) = mF(a,§), where a, & € [0,00)
and m € R be such that m < 1 and for each a,§ € [0,00). Considering Cr = 1, is a Cp-simulation function.

Choosing F(a,§) = e, we get Cla, &) = 1% s also a Cp-simulation function with Cp = 1.

Chanda et. al. [25] brought the concept of Cr-extended simulation function as the following:

Definition 1.7. [25] A mapping ¢ : RT x RT — R an extended Cp-simulation function if satisfying the
following conditions:

(¢1) ¢, &) < F(a, &), where a,& > 0, with property Cp

(C2) if {an}, {&n} are sequences in (0,00) such that

lim a, = lim &, =1,
n—oo n—oo

where | € (0,00) and &, > for alln € N, then

lim sup ¢ (v, &n) < Cr,

n—o0

(Cs) if {an} be a sequence (0,00), such that

lim a, =1€0,00), {(an,l)>Cp=1=0.

n— oo
Example 1.3. [25] Let ( : RT x Rt — R be a function defined by {(a,§) = 3o — &, where o, € € [0,00).
Considering F(o, &) = a — & with Cp = 1, for all o, € € [0,00), we assured that (1 )is proved.

Now if {an, }, {&n} are sequences in (0,00) such that

lim a,, = lim &, =101>0
n—oo n—oo

and &, > 1 for all n € N, we obtain

lim sup C(an, gn) = lim Sup[§an - fn}
_
4
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Thus ((a, &) = %oz — & meets (C3). Now, we check for (C3).

We choose a sequence {&,} in (0,00) with

lim o, =1>0

n—oo

for each n € N such that

Clap,l) > Crp=1
= zlfanzl

3

o, < -1-1
o=

Letting n — oo, we have

3

I < -1-1
- 4

which is a contradiction to 1 > 0. Hence {(«,§) = %a — & satisfies all conditions od Definition 1.3 and so is

an extended Cg-simulation function.

A functional ¢ : [0,00) — [0,00) is lower semicontinuous at a point og € x if

(1) lao) < liminfa_,a, pla),
(2) pla) =0 & a =0,

Lemma 1.2. Let (x,0) be a metric like space and let {w,} be a sequence in x such that
limy,, 00 0(Qtpn, @pt1) = 0. If limy, py—voo 0(Qp, ) # 0, then there exist € > 0 and two sequences {n;} and
{mu} of positive integers with ny > my > | such that following three sequences o(qan,, Q2m,), 0(dan,—1, @2m, ),

and o(Qan,, A2m,+1) converge to €T when | — oo.

In this article, motivated by the idea of an extended C'p-simulation function due to Chanda et al 1.3, we prove
the existence and the uniqueness of a common fixed point for two mappings satisfying a contraction which
involve a lower semicontinuous function is established. An example and application are given to support the

obtained work.

2. MAIN RESULT

Theorem 2.1. Assume that p,q: x — x are two self-maps on a complete metric-like space (x, o). Suppose

that there exist an extended C'r—simulation function ¢ € I and ¢ € A such that

(2.1) (o(pa, ¢§) + p(pa) + ¢(¢€), m(a,§)) > Cr
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for all a,, & € x, where

m(e,§) = max{o(e,§) + (@) + (&), (e, pa) + (a) + ¢(pa), o (£, ¢€) + (&) + #(g8),

(2.2) (@, g€) + p(@) + ¢(4€) Z o(pa,§) + ¢pa) +9(8)

Then, (p,q) has a common fized point z € x such that o(z,z) =0 and ¢(z) = 0.
Proof. Let ag € x, and define a sequence {«,} by

Q2p41 = Plon
and

Q2p42 = qQ2p41

for all n > 0. If ag,, = agpy1 for some n, then the proof is done. Therefore, if as, # 9,41 and

o(aan, aant1) = 0, then by (o1), which is a discrepancy. Applying (2.1), we obtain

Cr < ((o(pazn, qaons1) + ¢(pazn) + qp(azni1), m(agn, dont1))

