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Abstract. In this paper, a linear stability analysis is studied for Rayliegh-Benard problem with the effect

of magnetic field, a perturbation equations is solved numerically by using spectral Chebyshev tau method,

the boundaries are considered both are free, both are rigid, the lower is free and the upper is rigid, the

results were illustrated graphically and compared with previous studies.

1. Introduction

The aim of this work is to solve the perturbation equations that represent Rayleigh-Benard problem under

the effect of magnetic field ( [1], Page (160, 161)) as follows

(1.1)
∂u

∂t
= −∇

(
δp

ρ0
+ µ

H � h
4πρ0

)
+ gαθk + v∇2u +

µ

4πρ0
(H �∇) h,

(1.2)
∂h

∂t
= (H �∇) u + η∇2h,
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(1.3) ∇ � h = 0,

(1.4)
∂θ

∂t
= βw + κ∇2θ,

(1.5) ∇ � u = 0,

where, u, δp, θ and h are the perturbation in the velocity, pressure, temperature and magnetic field respec-

tively, ρ0 is the density at mean temperature T0, v is the kinematic viscosity, κ is the thermal diffusivity, α the

coefficient of volume expansion, µ is the magnetic permeability, η is the resistivity and β is the temperature

gradient defined as

(1.6) β =
T0 − Td

d
,

The problem is studied analytically by various authors ( [1]- [4], [12]- [14]). Also many numerical methods

were used, one of these method is Galerkin method which discussed in [14]. In this paper we used the

numerical method namely Spectral Chebyshev tau method to determine the conditions of instability for

various cases of the boundary conditions. The paper outlined as follows.

In section 1 we formulate the governing mathematical perturbation equations. In section 2 a linear stability

analysis for the perturbation equations. In section 3 we describe the method of solution Spectral Chebyshev

Tau method for the three cases of the boundary conditions. Finally, we present our numerical results in

which are computed using MATLAB.

2. Linear Stability analysis

By taking the curl operator of equation (1.1), we get

(2.1)
∂ω

∂t
= gα

(
∂θ

∂y
i− ∂θ

∂x
j

)
+ v∇2ω +

µ

4πρ0
(H �∇) v,

where ω = ∇× u is the vorticity vector and v = ∇× h is the current density induced by the perturbation.

Taking the curl operator of (2.1) again, we get

(2.2)
∂∇2u

∂t
= −gα

(
∂2θ

∂z∂x
i+

∂2θ

∂z∂y
j −

(
∂2θ

∂x2
+
∂2θ

∂y2

)
k

)
+ v∇4u +

µ

4πρ0
(H �∇)∇2h.

Take the curl of equation (1.2), we get

(2.3)
∂v

∂t
= (H �∇)ω + η∇2v.
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Now by equating the z-component of equation (1.2), (2.1), (2.2) and (2.3) respectively, we get

(2.4)
∂hz
∂t

= η∇2hz + (H �∇)w,

(2.5)
∂ζ

∂t
= v∇2ζ +

µ

4πρ0
(H �∇) ξ,

(2.6)
∂∇2w

∂t
= gα

(
∂2θ

∂x2
+
∂2θ

∂y2

)
+ v∇4w +

µ

4πρ0
(H �∇)hz,

(2.7)
∂ξ

∂t
= η∇2ξ + (H �∇) ζ,

where w, ζ and ξ and hz are the z-components of the velocity, the vorticity, the current density and the

magnetic field respectively. When the direction of the magnetic field coincides with the vertical direction

H = (0, 0, H), the required perturbation equations become

(2.8)
∂

∂t
∇2w = gα

(
∂2θ

∂x2
+
∂2θ

∂y2

)
+ v∇4w +

µH

4πρ0

∂

∂z
∇2hz,

(2.9)
∂hz
∂t

= η∇2hz +H
∂w

∂z
,

(2.10)
∂ξ

∂t
= η∇2ξ +H

∂ζ

∂z
,

(2.11)
∂ζ

∂t
= v∇2ζ +

µH

4πρ0

∂ξ

∂z
.

In addition to equation (1.4).

