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ABSTRACT. In this paper, a new two-dimensional quaternion fractional Fourier transform is developed. The
properties such as linearity, shifting and derivatives of the quaternion-valued function are studied. The
convolution theorem and inversion formula are also established. An example with graphical representation

is solved. An application related to two-dimensional quaternion Fourier transform is also demonstrated.

1. INTRODUCTION

In 1853, quaternions were developed by W. R. Hamilton [10]. The necessity of enlarging the operations
on three-dimensional vectors to include multiplication and division led Hamilton to introduce the four-
dimensional algebra of quaternions. In 1993, Ell [6] introduced quaternion Fourier transform for application
to two-dimensional linear time-invariant systems of partial differential equations. In 2001 [3], authors de-
fined non-commutative hypercomplex Fourier transforms of multidimensional Signals. In 2007 [9], author
introduced right side quaternion Fourier transform. In 2008 [8], the concept of fractional quaternion Fourier
transform was presented. In [11], the author studied the uncertainty principle for the quaternion Fourier
transform. Authors in [1] developed quaternion domain Fourier transforms and its application in mathemat-
ical statistics. In [4], Plancherel theorem and quaternion Fourier transform for square-integrable functions

were studied.
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Quaternion Fourier transform transfers signals from the real-valued time domain to quaternion-valued fre-
quency domain. But the proposed two-dimensional quaternion fractional Fourier transform will transfer the
signal to unified time-frequency domains. Hence, it has a wide range of applications in the field of optics
and signal processing.

The organization of the paper is as follows: In section 2, some basic facts of quaternions and quaternion-
valued functions are illustrated. In section 3, the two-dimensional quaternion fractional Fourier transform
is defined and its inversion formula and operational properties are developed. Graphical interpretation of
two-dimensional quaternion fractional Fourier transform is also illustrated. In Section 4, the application of

the two-dimensional quaternion fractional Fourier transform is shown.

2. PRELIMINARY RESULTS

In quaternions, every element is a linear combination of a real scalar and three imaginary units i, j and k
with real coefficients.

Let ¢ be a quaternion defined in

(2.1) H = {q =z +izs + jro + ka3 : o, 21,22, 23 € R}

be the division ring of quaternions, where i, j, k satisfy Hamilton’s multiplication rules (see, e.g. [9])
(2.2) ij=—ji=kjk=-kj=iki=—-ik=j,i’ =j* = k* = ijk = —1.

The quaternion conjugate of ¢ is defined by

(2.3) q = xo —iry — jrs — kxs; x0, 21,22, 23 € R.

The norm of ¢ € H is defined as

(24) gl = v/aG = \/} + 2% + 2 + a3,
Alternatively, in [13] the quaternions are defined as
(2.5) H={¢=q +je:q,q €C}

where j is the imaginary number satisfying following conditions:

j2 = -1, jr=rj, YVr € R, ji = —ij, where i is the imaginary number.

From [13] f € L?(R?;H), then the function is expressed as
(26) f(u7 ’U) = f0<u7 U) + ifl(“a U) +jf2(ua U) + kf3(ua U)'
For some applications the quaternions can be rewritten by replacing k with ij as given in [9],

q = xo + ir1 + jr2 + ivs).
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Another way of rewritting quaternion is

1 . .
g=x4 +x_; xi:§(q:|:1qj).

x4 can also be expressed as

lﬂ:k lﬂ:k

2

2y ={zg £ 23 +i(z1 F22)} {zo £ 3+ j(z2 F21)}.

The real scalar part of the quaternion can be written as [9],

(2.7) 2o = (q) -

We can also rewrite the function f € L?(R?,H) as [9],
f=Jfo+ifi +]if2+ifs].

We can also split the function as [9],

f=F+ s fr =5 +1f), f—:%(f—ifj)-

N | =

For f,g € L?(R?,H) and u = (u,v) = ue; +vey € R? with {e1, es} as the basis of R?, the quaternion-valued

inner product is defined in [9] as

(29 (F) = [ Fwgau

with real symmetric part

(29) (o) = 5 1(0)+ 0.1 = [ (Fwa(a)

DN | =

The norm of f € L?(R? H) is defined as

(2.10) ||f||=\/(f,f)=\/<f,f>=/]Rz |f(w)]*d*u.