(2.3) = ((o(a2nt1, @2nt2) + @(aznt1) + P(Q2nt2), m(a2n, Q2n41))-
By applying ({2) in (2.3), we obtain
Cr < F(m(agn, nt1),0(Qan41, 02nt2) + @(ont1) + @(Q2ni2)),

which implies

(2.4) o(aon+1, @ont2) + @(aont1) + @(aznt2) < m(aon, dont1)
where
m(aan, dony1) = max{o(Qzn, ®2nt1) + @(a2n) + ©(Q2n11), 0(Q2n, Pa2n) + ©(a2n) + ©(pazn), o(2n i1, ¢02n11)

1
+e(aznt1) + p(gaznt1), Z(U(am qa2n+1) + p(Q2n) + ©(qaznt1) + 0(pazn, a2nt1) + P(pazn)

+o(a2nt1))}

= max{o(azn, ®2nt1) + @(a2n) + p(Q2n+1), 0(A2n, Cont1) + @(az2n) + ©(@2nt1), 0(Q2n41, C2ny2)
+o(aznt1) + p(aznt2), o0(Q2nt1, @2nt2) + @(uaznt1) + (azny2), i(o(am azn+2) + p(a2n)
+o(aant2) + o(Q2nt1, Qant1) + @(aznr1) + @(a2nt1))}

IA

max{o(Qzn, ®2nt1) + ©(a2n) + ©(Q2n11), 0(Q2n11, @2nt2) + @(a2n11) + ©(2n12),

1
Z(U(QQny aznt1) + p(azn) + @(aznt1) + o(Qent1, @ant2) + @(aznt1) + p(aznt2))}

(2.5) = max{o(azn, ant1) + p(azn) + p(a2nt1), 0(Q2nt1, @2nt2) + @(a2n41) + @(Q2n42)}
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Thus, from (2.4), we get

o(ont1, @ont2) + @(Qont1) + ©(aan42)

(2.6) < max{o(azn, ®2n1) + @(a2n) + ©(Q2n11), (211, A2nt2) + P(Q2ni1) + @(a2n12)}

By a similar process, one can also get the following

o(a2n, 2ny1) + plazn) + @(a2ni1)
(2.7) < max{o(azn—1,a2,) + @(a2n-1) + p(a2n), 0(a2n, @2ni1) + ©(a2,) + ©(Q2n41)}-
Therefore, from (2.6) and (2.7),

(2.8)

o(an; ant1) + o(an) + @(ani1) < max{o(an—1,an) + @(an-1) + ¢lan), o(an, ani1) + @lan) + @lani)},

for all n € N.
Necessarily, we obtain
(2.9)

max{o(an-1,an) + P(an-1) + @(an), o(an, ant1) + o(an) + o(ant1)} = ol(an—1,an) + o(an—1) + v(an),

for all n € N.

Consequently, for all n € N, we have
o(an, ant1) + plan) + plant1) < o(an—1,an) + @(an—1) + ()

Therefore, we find that {o(an, @nt1) + +@(an) + @(ant1)} is a decreasing sequence. So, there exists { > 0

such that

lim (o (an; ant1) + @lan) + @(ant1)) = 1.

n—oo

Assume that [ > 0. Then, we deal with {a,} and {&,} with same limit where
an = o(pay, pant1) >0

and
an = o(qan, qan11) >0

for all n € N and «,, > [ for all n € N. Lastly we get from condition ({3),

Cr < C(U(O‘na O‘n-f—l) + Sﬁ(an) + ‘P(O‘n+1)70(0‘n—1a an) + W(O‘n—l) + gD(Ozn) <CFf

which is a contradiction. Then, we conclude that [ = 0 and

lim (o (an, @nt1) + @lan) + @(ant)) =0,

n— oo
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which implies

(2.10) ILm o(ap, ny1) =0,
and
(2.11) nl;rrgo (o) = 0.

Now, we will prove that {a,,} is Cauchy sequence. After that, we will prove

nILH;O o(am, o) = 0.

