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ABSTRACT. In this paper, we discuss the existence of a unique solution of Caputo-Liouville type Langevin
equation involving two fractional orders and finitely many nonlinearities, equipped with nonlocal boundary
conditions via Banach contraction mapping principle. The location of the unique solution of the given
problem is also presented. In addition, we discuss the existence of solutions for the problem at hand by
means of Krasnosel’skii’s fixed point theorem. Examples are constructed for the illustration of the obtained

results. The paper concludes with some interesting remarks.

1. INTRODUCTION

Fractional order differential equations received overwhelming attention of many researchers as these equa-
tions extensively appear in the mathematical modeling of several scientific and technical phenomena. Ex-
amples include physics, biology, chemistry, control theory, electrical circuits, wave propagation, blood flow

phenomena, signal and image processing, etc. For further details, see [1]- [5].
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Langevin equation, formulated in terms of integer-order derivatives by Langevin [6] in 1908, is a well-
known equation of mathematical physics, which is used to describe the evolution of physical phenomena,
such as Brownian motion in fluctuating environments.

Langevin equation is also known as a stochastic differential equation as it is related to the fast motion
of microscopic variables of the dynamical systems. However, the failure of classical Langevin equation to
describe the complex systems led to its several generalizations, which successfully modeled the physical
phenomena in disordered regions [7], anomalous diffusion processes in complex and viscoelastic environment
[8,9], etc. Among these generalizations includes the one obtained by replacing the ordinary derivative by
fractional order derivative in it; the resulting form is known as fractional Langevin equation and can take
care of the fractal and memory properties of the phenomena under investigation. Applications of fractional
Langevin equation include motor control system [10], single-file diffusion [11], transformation of the Fokker-
Planck equation into the Wiener process [12], association of Kramers-Fokker-Planck equation with Langevin
equation [13], etc. In order to obtain a more flexible model for fractal processes, Lim et al. [14] introduced a
new form of Langevin equation involving two different fractional orders. For some recent results on fractional
Langevin equation, for instance, see [15]- [24] and references therein.

Modern tools of functional analysis have played a key role in developing the theory (existence and unique-
ness of solutions) for fractional order initial and boundary value problems, for example, see [25]- [30].

In this paper, motivated by the recent development on Langevin equation, we study the following nonlocal

boundary value problem involving Langevin equation with finitely many nonlinearities:

(1.1) cDYDP + p)y(t) = iaifi(t,y(t)), 0<a<l, 1<B<2
i=1
(12) y(O) =0, y(gl) =0, y(l) =w y(SQ)a 0< 51 < 52 <1,

where “D denotes the Caputo-Liouville fractional derivative operator, f; : [0,1] x R — R are continuous
functions, and w € R.

By using Banach contraction mapping principle we prove the existence of a unique solution of boundary
value problem (1.1)-(1.2) and moreover we study the location of the unique solution. An existence result is
also obtained via Krasnosel’skii’s fixed point theorem.

The paper is organized as follows. In Section 2 we recall some basic definitions and properties from
fractional calculus and solve a linear variant of the boundary value problem (1.1)-(1.2). The main results

are presented in Section 3. Examples illustrating the obtained results are also constructed.

2. PRELIMINARIES

Let us recall some basic definitions on fractional calculus.
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Definition 2.1. ( /2, 3]). The Riemann—Liouville fractional integral ISy of order o > 0 for a function
y € L1[a,b], —00 < a < b < +o0, ezisting almost everywhere on [a,b], is defined by

t

19y (1) = ﬁ / (t— 57y (s)ds,

a

where I' denotes the Euler gamma function.

