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ABSTRACT. We introduce stochastic model of chemotaxis by fractional Derivative generalizing the deter-
ministic Keller Segel model. These models include fluctuations which are important in systems with small
particle numbers or close to a critical point. In this work, we study of nonlinear stochastic chemotaxis
model with Dirichlet boundary conditions, fractional Derivative and disturbed by multiplicative noise. The
required results prove the existence and uniqueness of mild solution to time and space-fractional, for this we
use analysis techniques and fractional calculus and semigroup theory, also studying the regularity properties

of mild solution for this model.

1. INTRODUCTION

In this study, we consider on the following generalized SKSM with time-space fractional derivative on a

bounded domain D C R4(1 <d <3):

‘Dlu+ (-A)su—V(uVe) = gwW(t), (tz)el[0,T]xD,

(1.1) :
cDPc+ (=A)%¢c— Ve = flW(t), (t,z)€[0,T]x D,

with subject to the initial conditions:

(1.2) w(0,z) = wup(z), z€D,

c(0,z) = co(z), ze€D,
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and the Dirichlet boundary conditions:

u(t, x = 0, tel0,T],
", (t.9) lon 0.7)
c(t,z) lsp = 0, tel0,T],

where u = u(t, z) denots the population density of biological individuals, ¢ = ¢(t, ) denots the concentration
of chemical substance, and V(uVec) is called a chemotactic term that is used to model the fact that cells

are attracted by chemical stimulus. In which the terms g(u)W (t) = g(u) dvgt(t), and f(c)W(t) = f(c)dvgit(t)

They describe the case-dependent random noise, where W (t).c(or) is F:— adapted Wiener process defined
on a completed probability space (Q, F,P) with the expectation E and associate with the normal filtration
Fi = o{W(s):0< s <t}, The operator (—A)%, o € (1,2) stands for the fractional power of the Laplacian

(see [1]). We denote by D/ the Caputo derivative of order 8, which is defined by (see [17])

t
1 f du(s,x) ds 0< ﬂ <1
CDtBU(t,I) _ T (1-p8) o ds  (t—s)P
Ou(s,z) ﬁ -1
(1.4) als 7t de(sz) d ’
Lo [ T 0<pB<1,
cDiefta)y = 4 TRy 0 T
(90((955,%)7 B =1,

where T'(.) stands for the gemma function
o0
I(B) = / tP=te tdt.
0

The rest of the paper is organized as follows. In Section 2, we will introduce some notations and preliminaries,
which play a crucial role in our theorem analysis. In Section 3, the existence and uniqueness of mild
solution to the problem of time-space fractional (2.1) and in Section 4, the spatial and temporal regularity
properties of mild solution to this time-space fractional (2.1) are proved. In Section 5, the existence and
uniqueness of mild solution to the problem of time-space fractional (2.6). Finally, the spatial and temporal
regularity properties of mild solution to this time-space fractional (2.6) are proved. We use stochastic analysis
techniques, fractional calculus and semigroup theory.

Next, we mention some Notations and preliminaries the task at work.

2. NOTATIONS AND PRELIMINARIES

Denote the basic functional space LP(D),1 < p < oo and H*(D) by the usual Lebesgue and Sobolev
spaces, respectively. We assume that A is the negative Laplacian —A in a bounded domain D with zero

Dirichlet boundary conditions in a Hilbert space H = L?(D), which are given by

A=-A, D(A)=H;(D)n H*(D).
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Since the operator A is self-adjoint on H with discrete spectral, i.e., there exists the eigenvectors e, with

corresponding eigenvalues A, such that
Ae, = Apen,en = \@sin(nﬂ'), A =7m2n%,ne Nt
For any s > 0, let H* be the domain of the fractional power A2 = (—A)2, which can be defined by