Assume that

lim o(ap, am) # 0.
n—oo

By contradiction.Thus, that is [ = 0. There exists € > 0 and two sequences {a,, } and {am,} of {a,} with

ny > my > [ such that for every y with the (smallest number satisfying the condition below)

(2.12) o(an,,0m,) > €.
and
(2.13) o(Cn,—1,0m, 1) < €.

By using (2.12) and (2.13) and the triangular inequality, we get

€< U(anyvamy) > G(O‘nya amy—l) + U(a77Ly_1’ amy) < a(amy—l’ amy) te

By (77)

(2.14) yl;r{:o o(an,, m,) = ylggo o(Qn,—1,Um, 1) = €.

We also have

(2.15) o(an,, Qm,—1) = 0(Qn,,0n,—1) = 0(Um,, m, 1) < 0(Qn,—1,m,),
and

(2.16) o(an,—1,0m,) <o(an,—1,0n,) +0(an,,am,).

Letting y — oo in (2.15) and (2.16) and by using (2.10) and (2.14), we obtain
(2.17) ylggo o(Qn,—1,¥m,) = €.

Again, using the triangular inequality, we have

(2.18) | o(otn, —1,®m,) = 0(n,—1,0m, 1) | 0(Qm,—1,0m,).
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Letting y — oo in (2.18)and by using (2.17), we get

(219) yli)nolo o'(any—lvamy—l) = €.

From (2.34), we have

m(an, —1,0m, 1) = max{o(an,-1,0m,-1) + ¢(an, 1) + @(am,-1),0(n,—1,pan, 1) + ¢(Qm, 1)
+o(gom, 1), i(a(anrl, qom, 1) + @(an, 1) + ¢(qom, 1) + o(pan, -1, atm, 1)
+p(pan,—1) + ¢(am,-1))}

= max{o(an,—1,am,—1) + @(an,—1) + p(m,-1), 0(n, -1, an,) + @(an-1) + p(an),
U(amy—lvamy)+<P(Oémy—1)+<P(Oémy)7i(g(any—hamy)+30(04ny—1)+¢(04my)+

(2.20) o(any,, am,-1) + @(an,) +@(am,-1))}-

Letting y — oo in (2.20)and by (2.10),(2.11),(2.14),(2.17) and (2.19), it follows that
(2.21) ylirxgo o(an,,m,) = ylggo m(Qn, 1, Qm, 1) = €.
Applying (theta2), we get

Cr < C(U(any7amy) + @(an) + @(am)am(any—lvamy—l)) <Cp

which is a contradiction. Hence «, is a Cauchy sequence and hence lim, ., a,, = k € x exists because y is

complete. Since ¢ is lower semicontinuous,
(k) <liminfp(a,) < lim o),
which implies

(2.22) o(k) = 0.

We claim that & is a common fixed point of p and ¢. Put @ = o, and € = k in (2.33) for all n, and we obtain

(2.23) C(o(pan, gk) + p(pan) + @(gk), m(an, k)) > Cr

4
Q
2
=
I

max{o(an, k) + p(an) + @(k), o (an, pun) + p(an) + p(pan), o (k, gk) + p(k) + ¢(qk),
i(a(am gk) + o(an) + (k) + o(pan, k) + o(pan) + ¢(k))}
= max{o(an, k) + @(an) + p(k), o(n, unt1) + p(an) + @lani1), o(k, gk) + (k) + (qk),

10, aK) + plan) + 9(ah) + oans1, ) + plansr) + p(k)}:
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Let n — oo in (2.23) and using (2.22), we have

Cr < ((o(k,qk) + @(gk),o(k, qk) + ©(qk))

(2.24) < F(o(k,qk) + ¢(qk),o(k, gk) + ¢(qk))
=
(2.25) o(k,qk) + p(qk) < o(k,qk) + p(gk)

which is absurd. Hence o(k, ¢k) + ¢(¢k) = 0, and hence

(2.26) k = ¢k and ¢(qk) = 0.
Similarly, when we take a = a, and £ = k in (2.33) for all n we get
(2.27) k = pk and o(pk) = 0.