Definition 2.2. [2,3]. Let y,y"™ € Lila,b]. Then the Riemann-Liowville fractional derivative D%y of
order a € (m — 1, m],m € N, existing almost everywhere on [a,b], is defined as

t

dm _ 1 am m—1—a
Jn-a X
=l () = —— (o) dm /(t 5) y (s)ds

a

Dgy (1)
The Caputo fractional derivative DSy of order a € (m — 1,m],m € N is defined as

D3y () = D3 [y (1) ~y(@ v/ (@) =D Ly %

Remark 2.1. [2/]. Ify € AC™]a,b], then the Caputo fractional derivative DSy of order o € (m—1,m],m €
N, ezisting almost everywhere on [a,b], is defined as

“DEY(0) = 170 () = g [ (=977 (s)ds

a

Proposition 2.1. ( [2]) For k >0 and a > 0 withn —1 < a <n, and y € L1]a,b], we have the following

properties:

(i) I3 Iy (t) = 515 y(t) = 15" y(t);

F(n+1)
I'(a+n+1)

(11i) “Dg [Igy (1)) = y(t);

(#0) 15 (t —a)" = (t—a)™™, n> -1

Ty (a) (t—a)

(iv) I3 [°Dey )] =y (8) = Y p » y€C"a,b.

In the sequel, we write /7 and “D? instead of I§ and “Df respectively.

To study the nonlinear problem (1.1)-(1.2), we first solve its linear variant in the following lemma.

Lemma 2.1. For a given p € C([0,1],R), the unique solution of the boundary value problem

(2.1) DD+ pwy(t) =pt)  O0<a<l, 1<pB<2,

(2.2) y(0) =0, y(&1) =0, y(1) = wy(&a),
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is given by
__ 1 t —s)fta-loi)ds — £ t — )57 1y(s)ds
W) = sy L (= oles = s [ (=9 (e
&1 _ g)fta-1 &1 1—s p-1
s [t - [ BTy as]
(2.3) 1 (1 _ o\B+a—1 11 -4)8-1
o0 [ U eteds - [ St
& (g = 5)tr! & (6 =)
—w/o Wp(s)ds—kuw/{) Wy(s)ds},
where
@) )= o (0w — (0 —wea)t?). ) = o (16— ).
and it is assumed that
(25) A = [516(1 B w£2) — 51(1 — wfgﬁ)] 7& 0.

IB+1)
Proof. Applying the Riemann-Liouville integral operator I* to both sides of (2.1) and using Proposition 2.1

(iv), we obtain
(2.6) (“DP + pw)y(t) + co = I*p(t),

where cg € R is an unknown constant. Next, operating I’ on both sides of (2.6), we obtain

t(p_ g)Bta-1 t
o= [ =T s — P JRE e

r'g+a r

. 5+ a) 3 J

- ot — 1 —Cat

ra+p 1
Using the conditions y(0) = 0 and y(&) =0 in (2.7) yields ¢; = 0 and
B
c

(2.8) F(;i Ty et =4,
where

I N G A S
A 7/0 T3+ a) p(s)ds ,u/o y(s)ds.

Now using y(1) = wy(§2) in (2.7), we obtain

(1—wes)
rB+1)

(2.9) co + (1 - w§2)02 =B,

where

YU AN ) N
B*/o TG ta) "1 “/0 O

2 (& —s)tto! 2 (& —s)!
— w/o 7”5 o) p(s)ds + uw/o 71"(@ y(s)ds.
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Solving (2.8) and (2.9) for ¢y and ¢y, we find that

1

1
(2.10) co = Z(USA —&1B), 2= K(UlB —024),
where
516 (1 _W§2)
(2.11) A= 0301 — 510'2, g1 = g2 03 — (1 —w§2).

rB+1) rg+1)’
Inserting ¢; = 0 and the values of ¢ and ¢ from (2.10) into (2.7), together with (2.11), leads to the solution

(2.3). The converse follows by direct computation. This completes the proof. ]

Definition 2.3. A function y € C([0,1],R) is a solution of the boundary value problem (1.1)-(1.2) if and

only if it satisfies the integral equation:

y(t) =/0 (tr_;ij : (izm:azfz 5,y(s ) M/Ot (t_r(sﬂ))ﬁ_ly(S)dS

&1 _85+a—1 m &1 1—86 1
) [ [y (Swstovon)as— | “F(ﬂ))ms)ds]
(2.12) -
L ggpent L= g
+P2(t)l/0 w(;aiﬂ(&y(s)))ds—ﬂ/o W@(S)ds
€2 (&g — s)Pta—1 N €2 (& — 5)P~ 1
*W/O W(;azﬁ(s,y(s)DdSJruW/o T(5) y(S)dS]

3. UNIQUENESS AND LOCATION RESULTS

In the following theorem, we prove the existence of a unique solution for the problem (1.1)-(1.2) by

applying Banach contraction mapping principle.