The boundary conditions of θ, w and ζ for the three cases free-free, rigid-rigid and rigid-free are

(2.12)


θ = 0, w = 0 at z = 0 and z = d,

dζ
dz = 0, d

2w
dz2 = 0 at free boundary,

ζ = 0, dwdz = 0 at rigid boundary.
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3. Normal Mode Analysis

Let w, θ, ζ, hz and ξ be defined as

(3.1)



zθ

ζ

w

ξ

hz


=



Θ(z)

Z(z)

W (z)

X(z)

K(z)


exp (i(kxx+ kyy) + γt),

where k =
√
k2x + k2y is the wave number and γ is a constant. Substitute (3.1) into the system (1.4),

(2.8)-(2.11), the system become

(3.2) γΘ = βW + κ

(
d2

dz2
− k2

)
Θ,

(3.3) γK = η

(
d2

dz2
− k2

)
K +H

dW

dz
,

(3.4) γ

(
d2

dz2
− k2

)
W = −gαk2Θ + v

(
d2

dz2
− k2

)2

W +
µH

4πρ0

d

dz

(
d2

dz2
− k2

)
K,

(3.5) γX = η

(
d2

dz2
− k2

)
X +H

dZ

dz
,

(3.6) γZ = v

(
d2

dz2
− k2

)
Z +

µH

4πρ0

dX

dz
.

And the boundary conditions (2.12) become

(3.7)


Θ = 0,W = 0 at z = 0 and z = d,

dZ
dz = 0, d

2W
dz2 = 0 at free boundary,

Z = 0, dWdz = 0 at rigid boundary.

Define the following non-dimensional variables,

(3.8) a = kd, σ =
γd2

v
, z∗ =

z

d
, P1 =

v

κ
, and P2 =

v

η
,

the operators d
dz = 1

d
d
dz∗ and d2

dz2 = 1
d2

d2

dz∗2 , assume D = d
dz∗ , then by substituting (3.8) into the system

(3.2)-(3.6), we get

(3.9)
(
D2 − a2 − P1σ

)
Θ = −

(
βd2

κ

)
W,
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(3.10)
(
D2 − a2 − P2σ

)
K = −

(
Hd

η

)
DW,

(3.11)
(
D2 − a2

) (
D2 − a2 − σ

)
W +

(
µHd

4πρ0v

)
D
(
D2 − a2

)
K =

(
gαd2

v

)
a2Θ,

(3.12)
(
D2 − a2 − P2σ

)
X = −

(
Hd

η

)
DZ,

(3.13)
(
D2 − a2 − σ

)
Z = −

(
µHd

4πρ0v

)
DX,

At the marginal state (σ = 0), then equations (3.9)-(3.13) become

(3.14)
(
D2 − a2

)
Θ = −

(
βd2

κ

)
W,

(3.15)
(
D2 − a2

)
K = −

(
Hd

η

)
DW,

(3.16)
(
D2 − a2

)2
W +

(
µHd

4πρ0v

)
D
(
D2 − a2

)
K =

(
gαd2

v

)
a2Θ

(3.17)
(
D2 − a2

)
X = −

(
Hd

η

)
DZ,

(3.18)
(
D2 − a2

)
Z = −

(
µHd

4πρ0v

)
DX,

and the boundary conditions (3.7) become

(3.19)


Θ = 0, W = 0 at z = 0 and z = 1,

DZ = 0, D2W = 0 at free boundary,

Z = 0, DW = 0 at rigid boundary.

By Taking the operator D for equation (3.15) and substituting in (3.16), we get

(3.20)
(
D2 − a2

)2
W −QD2W =

(
gαd2

v

)
a2Θ,
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where,

(3.21) Q =
µH2d2

4πρ0vη
,

is Chandrasekhar number [1]. Taking the operator (D2− a2) for equation (3.20), and using equation (3.14),

we get

(3.22) (D2 − a2)
[(
D2 − a2

)2 −QD2
]
W = −Ra2W,

where,

(3.23) R =
gαβd4

κv
,

is Rayleigh number.

By Taking the operator (D2 − a2) for equation (3.18) and using (3.17), we get

(3.24)
[(
D2 − a2

)2 −QD2
]
Z = 0,

we must seek the solution of (3.22) and (3.24) subject to the boundary conditions (3.19).

4. Spectral Chebyshev tau Method

Spectral Chebyshev tau method is a numerical method to solve the differential equations and the eigen

values problems, (see [6], [7], [8] and [10]).