Equations (2.26) and (2.27) show that k is a common fixed point of p and ¢. To prove the uniqueness of
the common fixed point, we suppose that h is another fixed point of p and q. We argue by contradiction.

Assume that there exists h # k(so o(h,k) > 0.) such that

(2'28) C(U(ph, qk) + L:0(17h) + Lp(qk), m(h’ k)) > Cp,

where

m(h, k) = max{o(h, k) +@(h) + @(k),o(h, ph) + ¢(h) + ¢(ph), o (k, ¢k) + (k) + ¢(qk),

a(h, gk) + ¢(h) + (k) + o(ph, k) + ©(ph) + ¢(k) )
4

(2.29) = o(h,qk).
Hence from (2.30), we obtain
Cr < ((o(hk),o(h,k))
< F(o(h,k),o(h,k))
(2.30) < CF,

which is absurd and hence h = k. |
We will use the same manner in 2.1 to obtain the following result.

Theorem 2.2. Assume that p,q : x — x are two self-maps on a complete partial metric space (x, o). Suppose

that there ezists a extended Cp—simulation function ¢ € $* and ¢ € A such that

(2.31) (o (pa, ¢§) + p(pa) + ¢(¢€), m(a,§)) > Cr
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for all u,v € x, where

m(a,€) = max{dp.(a, &) + p(a) + p(v), dpar(a, pa) + (@) + @(pa), dpar (€, ¢€) + p(€) + p(g€),
(2.32) dpar (@, 4€) + ¢(@) + ¢(q€) ;r dpar (pa, §) + ©(pa) + ¢ (§) Y

Then, (p,q) has a common fixed point z € x such that o(z,z) =0 and ¢(z) = 0.
If we put ¢ = p in 2.1, we have the following Corollary

Corollary 2.1. Assume that p : x — x be self-map on a complete metric-like space (x,0). Suppose that

there exists a extended Cp—simulation function ( € I* and p € A such that

(2.33) C(a(pa, p€) + p(pa) + ¢(P€), m(a, §)) > Cr

for all a, & € x, where

m(a,§) = max{o(a,§) +¢(a) +¢(§), o(a, pa) + (a) + ¢(pa), o (€, ps) + (&) + ¢(pf),

(2.34) o (o, p§) + ¢(a) + p(p€) 1— a(pa, &) + o(pa) + p(€) Y

Then, p has a unique fized point z € x such that o(z,z) =0 and ¢(z) = 0.

Corollary 2.2. Assume that p,q: x — x are two self-maps on a complete metric-like space (x, o). Suppose

that there ezists a extended Cr—simulation function ¢ € * and ¢ € A such that

(2.35) C(o(pa, g§) + p(pa) + ¢(g§), o, &) + w(a) + ¢(§)) > Cr for all a,§ € x.

Then, (p,q) has a unique common fized point z € x such that o(z,z) =0 and ¢(z) = 0.

Corollary 2.3. Assume that p : x — x be self-map on a complete metric-like space (x,c). Suppose that

there exists a extended Cp—simulation function ¢ € S* and ¢ € A such that

(2.36) Clo(pa,pé) + o(pa) + 9(p€), o(a, &) + p(a) + ¢(§)) > Cr for all a,§ € x.

Then, p has a unique fized point z € x such that o(z,z) =0 and ¢(z) = 0.
If we take ¢(t) = 0 in 2.1 and 2.2, we obtain the following two corollaries.

Corollary 2.4. Assume that p,q: x — x are two self-maps on a complete metric-like space (x, o). Suppose

that there ezists a extended Cp—simulation function ¢ € $* and ¢ € A such that

(237) C(O—(pa7q£)am(aa§)) Z C’F

for all a, & € x, where

(2.38) m(a, &) = max{o(a,&),0(a,pa),c (&, q¢f), o(a,qf) ZU(Pa,f)}'
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Then, (p,q) has a unique common fized point z € x such that o(z,z) = 0.