Theorem 3.1. Let fi(t,y) : [0,1] x R — R,i = 1,...,m be continuous functions satisfying the Lipschitz

condition:
(Al) |f2(t,$)7fz(t7y)| ng\xfy\, vt € [071}’ x,yGR, L’L >07 i:]-??v"'am

Then, the boundary value problem (1.1)-(1.2) has a unique solution on [0, 1] if
(3.1) 0 < 1,

where

0. = (Dim lail Li)
T TB+a+1)

F(B“:—l) [1+ﬁ1f1’8+/72 (1+|w|§§)}7

[+ el >+ (14wl &)
(3.2)

+

and

L= e lp1(t)], p2 = nax lp2(t)].
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Proof. To transform the problem (1.1) and (1.2) into a fixed-point problem, we introduce an operator

N:C([0,1],R) — C([0,1] ,R) as

Ny)(t)
B (t—s ypta-1 bt —s)81
[ S [
&1 (51_S)B+a—1 m (s uls - &1 (51—s)ﬂ 1 s
(3.3) +p1(t)[/0 ECET (;azﬂ( y(s)))d u/o O )d]

+p2(t)l/0 (1_;j+:1(iazfzsy )ds—u/ol(l;(‘;)f_ly@)ds

& (¢, — g)fta—1 , m 2 (& —s)!
_w/o %(2@}2(3,3}(3)))% +uw/0 (gzr(ﬂ))y(t?)dk?]’

where C(]0, 1], R) is the Banach space of all continuous functions from [0, 1] into R equipped with the norm
[yl = supsepo,1) [y(t)| . Observe that the fixed points of the operator A are solutions of the problem (1.1)
and (1.2) by Definition 2.3. Further, it is an immediate consequence of the dominated convergence theorem
that Ny € C([0,1],R) for every y € C([0,1],R). The proof will be complete by means of Banach contraction
mapping principle once it is shown that that the operator N defined by (3.3) is a contraction. For z,y € R

and V¢ € [0, 1], we have

[Nz) = Nyl
_ (t— 5™t "
L e (et~ hteae

bt —s)Pt
- / S )~ vlas

B
&1 _ g)Bta-1 , ™
(8 [ / %(;ai[ms,x(s» - Filsy(s))])ds
R (SR
[ Bl - y(s)]ds]

1] _ g)f+a—1 ,
ot l / %(;aiws,x(s» ~ s, (s))])ds

1] _ g)8-1
L / “F(>[x<s> ~y(s))ds

)
&a — 3 B+a—1 m
o [ (S s — s (o)) s

(6 —5)""
i [ () — (s

(it lail L)
r'+a+1)

IN

[+ mel ™+ (14 w1 I — )



Int. J. Anal. Appl. 19 (3) (2021) 471

||

MYCESY

1+l + i (1+10185) ] Iz — ol
which leads to
[WNz) = (Ny)|| < flz -yl

Evidently, we deduce by (3.1) that N : C([0,1],R) — C([0,1],R) is a contraction. Hence, by Banach
contraction mapping principle, the operator A/ has a unique fixed point, which corresponds to a unique

solution of the boundary value problem (1.1)-(1.2) on [0, 1]. This completes the proof. O

Example 3.1. Consider the following boundary value problem:
Dl D§ ! 3 1
cps(cp3 - — f.

(*D7 + 2 )y > wcfilty(®), te .1

1 2
y(0) =0, y(g) =0, y(1) —y(g).
Herea=1/2,8=3/2,p=1/5,w =1, =1/3,&=2/3,m =3,a1 = 1/2,a2 = 1,a3 = 3/4 and

(3.4)

1 lyl —t 1 -1
t = t =1 2
fl(vy) t2+100|y‘+1+e ) f2(ay) t2+20 an y+ )

ot = = (£ Vainy ¢ L
=— | —5——)sin —.
sWY =\ r YT e

It is easy to find that | f; (t,x) — fi (t,y)| < L; |z —y|,i = 1,2,3, with L1 = 1/10, Ly = 1/20, L3 = 1/15 and
3

Z a;L; = 3/20. Furthermore, we have
i=1

B1—wty)— —weh _
A= &4 %()/Bfll)(l )~ 0.000499, py = max;co,1] |p1(t)| = p1(t)|1=0.830537 ~ 1.437777,

p2 = maxseo1]|p2(t)] = pa(t)|t=1 ~ 1.605694 and 0 = 0.826088 < 1. Clearly all the assumptions of

Theorem 3.1 are satisfied. Therefore the problem (3.4) has a unique solution on [0,1].