ASe, =A\2, n=12 ..,

and

H* = D(A%) = {v e LA(D),s.t. | v %= Y Aiv? < oo},
n=1

where v,, := (v, e,,) with the inner product (.,.) in L?(D). We denote that

| v ||l go=|l A3v ||, and the corresponding dual space H~* with the inverse operator A~3.We also denote A
for A3 and the bilinear operators B(u,c) = V(uvc), and D(B) = H} and L(c,v) = ¢Vv, and D(L) = H}
with a slight abuse of notation L(c,c¢) = L(c). Then the egs (1.1) and (1.3) can be rewritten as the following

abstract formulation:

1) cDiu(t) = —Aqu(t)+ Blu(t),c(t)) + glu(t) 2D ¢ >0,
U(O) = Uo,
and
¢DFc = —-A,c c c dW ()
(2.9) DPc(t) Agc(t) + L(c(t) + fe(t) 5=, t>0,
¢(0) = co,

where {W (t)};>0 is a Q— Wiener process with linear bounded covariance operator Q such that 7r(Q) < .
Further, there exists the eigenvalues A, and corresponding eigenfunctions e, satisfy Q, = A\,en, n =1, 2,

..., then the Wiener process is given by
W(t) = A2Bn(t)en,
n=1
in which {8, },>1 is a sequence of real-valued standard Brownian motions. Let L = L? (Q% (H), H) denote
the space of Hillbert-Schmidt operators from Q2 (H) to H with the norm

oo
1 1 1
| @ [|zz=] Q% ||us= (D PQ2en)2,

n=1

e, L2={®eL(H): Y || ®Q2 ||2< oo}, where L(H) is the space of bounded linear operators from H to
n=1

H. For an arbitrary Banach space B, we denote || . ||1»(o;z) by the norm in LP(2, F,P; B) , which defined

as

1
1o e s = B[l v [I5])7, Vv € LP(Q, F, P; B),

for any p > 2. We shall also need the following result with respect to the fractional operator A, (see Ref. [18]).
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Lemma 2.1. For any a > 0, an analytic semigroup Sq(t) = e~ 4=t > 0 is generated by the operator —A,

on LP, and for any v > 0, there exists a constant C,, dependent on o and v such that
(23) || Ausa(t) ||.£(LP)§ Cautiia t> 07

in which £(B) denotes the Banach space of all linear bounded operators from B to itself.

Next, we will introduce the following lemma to estimate the stochastic integrals, which contains the

Burkholder-Davis-Gundy’s inequality.

Lemma 2.2. ( [8]) For any 0 < t; < to < T and p > 2, and for any predictable stochastic process

/nv ) I )% < o,

v:[0,T] x Q — L&, which satisfies

then we have
(2.4) ||/||v VAW (s) |7 ds] < C(p /nv 125 ds)?],

where C(p) = [@]%(p%)p(%’l) is a constant.

Now, we give the following definition of mild solution for our time-space fractional stochastic Keller-Segel

model.

Definition 2.1. A F; adapted process (u(t), c(t)),e(o 1) 15 called a mild solution (1.1), if (u(t), c(t))e0,7) €

te
C ([O,T];H”) P - a. e, and it holds,

u(t) = Eg(t)uo+ fot(t - s)ﬁ_lEgg(t — 5)B (u(s),c(s)) ds
(2.5)
+ [yt =) Ega(t — s)g(u(s))dW (s),
and
ot) = Eg(t)eo+ [1(t — )P Egg(t — s)L(c(s))ds
(2.6)

+ fy(t— )" Ega(t — ) f(c(s))dW (s),

respectefily for a. s. w € ), where the generalized Mittag-Leffler operators E(t) and Egg(t) are defined

as
/ Mg (0)S(t70)db,

and

Ess(t) / BOM5(0)S(t70)do
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which contain the Mainardi’s Wright-type function with 8 € (0, 1) given by
= (e

Mg(0) =
5(0) =2 nL(1—B(1+n))’

n=0

in which the Mainardi function Mp(#) act as a bridge between the classical integral-order and fractional
derivatives of differential equations, for more details see [19,20]. Here, the derivation of mild solution (2.5)

and (2.6) can be found in Appendix (7) and Appendix (8) (respectively).