3. MAIN RESULTS

Definition 3.1. Let f € L*(R?H), then two-dimensional quaternion fractional Fourier transform (2D-

QFrFT) of particular order o, B using [9, 12] is defined as

1

(3.1) fa,ﬁ (w1, w2) = Fa g [f (u,v) w1, wo] / / 67”“1 “f (u,v) ¢35 dudy

where 0 < o, 8 < 1.
Analogous to [5, page 112],the integral will converge for values of w; and ws in the strips —s; < Im(wy) < s1

and —so < Im(ws) < s respectively; where s1 < Re(p1), s2 < Re(ps), for p1 = iwy, py = jws.
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The sufficient condition for f(u,v) to have 2D-QFrFT is that [ [ |f(u,v)|dudv exists.

— 00 —0O0

Inversion formula: Consider the inverse formula of quaternion Fourier transform as defined in [9]

1 [Se) o .
flu,v) = @n? / /e‘”f(x,y)e””da:dy.

— 00 —0O0

1 1
Substituting z = w;y* and y = wy .

Then,

oo oo
1 wFu o1 . F 11 dw; dws
u,v) = e e wy, we) V2 Ywy T — =
f(u,v) (27T)2 / / T Jfap (wi,w2) 2 a B

— 00 —O0
oo o0
1 . é 1—o . . % 1-8
fu,v) = m / /e'wl Ywy ® fap (Wi, wa) &2 Ywy? dwidws.
™)

— 00 —0O0

Hence, the inversion formula is defined as

Fozl {fa,ﬁ (whwz)] = f(u,v)

(3.2) 1 T L 1-a . F 18
:(2)25/ /8"”1 Ywy ® fap (W, w2) €2 Pwy? dwidws.
)

Property 3.1 (Left linearity). For f1, fo € L*>(R?,H) and

ki, ko € {q|q = xo + ix1, 20,21 € R};
(3.3) Fo g [k1fi(u,v) + ko fo(u,v)] = k1 Fo g [fi(u,v)] + kaFy g [f2(u,v)].

Proof. For f1, fo € L?>(R?,H); ki, ko € R and using (3.1), we get

Fop [k1fi(u,v) + k2 fa(u,v)]

oo

= / / emiwitu [k1.f1(u,v) + ko fo(u, v)] e‘jwf”dudv

— 00 —O0

oo o0

1 1
:kl/ /eiiwfu[fl(u,v)]efj“’f”dudv

— 00 —O0

oo o0 i 1
ke / / e [ fo(u,v)] €73 U dudy

—00 —O0

= k1Fog [fi(u,v)] + ko Fo g [f2(u, v)] .

Property 3.2 (Right linearity). For fi, fo € L*(R?,H) and

kll’k/Q € {q|q = 2o +j$2,$0,1’2 S R};

(3.4) Fop [f1(u, 0)k) + fa(u, k3] = Fo g [fi(u, )] k1 + Fog [f2(u, 0)] K-
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The proof is similar to property 3.1.

Property 3.3 (Shifting). For f € L?(R%, H) and a,b € R;

1
5y

(35) Fas [ (= 0,0 = b)] = e~ 0 Fy g [, )] e~

Proof. For f € L*(R%,H); a,b € R and using (3.1), we get

oo 0o N N
Foplf(u—a,v—0)]= / / e Wl f(y — a0 — b)e*jw2ﬂ U dudv.

—00 —O0

Substituting v —a = s and v — b =t gives

1
/ / —iw ( 9+a)f S t) —Jw2 (t+b)d5dt

—00 —0O0

1 1

— e, 5 [f(s,t)] e IVs .