To solve equations (3.22) and (3.24) subject to the boundary conditions (3.19), first convert the domain to

Chebyshev polynomials domain [−1, 1], use the relation x = 2z − 1, if z ∈ [0, 1] implies x ∈ [−1, 1] and the

derivative d
dz = 2 d

dx , d2

dz2 = 4 d2

dx2 , then (3.22), (3.24) and (3.19) become

(4.1) (4D2 − a2)
[(

4D2 − a2
)2 − 4QD2

]
W = −Ra2W,

(4.2)
[(

4D2 − a2
)2 − 4QD2

]
Z = 0,

(4.3)


W = 0 at x = −1 and x = 1,

DZ = 0, D2W = 0 at free boundary,

Z = 0, DW = 0 at rigid boundary,

where D = d
dx .

Let S =
[(

4D2 − a2
)2 − 4QD2

]
W then we can write (4.1) - (4.3) as

(4.4)
[(

4D2 − a2
)2 − 4QD2

]
W − S = 0,
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(4.5)
(
4D2 − a2

)
S = −Ra2W,

(4.6)
[(

4D2 − a2
)2 − 4QD2

]
Z = 0,

(4.7)


W = 0, S = 0 at x = −1 and x = 1,

DZ = 0, D2W = 0 at free boundary,

Z = 0, DW = 0 at rigid boundary.

Now, expand W,S and Z as Chebyshev polynomials

W =

N∑
n=0

wnTn(x) =
[
w0 · · · wN

]


T0
...

TN

 = Wφ,(4.8)

S =

N∑
n=0

snTn(x) =
[
s0 · · · sN

]


T0
...

TN

 = Sφ,(4.9)

Z =

N∑
n=0

znTn(x) =
[
z0 · · · zN

]


T0
...

TN

 = Zφ,(4.10)

where W, S and Z are row vectors represent the coefficients of W,S and Z respectively, and φ is the vector

of chebyshev polynomials T0 up to TN . Furthermore we can expand the derivatives DW, D2W and D4W

as chebyshev polynomials as

(4.11) DW =

N∑
n=0

w(1)
n Tn(x) = WDφ,

(4.12) D2W =

N∑
n=0

w(2)
n Tn(x) = WD2φ,

(4.13) D4W =

N∑
n=0

w(4)
n Tn(x) = WD4φ,
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similarly for the derivatives of S and Z

(4.14) D2S =

N∑
n=0

s(2)n Tn(x) = SD2φ,

(4.15) D2Z =

N∑
n=0

z(2)n Tn(x) = ZD2φ,

Where D and D2 are (N + 1)× (N + 1) matrices represent the coefficients of the first and second chebyshev

derivatives, (see [6] and [10] for more details of formulations of D and D2).

D =



0 0 0 0 0 · · · 0

1 0 0 0 0 · · · 0

0 4 0 0 0 · · · 0

3 0 6 0 0 · · · 0

0 8 0 8 0 · · · 0

...
...

...
...

...
. . . 0

N 0 2N 0 2N · · · 0


,(4.16)

D2 =



0 0 0 0 0 0 · · · 0

0 0 0 0 0 0 · · · 0

4 0 0 0 0 0 · · · 0

0 24 0 0 0 0 · · · 0

32 0 48 0 0 0 · · · 0

0 120 0 80 0 0 · · · 0

...
...

...
...

...
...

. . . 0

0 N(N2 − 1) 0 N(N2 − 9) 0 N(N2 − 25) · · · 0



,(4.17)

and D4 = (D)4 = D2D2. By substitute (4.8)–(4.15) into equations (4.4)-(4.6) we get,