In the following result, we present location of the unique solution of the boundary value problem (1.1)-

(1.2).

Theorem 3.2. Let the hypotheses of Theorem 3.1 hold. Then the unique solution y of problem (1.1)-(1.2)

satisfies

Qq
. < —=
(3:5) Il < =5

where )y is given by (3.2) and

(3.6) 0. — () {W [+ mel ™+ m (14wl )] } :
i=1

with M; = sup,¢jo 1] |fi (£,0)].
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Proof. By Theorem 3.1, the solution (2.12) of the boundary value problem (1.1)-(1.2) is unique. In view of

the inequality:
]zam s,(9))| < Zm (Li llyll + M),
where M; = sup,¢(o 17 |fi (t,0)], it follows from (2.12) that

_ S)B+a—1

t (t
1yl <Z|az | (Li [lyll + M:) Sl[lp]{/o TBra) ®

&1 51_5ﬁ+a 1
I'6+ «a)

1 — g)fta-1 52 _ B+a 1
+p2<t>|[/o( s el [ d”

ft—s) S -8
Jrulllylltz%pl]{/0 ) ds+|p1(t)|/0 rig) %

1 — g)8-1 &2 9 — 8 B—1
+ |p2(1)] l/‘) up(ﬁ))dSJr |w] ; (gr(ﬁ))dé’] }

g|@H{(§:Z;1M@u”)[1+4n£f+“4—p2(1+—w465+“)}

+ |p1()]

rg+a+1)

rp+1)

(ZM) {ﬂ++1) [1+P155+a + P2 (1+ |w|f§+a)}}

= [lyll21 + Q.

+“Lﬁ+mé+m(bwwéﬂ}

Solving the above inequality for ||y|| yields

2y
1-Qy°

lyll <

This completes the proof. O
Example 3.2. In relation to Example 3.1, it is found that |y|| < 0, where § ~ 35.008543.

4. AN EXISTENCE RESULT

In this section, we establish an existence result for the boundary value problem (1.1)-(1.2) via Kras-

nosel’skii’s fixed point theorem [31].

Theorem 4.1. Let f; : [0,1] x R — R be continuous functions satisfying the condition (As): |fi(t,y)| <
h(t), Vi=1,2,...,m, (t,y) € [0,1] x R, h € C([0,1],RT). Then the boundary value problem (1.1)-(1.2)

has at least one solution on [0,1], provided that

(4.1) Q= F(ﬁ'ﬁ'l)[l £ el 4 pa1 4 |wlgd)] <1
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Q2l|R]l

Proof. Consider B, = {y € C([0,1],R) : |ly]| < r}, with r > -0,
-

where

= ¢Bra | Bt
(4.2) z:|az {5+ Y [1 +p& T+ 2 (1 + |w| &5 )}}
and ||h|| = sup |h(t)|. Then we define the operators P and Q on B, to C([0,1],R) as
t€[0,1]

m

Pt) = /0 (t_;j_—: 1(Za1fl (s,9(s )
+p1(t) /051 (511{5)/#(;_1 iaifi(&y(s)))ds

(
+oa(t) [ [ U (S wahtoato)as

(4.3) —w /052 %(iaiﬁ(svy(swds},

t —g)81 & 1—s B—1
o) — ~u U rw)) yishds = (0 | € wj) y(s)ds
(

1 _g)8-1 &2 _g)8-1
(4.4) —ppa(t) [/0 ! F(b?) y(S)ds_w/o (& F(ﬂ)) y(S)d51~

We show that Px + Qy € B,.. For z,y € B,., we find that

|(P2) + (2]
] (t—s yite—t
< t;&{/o M ra (2 s vts )lds
&1 . S ﬁ a—1 m
+|p1<t>|[/0 o (Zaznfzsy )I)ds
S (G- 9P (1—s)fto-t &
+u / I elas +|p2<t>|l / M(;mim(s,y(s)n)ds

|ds+|w|/ Zmzufz (5,4(s))])ds

wal

Z|a1|||h|{ 5+ .y [1+p15ﬁ+a+p‘z(1+Iw|§5+a)]}

= (g‘L i [ mel o (14 ol 2]