O

Property 3.4 (2D-QFrFT of derivatives). For f € L?*(R?,H), the two-dimensional quaternion fractional

Fourier transform with derivatives of f(u,v) are as follows:

(36) ) Fop | gf0,0)] = (i0f) Fus (w0l

(37) i) Fas | e )| = Foa (0] (0] )

35) i) P | o Fue0)| = (i) Fo 0] (] ).
Tn general

(39) ) Fo | o F0e0)| = ()" P ]
(310 ) Fas [ e )| = B 0] (30 )

(311 00) B | e 2 )| = (i) B ) (0] )
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Proof. i) For f € L*(R?,H), the first order derivative over f(u,v) w.r.t. u is given by

o] N 0 1 1
1 T P
= / [e“wl “f(u,v)} - / —iwp e Y f (u,v)du p e IV2 Vdu
— 00 — 00

ii) For f € L*(R? H), the first order derivative over f(u,v) w.r.t. v is given by

Fos | (00)

[T ik d ol
_ —iwu Y —iwy v Jud
//e avf(u,v)e udv
Tk b T w: s
= /e_””lau [f(u,v)e_~'w2 ”} — / flu,v)e %2 v (—jwf)dv du
0o oo 1 a N
= / /eﬂwla“f(u,v)e*-'“’? Y dudv (szﬂ)

— Fup lfa0)] (3uf ).

i1i) For f € L?(R2, H), the second order derivative over f(u,v) w.r.t. u,v is given by
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N Tt . 7 . B 1

= (lw;> / e twitu [f(u,v)er? ”} - / flu,v)e 32 v (—jwf) dv » du
N .- 1

= (w;lg) / / e Y f (u,v)e Y2 U dudy (jwﬁ)

Rt o1
= (1wf) Fo 5 [f(u,v)] (.]wﬁ> )
iv) By using mathematical induction for n = 1 by (3.6), we get
0 L1
Fus || =i P 0]

For n = 2, the result holds true.
32
Fa,ﬂ |:8u2f(u’ U):|

0o 00 N 9 N
= [ [ e et dude
U

— 00 — 00
oo i 8 oo 1 a 1
P 1 - . B
= e "t — f(u,v)| — —jwr e WU £y, v)du p e 32 Vdy
et Fereite 2 pu)
—0 —00
oo o
- —iwléu 9 f( ) —jwfvd d
= 1wy e —Jlu,v)e udv
1 au )
— 00 o0
oo oo
1 e & . B
= iwy / {e“wl “f(u,v)} — / —jwe M fu,v)du p e I2 Ydu
— 00 — 00

Forn=Fk—1,

/ , okt B

—iwu —jws v

e " flu,v)e "2 “dudv
uk—1 )

oo

o0

i —iw‘l"u ak_Q . % —iw‘l’u ak_Q —jw%v
:/ e~ 8uk—2f(u’v) —/—1wle 1 6uk_2f(u7v)du e 2 Yy
(o)

—00

oo o0

. = —iw%u ak—2 —'w/%v
= iwy e~ 5 f(u,v)e™ "2 Ydudv.

ou

— 00 —O0
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On repeating the integration by parts, we get
ak—l L1 k_1
Fap [auk_lf(“’“)} = (lwf) Fop[f(u,0)].

By method of mathematical induction, the result is true for all n = k.

Fo | 0s0)] = (it B (0]

Thus, it is true for all n.

Similarly, v) and vi) can be proved.

Property 3.5 (Power of u,v). For f € L*(R? H)

(312) ) Fap nf (1, 0)] = ( “)afum ().
wy © 1
(3.13) i) Fop [0 0,0)) = 5 Fo (. 0)] {155

Proof. For f € L?>(R?,H) and using (3.1), we get

Fopluf(u,v)] = / / e_iwla“uf (u,v) =303 dudy
oo oo

Il
8\8
o
S
e
~__—
Q
2
S
\
e
&h
=
&
)
[
1S3
N s
e
QU
I
j=%
(4

0o 0o N 1
Foplvf(u,v)] = / e " My f (u,v) e 12 Ydudv
0o 0o 1 5 1
= / / e Y f (u,v) T eiuwglv J ?_ﬁ dudv
Ows B
oo —oo Wag
co oo N 1
= 9 / / e I f (4, v) eI Vdudy | j ?75
8w2 B
—00 —00 Wy
d . B
= %Faﬁ [f(u,’l))} J %