(4.18) W
[
16D4 − (8a2 + 4Q)D2 + a4I

]
φ− Sφ = 0,

(4.19) S
[
4D2 − a2I

]
φ = −Ra2Wφ,

(4.20) Z
[
16D4 − (8a2 + 4Q)D2 + a4I

]
φ = 0,



Int. J. Anal. Appl. 19 (3) (2021) 448

where I is the identity matrix of order (N + 1). By taking the inner product with Tn, n = 0, 1, .., N , for each

equation in the system (4.18) – (4.20) and using the property of orthogonality of Chebyshev polynomials,

we obtain 3(N + 1) equations as follows

(4.21)
[
16w(4)

n −
(
8a2 + 4Q

)
w(2)
n + a4wn

]
− sn = 0, n = 0, 1, . . . , N

(4.22) 4s(2)n − a2sn = −Ra2wn, n = 0, 1, . . . , N

(4.23) 16z(4)n − (8a2 + 4Q)z(2)n + a4zn = 0. n = 0, 1, . . . , N

Rewriting these equations in matrices form as

(4.24) W
[
16D4 − (8a2 + 4Q)D2 + a4I

]
− S = 0,

(4.25) S
[
4D2 − a2I

]
= −Ra2W,

(4.26) Z
[
16D4 − (8a2 + 4Q)D2 + a4I

]
= 0,

or,

(4.27) AX = RBX,

where A and B are square matrices of order 3(N + 1) given as

A =


L1 −I 0

0 L2 0

0 0 L1

 ,B =


0 0 0

−a2I 0 0

0 0 0

 , and X =


WT

ST

ZT

(4.28)

where L1 =
[
16D4 − (8a2 + 4Q)D2 + a4I

]T
and L2 =

[
4D2 − a2I

]T
. Now returning to the boundary

conditions (4.7), the p-derivative of Chebyshev polynomials at x = ±1 is given by the formula

(4.29)
dpTn
dxp

∣∣∣∣
x=±1

= (±1)
n+p

p−1∏
k=0

n2 − k2

2k + 1
,

For Free-Free boundaries, We have eight boundary conditions as

W = 0, D2W = 0, S = 0 and DZ = 0 for x = ±1.
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BC1 : W (−1) = 0⇒
N∑
n=0

wnTn(−1) = 0⇒
N∑
n=0

(−1)
n
wn = 0,

BC2 : W (1) = 0⇒
N∑
n=0

wnTn(1) = 0⇒
N∑
n=0

wn = 0,

BC3 : D2W (−1) = 0⇒
N∑
n=0

wnT
′′

n (−1) = 0⇒
N∑
n=0

(−1)
n+2 n

2(n2 − 1)

3
wn = 0,

BC4 : D2W (1) = 0⇒
N∑
n=0

wnT
′′

n (1) = 0⇒
N∑
n=0

n2(n2 − 1)

3
wn = 0,

BC5 : S(−1) = 0⇒
N∑
n=0

snTn(−1) = 0⇒
N∑
n=0

(−1)
n
sn = 0,

BC6 : S(1) = 0⇒
N∑
n=0

snTn(1) = 0⇒
N∑
n=0

sn = 0,

BC7 : DZ(−1) = 0⇒
N∑
n=0

znT
′

n(−1) = 0⇒
N∑
n=0

(−1)
n+1

n2zn = 0,

BC8 : DZ(1) = 0⇒
N∑
n=0

znT
′

n(1) = 0⇒
N∑
n=0

n2zn = 0,

similarly, for rigid-rigid boundaries,

W = 0, DW = 0, S = 0 and Z = 0 for x = ±1.

and for rigid-free boundaries,

W = 0, DW = 0, S = 0 and Z = 0 for x = −1 rigid.

W = 0, D2W = 0, S = 0 and DZ = 0 for x = 1 free.

For each case of the boundary conditions, insert BC1 up to BC4 into the rows (N − 2)th up to (N + 1)th of

the first column in the matrix A in (4.27), BC5 and BC6 into the rows (2N + 1)th and (2N + 2)th of the

second column in A, BC7 and BC8 into the rows (3N + 2)th and (3N + 3)th of the third column in A. The
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corresponding rows in the matrix B are zeros, then we can write the system (4.27) as follows

L1 −I 0

BC1 0 . . . 0 0 . . . 0

BC2 0 . . . 0 0 . . . 0

BC3 0 . . . 0 0 . . . 0

BC4 0 . . . 0 0 . . . 0

0 L2 0

0 . . . 0 BC5 0 . . . 0

0 . . . 0 BC6 0 . . . 0

0 0 L1

0 . . . 0 0 . . . 0 BC7

0 . . . 0 0 . . . 0 BC8





w0

...

wn

s0
...

sn

z0
...