Q2 [|hll + Qir <7

s)|ds

IN

+

IN
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Thus, Px + Qy € B,.
Next we show that Q is a contraction mapping. For z,y € C(]0,1],R) and each ¢ € [0, 1], we obtain

- (v
—sﬂ 1 &1 1 — )Pt
< / gl —uelds + )] [ (o) — w(s)ls
1(1—5)5_1 (s ds
+|u||,o2<t>|l / E— e — o)l
2 (& —s)"! _
+ol [ (e y<s>|ds]
< g [ A+ a1+ ) e -

which is a contraction in view of the condition (4.1).
We show that P is compact and continuous. The continuity of f; implies that the operator P is continuous.
P is uniformly bounded on B, as |Pz|| < Q2 ||h||, where Q2 is given by (5.1).

We shall prove now that P is equicontinuous. For ¢, ts € [0,1] with ¢; > to, we have

[Py(t1) — Py(t2)]

’/m t —ﬁsf;a 1<§:azf, (545 ) /0 (tz—ﬂsf;a 1<§:alﬁ (5,405 )’

B+a1(m

+p1(t1) — pi(t2) I/ &57+) Z“ifi(s’y(s)))ds

i=1

1 (] _g)fta—1 ,m
+|p2<t1>—,o2<t2>|[ / e (S lallsits sl s

MB+a) \&

ol [ B (Zlazuflsy ))ds

Z”il ‘a’l|||hH{ B+a Bt+a B+a B+a
L=l Doty —t ey ) — o1 (t
Ttatrn 2 +ln o+ L (t) = pa(t2)l;

Hlpa(t) = pa(t2) (1 + lwl€f ) },

IN

which is independent of y and tends to zero as t; —ts — 0. So P is equicontinuous. Hence, by Arzeld-Ascoli
Theorem, P is compact on B,. Thus all the assumptions of Krasnosel’skii’s fixed point theorem [31] are
verified and hence its conclusion implies that the boundary value problem (1.1)-(1.2) has at least one solution

on [0, 1]. The proof is completed. a

5. CONCLUDING REMARKS

We have discussed the solvability of Caputo-Liouville type Langevin equation involving two fractional

orders and finitely many nonlinearities subject to nonlocal boundary conditions by means of standard fixed
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point theorems. It is imperative to notice that the right-hand side of (1.1) provides a leverage to consider
a variety of nonlinearities, for instance, some of the terms in the given sum may be of the type f;(t,y) =
fg ki(t, s)y(s)ds or fot 9i(s,y(s))ds or IPg;(t,y(t)) or some of the functions may be non-Lipschitz type. Here
are two examples.
(a): Choosing the right-hand side of (1.1) as Riemann-Liouville type integral nonlinearities of the form:
Yot ail% fi(t,y(t)), ¢; > 0 instead of Y.~ a; fi(t,y(t)), the results for the problem (1.1) and (1.2)
obtained in the previous sections become the ones for the problem with Riemann-Liouville type

integral nonlinearities by replacing €2; and Q)2 with Ql and @2 respectively, where

N 1 m (|aZ|L1) ~ N ) )
e F(BJWH);F(%H) [+ el 4 (1 Il &)
|l B )
S EEY [1+mel +m (1+101€)]
-~ a m |al‘ ) 5 ) _ IB a

(b): By a simple manipulation, we can obtain the results for the problem (1.1) and (1.2) with the
right-hand side of (1.1) of the form:

D aifity() + > a;I%gi(t,y(1), ¢ > 0,
1=1

=1
where f; and g; are given continuous functions.
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