Hence the proof.
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Property 3.6 (Power of i,j). For f € L*(R?,H); m,n € N
(3.14) Fopgli"f(u,v)j"]| =" Fop[f(u,v)] 5"
Proof. For f € L?>(R?,H) and using (3.1), we get
0o 00 a1 . %
Fap S0l = [ [ e fuo)e s v dude
oo oo a1 ' %
=i" / /e*”“"la“f(u,v)eﬂw2 Ydudvj™
= imFa,ﬁ [f(uvv)].]n
Hence the proof. |

Definition 3.2. The convolution for the quaternion valued functions f,g € L?(R?,

(3.15) Frg= 7 7f(u,v)g(x—u,y—v)dudv.

—0o0 —O0

Theorem 3.7 (Convolution theorem). For f,g € L*(R? H);

(316) Faﬁ [f * g] = Fa,ﬁ [f] Fozﬁ [g} :

Proof. For f,g € L*(R?,H); X =

—~

x1,x2), Y = (y1,y2) and Z = (21, 22);

1

—iw ™ xq 7'71)%1’2
Faplf*g]= e (frg) (X) e 2dX

oo oo

—00 —00

oo o0

I
é\g é\g é\%ﬁ
é\g 8\8 é\&ﬁ

—o0 —Oo0
Substituting Z = X — Y, we get

oo oo oo oo

= 1
Foplf*gl = / /e_lwa y1+z1)f / /g e—dws (wat2) g7 | gy

— 00 —0O0 — 00 —O0

oo o0 oo o0

\— OO0 — OO — OO0 — 00

=Fop(fl Faplgl

/ /e_iwlaylf(Y)e_jwfyde / /e_iwlgzlg(Z)e

H) is defined [14] by

1
e_‘“’l o //f g(X -Y)dY e—iws w2 g x

el nrY //gX Y)e gy 229X | dY.

1
—jwf 2207
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Theorem 3.8. The scalar product of two quaternion-valued functions f,g € L*(R% H) is given by the scalar

product of the corresponding 2D-QFrFTs f and §:

(317) <.f7 g> = <]:a,5(w17w2)7goz,ﬁ(wlvw2)> .

(2m)*ap

Proof. For f, g € L?(R? H) and using (2.8), we get

H
N

1 oo oo [ TT L . 5 =8
— (2 )2 5/ / fa,B(w17w2) / / elw1 uwla er2 vw2 B
T i e —00 —00

x g(u, v)dudv> dwy dwsy

oo 1—a 1=8

B
= wl,wg w1 Woy

(QW)
%
/ / P “g (u,v) ewi ”dudv> dwidws

—0o0 —O0

1 e lea 138
Zm fop(wr, w2)wy * w,y

oo 00 N 1
/ / e—iwl" vg(u’ v)e—jwzﬁud/’u,d’u> d’w1d’w2

—00 —00

X

1 0 e 1o e
:7/ / <'LU1°‘ fouﬁ(wl;wQ)wZB ga,ﬁ(wl’w2)>dw1dw2

2m)*aB Joo Joo

= ——— (Fa,p(wi,w2), Go g(wr, w2))

where

Fo,plwr,wz) = w1 fa,ﬁ(th&)
1-8

gaﬁ(wla w2) = wQB ga,B(w17w2)-

Thus, the theorem holds true. O
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FiGURE 1. Kernel of 2D-QFrFT at « =1 and 8 = 1.

= i

FIGURE 2. Kernel of 2D-QFrFT at « =1/2 and g =1/2.