zn



= R



0 0 0

0 . . . 0 0 . . . 0 0 . . . 0

0 . . . 0 0 . . . 0 0 . . . 0

0 . . . 0 0 . . . 0 0 . . . 0

0 . . . 0 0 . . . 0 0 . . . 0

−a2I 0 0

0 . . . 0 0 . . . 0 0 . . . 0

0 . . . 0 0 . . . 0 0 . . . 0

0 0 0

0 . . . 0 0 . . . 0 0 . . . 0

0 . . . 0 0 . . . 0 0 . . . 0





w0

...

wn

s0
...

sn

z0
...

zn



(4.30)

where, L1,L2,0 and I are the sub matrices of L1,L2,0 and I respectively. Now we have generalized eigen

value (4.30), we can find the minimum eigen values R(a), then the critical Rayleigh number values Rc and the

corresponding wave number ac for various values of Q using MATLAB software, the results are illustrated

in the next section.

5. Results and Conclusion

• Spectral Chebyshev Tau method give results in full agreement with the results that obtained by the

analytical solution given by Chandrasekhar [1].

• For the three cases of the boundaries free-free, rigid-rigid and rigid-free the critical Rayleigh number

determine the stability. if R < Rc the motion is stable and no convection, when R = Rc it is

stationary convection, and unstable motion when R > Rc.

• It is also observed the effect of the magnetic field, as Q increases, the value of the critical Rayleigh

number and the critical wave number also increases.
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Q
Chandrasekhar [1] Present study

ac Rc ac Rc

0 2.233 657.511 2.22 657.51

10 2.590 923.070 2.59 923.07

50 3.270 1762.04 3.27 1762.04

100 3.702 2653.71 3.7 2653.71

200 4.210 4258.49 4.21 4258.49

500 4.998 8578.88 5.00 8578.89

1000 5.684 15207.0 5.68 15207

2000 6.453 27699.9 6.46 27699.79

5000 7.585 63135.9 7.61 63135.48

10000 8.588 119832 8.61 119831.71

20000 9.706 230038 9.72 230038.48

40000 10.95 445507 10.96 445506.86

Table 1. The relation between between Rc and ac when the boundaries are free-free and

Q = 0, 10, 50, . . . , 40000.
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Figure 1. The relation between between Rc and ac when the boundaries are free-free and

Q = 0, 10, 50, . . . , 40000.
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Q
Chandrasekhar [1] Present study

ac Rc ac Rc

0 3.13 1707.8 3.12 1707.77

10 3.25 1945.9 3.27 1945.75

50 3.68 2803.1 3.68 2802.01

100 4.00 3757.4 4.01 3757.23

200 4.45 5488.6 4.45 5488.54

500 5.16 10110 5.16 10109.78

1000 5.80 17103 5.81 17102.85

2000 6.55 30125 6.56 30124.81

4000 7.40 54697 7.39 54700.75

6000 7.94 78391 7.93 78441.25

8000 8.34 101606 8.30 101930.17

10000 8.66 124509 8.52 125856.50

Table 2. The relation between between Rc and ac when the boundaries are rigid-rigid and

Q = 0, 10, 50, . . . , 10000.
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Figure 2. The relation between between Rc and ac when the boundaries are rigid-rigid

and Q = 0, 10, . . . , 10000.
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Q
Chandrasekhar [1] Present study

ac Rc ac Rc

0 2.68 1100.75 2.7 1100.81

2.5 2.75 1167.2 2.71 1167.45

12.5 2.97 1415.5 3.01 1415.81

25 3.17 1699.4 3.21 1699.79

50 3.45 2217.6 3.51 2217.98

125 4.00 3586.1 4.01 3585.85

250 4.50 5613.3 4.51 5612.93

500 5.10 9304.5 5.11 9303.95

1000 5.75 16119 5.71 16118.68

1500 6.20 22592 6.21 22591.30

2000 6.50 28879 6.51 28877.86

2500 6.75 35044 6.81 35043.57

5000 7.65 64847 7.61 64836.70

10000 8.65 122140 8.71 121512.72

Table 3. The relation between between Rc and ac when the boundaries are rigid-free and

Q = 0, 2.5, 12.5, . . . , 10000.
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Figure 3. The relation between between Rc and ac when the boundaries are rigid-free and

Q = 0, 2.5, 12.5. . . , 10000.
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