Lemma 2.3. [2] For any 5 € (0,1) and —1 < € < 00, it is not difficult to verity that

I'(1+e¢)

(2.7) Mg(0) > 0, and /Ooo 0° M5 (0)do = L

for all 6 > 0.

Theorem 2.1. For anyt > 0, Eg(t) and Egg(t) are linear and bounded operators. Moreover, for 0 < v <

a < 2, there exist constants Cy, = C(w, B,v) > 0 and Cg = C(a, B,v) > 0 such that
—Bv —Bv
(2.8) I Es@v [[gn< Cat™ v ll, (| Egs(t)v [lgn< Cpt™ v ]

Proof. For t > 0 and 0 < v < o < 2, by means of the Lemma (2.1) and Lemma (2.3), we have

I Es®)v g < fy~ Ms(0) || AvSa(t0)v || db

0o Bv ,—v
< Jy Cat™= 0= Mg() || v | db

CopT(1-%) =B
GlE T ] ve IAD),

and

| Ess@v g < Ofﬁ(?Mﬁ(@) I AvSa(tP0)v || do

A

< [ ConBt="0""5Ms(0) || v || do
0

C(!VBF(2_§)
FA+5(1-%))

which imply that the estimates (2.8) hold, so it is easy to know that E(t) and Egg(t) are linear and bounded

t=5° | v ||, v e L3(D),

operators. 0

Theorem 2.2. For any t > 0, the operators Eg(t) and Egg(t) are strongly continuous. Moreover, for any
0<t <ty <T and for0 <v < a < 2, there exist constants Cy,, = C(a, 8,v) > 0 and Cg, = C(«, B,v) >0
such that

(2.9) I (Bs(t2) — Bs(t1))v |l o < Cau(ts — 1) [ 0 ||,
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and

(2.10)

Br
| (Egp(tz) — Egp(ti))v [|gv < Cpulta —t1) = [[v ]l .

Proof. for any 0 < t1 <ty < T, it is easy to deduce that

(2.11)

dS. (t°6
[ et
ty

ta

Sa(t56) — Sa(t76)

to
— [ BtFT10AL S (tP0)dt,
t1

for 0 < v < a < 2, making use of the above expression, the Lemma (2.1) and Lemma (2.3), we can arrive at

and

I (Es(tz) = Eg(t))v g = || Au(Ep(t2) — Eg(t2))v ||

= || T Ma(0)Au(Sa(t260) — Sa(t}0))0d0)udd |

0

[ele] to

< [ BOMy(6) [ 17" || AaysSa(t?6)0 |12 didd
0 t1
ee] y to e

< [ CanBO-5My(0)( [t "1dt) || v || O
0 tq

= rE( )|l

< 298 (4, 1) v, ve LX(D),
vT o ['(1£2)

| (Ess(tz) — Egp(ti))v g = [ Au(Egs(t2) — Egs(ta))v ||

IN

IN

IN

|| T BOM(0) Ay (Sa(t560) — Sa(t00))vdd |

o0 to
0[,6292Mﬂ(9)ft5—1 | AqsrSa(tP0)v ||L2 dtdo
ty

o ta o,
[ CarP0=5Ms(0)( ] “ Lt || v | d6
t1
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It is obviously to see that the term || (Eg(t2) — Eg(t1))v ||z — 0 and
|| (Egg(t2) — Eg(t1))v || v — 0 as t; — to. Which mean that the operators Eg(t) and Egg(t) are strongly

continuous. O

Remark 2.1. Assume v =0 in theorem (2.2), then there exist constants

Co =Cl(a, ) >0 and Cz = C(a, ) > 0 such that

(2.12) | (Es(tz) — Ep(t1))v | gv < Caltz — t1) | v ],
and
(2.13) | (Egs(t2) — Egp(t1))v || g < Cplte —t1) [ v ]| -