Figure 1 shows the kernel of 2D-QFrFT for various values of wi,ws at order a = 1 and 8 = 1 which is
a particular case of the study developed in this paper. Figure 2 shows the kernel of 2D-QFrFT for various
values of wy,ws at order & = 1/2 and 8 = 1/2. For both the figures the range of z and y is between —3
and 3. The 2D-QFrFT is superior in disparity estimation and analyzing genuine 2D texture as compared to

other fractional Fourier transforms and [7].
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Ficure 3. 2D-QFrFT Kernel. Left: Top row: (141ij)/2 and (i—j)/2 components. Bottom
row: (1 —1j)/2 and (i+ j)/2 components at « =1, § =1 ; Right: Top row: (1 +1ij)/2 and
(i—j)/2 components. Bottom row: (1—1ij)/2 and (i+j)/2 components at « =1/2, 5 =1/2

The components (1 +1j)/2, (i—j)/2, (1 —1ij)/2 and (i +j)/2 are shown in Figure 3at o =1, # =1 and

a =1/2,  =1/2 which represents 2D-QFT extended to 2D-QFrFT. We can also observe the scale-invariant

—~

feature of 2D-QFrFT.

Example 3.1. Find the quaternion fractional Fourier transform of the function:

L fzf <1, yl <1
(3.18) fla,y) =
0; otherwise.

By using (3.1), we get

1

o]
1 1
Foplf(z,y)] = / etz s (z,9) e—dws Ydxdy.

8|\8

1 1
1 1
Foplf (2.y)] = / / e I gy
S15

1
sinw{ sinw
(3.19) Foplf(z,y)] = 4—F+ —
wi o wy

1
B
2

The graphical representation of the quaternion fractional Fourier transform of the function (3.18) obtained

using « = 1 and § = 1 in (3.19), is now a particular case of (3.1) which is represented in the following figure:



Int. J. Anal. Appl. 19 (4) (2021) 573

Fa,ﬁ[f(l': y}]

FIGURE 4. Graph of F, g[f(z,y)] witha =1 and 8 = 1.

The graphical representation of the quaternion fractional Fourier transform of the function (3.18) obtained

using @ = 1/2 and § = 1/2 in (3.19) is represented in the following figure:

Fa,ﬁ[f(xs y}]

FIGURE 5. Graph of F, g[f(z,y)] with a =1/2 and § = 1/2.

The graphical representation of the quaternion fractional Fourier transform of the function (3.18) obtained

using « = 1/2 and f =1 in (3.19) is represented in the following figure:

F&.b[f(x, U']

FIGURE 6. Graph of F, g[f(z,y)] with « =1/2 and g = 1.
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Figures 1-3 are plotted using online freeware version of wolframalpha. Figures 4-6 are plotted using online

freeware version 3D surface plotter of academo.

4. APPLICATION

Let us consider the initial value problem from [2]:

(4.1) % —v2h =0, on R ? x (0, 00),

and

(4.2) h(u,v) = f(u,v), f € SMR" % H) at t =0,
where S(R" 2; H) is the quaternion Schwartz space and V2 = % ;TQU

Applying the definition of 2D-QFrFT to both sides of (4.1), we get

oh 12 1\?
ﬁ@ﬁ{at}zzﬁwf) ﬁgﬁm]+ﬁgﬁm]ﬁwg>

0 2 2
(4.3) aFa,g [h] = — (wf + wf) F, alh].
The general solution of (4.3) is given by
(v ++7)
— | w& 4w t
(4.4) Foglhl=Ce \ " °/

where C' is a quaternion constant.

By using the initial value condition, we get

N

(45) Fapltl=¢ (- +w§>tFa,g ).

Analogous to [2, equation 6.6], we have
2 2
1 — u%Jru% /4t _<w10 +w2ﬁ>t

Applying the inversion formula of 2D-QFrFT to (4.5), we get

r 2
1 7<w1%+w2ﬁ>t
h=F_} |e Faplf]
_ [ 1 - u%+v% /4t
=F, Tl (€ ( ) ]Fa,ﬁ [f]]~

Using convolution theorem, we have

(4.7) h=K;*f
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2
1 —(ua+o? )/a
where K; = —e (u ! >/ .

4t

5. CONCLUSION

The authors developed a new two-dimensional quaternion fractional Fourier transform in this study. The
properties such as linearity, shifting and derivatives of the quaternion-valued function are demonstrated. The
convolution theorem and inversion formula are also established. An example is illustrated with graphical
representation. In the concluding section, an application related to the two-dimensional quaternion Fourier
transform is also demonstrated.
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