Corollary 2.5. Assume that p : x — x be self-map on a complete metric-like space (x,0). Suppose that

there exists a extended Cp—simulation function ( € S* and p € A such that

(239) C(O—(pav qf), m(aa 5)) Z CF

for all a, & € x, where

(2.40) m(e, &) = max{o(a,§),0(a,pa),o(, q), o(a, g€) Za(Pa,S) .

Then, p has a unique fized point z € x such that o(z,z) = 0.

Example 2.1. Let x = [0, 1] be equipped with the metric-like mapping o(a, &) = a? + &2 for all o, € € x. Let
p,q:x — X be defined by

o7 U0E [0,1],
pa = )

a2,  otherwise.

and
3 .

o Y0E€ [0, 1],
qo = .

o®,  otherwise.

We also consider ((s,t) = s —t for all s,t >0, Cp =0 and @(t) =t for all a € x. Note that (x,0) is a
complete metric-like space.

Without loss of generality we assume that o, € € x,

012 53 a2 63
opa;af) +olpe) +9la) = o(Cm7 =g + (=) + el 7)

Oé2 9 53 5 042 Oé2
= ENHE ST o)
< 2@+ E)+ 3+
< %(a2+£3)+a+£)
= 2008 +pla) + 9(6)
<

gm(a, ).
It follows that

C(o(pa, g§) + ¢(pa) + ¢(g§), m(e, §)) = %m(m §) = lo(pa, ¢€) + w(pa) + ¢(g€)] > 0.

Then Theorem 2.1 is applicable to (p,q) and ¢ on (x, o). Moreover, a = 0 is a common fized point of (p,q).
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3. APPLICATION

In this part, we will apply Corollary 2.3 to study the existence and uniqueness of solutions of second type

of Fredholm integral equation:

a(¥) = ’ (9, k)w(k, 0(k))dk
o h

J
a(¥) = / (9, k)w(k, T(K))dkK.
0
for all (9, k) € [0, 7)2.
Let T = C([0, ], R) is the set of real continuous functions on [0, j] for y > 0, defined by
o(, &) =[ @ = & |loo=sup |a(t) — £(t)]
tey

for all a,& € T. Then (T, 0) is a complete metric-like space. We consider the operators

pa(d) = /Oj (9, k)w(k, 0(k))dk

) = [ (9, Ry (. (),

Theorem 3.1. Assume that Equation (3.1) with the following azioms:
(1) 7 :[0,7] x [0,] — [0,00) is a continuous function,

(2

(3) supy nefo,y Jo 7(¥, K)dr <1,

(4) for every § € (0,1) such that for all (9,k) € [0,7)* and 0,7 € R,

)
) @ :[0,5] Xx R = R where w(k,.) is monotone nondecreasing mapping for all k € [0, ],
)
)

| @(k,0(r)) —@(k,7(k)) |< 0 || alt) — &) I,
Then, the system (3.1)has a unique solution.
Proof. For a,€ € T and from (3) and (4), for all ¥ and &, we have

(3.2) o(pa(¥),¢€(¥)) = |pa(d) — g&(V) |
- \/ W, k)@ (k, 0 ))dn—/ 20, R)w (5, 7(5))d |

IN

/O m(0, k) | w(r, 0(r)) — w(k,7(x)) || dr

IN

[ 7009511 a(0) - €0) I as
7(9,1)6 || a(9) — £(9) |1
50(a,€)

(3.3) < Sm(a8).

IN

IN
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Let (¢1) and (o, &) = 0a — & for all o, ¢ € [0,00),Cy = 0. Now

(34) o(pa(¥), ¢§(9)) < dm(e,§).
Then, from (3.2), we obtain
C(o(pa, g§), m(, €)) > Cf.

Applying Corollary (3.1), we obtain that (p,g) has a unique common fixed point in C([0,1]), say «. Hence,

x is a solution of (3.1). O
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