Proof. for any 0 < Ty < t1 < to < T, the same as the proof of Theorem (2.2), we get

| (Es(te) — Eg(t))v lg = |l {M/B@)((Sa(téﬂ@) — Sa(t760))vd0)vdf || >

o0 t2

< [ BOMg(0) [P || AaSa(tP0)v || 12 dtdd
0 t1
%) to

< f CocaBGMﬁ(e)(f t_ldt) H v HL2 o
0 t1

< Coaf(lnty —Inty) || v ||

= Sel(ty—ty) | v, ve L¥ D),

and
| (Egs(t2) — Egp(ti))v g = |l {BHMBB(Q)((Sa(tge) — Sa(t{60))vd0)vdo | >

(e ] tz

< [ B%0*>Mpg(0) ft5*1 | AaSa(t?0)v |12 dtdd
0 t1
%) to

< [ CaaBPOMg(0)([t71dt) || v || dO
0 t1

< Gl TGty —Inty) || v |

< Gl t-t) v, veL*(D).

This completes the proof. O
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3. EXISTENCE AND UNIQUENESS OF MILD SOLUTION

Our main purpose of this section is to prove the existence and uniqueness of mild solution to the problem

(2.1). To do this, the following assumptions are imposed.

3.1. Assumption . The measurable function g : Q x H — L2 satisfies the following globalLipschitz and

growth conditions:
(3.1) [g() [z Cllvll, gw)=g) l[2<Cllu—v],
for all u,v € H.

3.2. Assumption . Let C, C are a positive real number, then the bounded bilinear operator

B : L3(D) — H~ (D) satisfies the following properties:

| B(u,e) lg-» < Clulfllcl
< Cl ” u ”27
and
(3.2) | B(u,c) = B(v,c) |z < CCi(Jlu |+ [[v ) fu—v],

where C; depend a norm the c in L3(D), and for all u,v,c € LE(D).

3.3. Assumption . Assume that the initial value ug : Q2 — H"isa JFo-measurable random variable, it holds

that

(3.3) | wo ||LP(Q,H")< o0,

forany 0 <v<a<?2.

Theorem 3.1. Let Assumptiom (3.1) to (3.3) be satisfied for some p > 2, then there exists a unique mild
solution (u(t))epo, 1) in the space LP(Q, HY) with

0<v<a<?

Proof. We fix an w €  and use the standard Picard’s iteration argument to prove the existence of mild

solution. To begin with, the sequence of stochastic process {u(t)}n>0 is constructed as

Upt1(t) = Eﬁ(t)UO + Ni(un(t)) + Na(un(t)),

Uup (t) = U,

(3.4)
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where

Ny ( f t — )P Eg s(t — 8)B(un(s), c(s))ds,
(35) °,

No( E)[ (t—8)PLEg g(t — s)g(un(s))dW (s).

The proof will be split into three steps.

Stepl For each n > 0, we show that
sup B un(t) ||%,,] < o0,
Note that

Ell upa(t) 1%,] < 3P7E[] Bp(t)uo |1%,,] + 377 E[|| Ni(un(t)) [1%,]
(3.6)
+ 3PRE[|| No(um (1)) [17,]-

The application of the Lemma (2.1) gives

IN

Elll Bs(t)uo [I7.,] fMﬂ (Il AuSa(t?0)uo ||?)% d6]

B E[:fo M (0) (S (Aae™ P eug, e,)2) o]
(3.7)

= B Ma(0) (S (Ao, =" )2 ba)

< fMﬁ ) o |l g d0] = Ellf wo ||, ]

Applying the following Holder inequality to the second term of the right-hand side of (3.6)

Ell Mi(un(®) |2.] < E[(j‘ | (= )P A1 B o(t — ) Ay_1 B(un(5), c(5)) || ds)?]
(3.8) < cg<0f<ts>”ﬁpll ds)P~ len [ Ayt Bun(s), c(s)) ||?]ds
< Klgt‘E[n wn(s) 1% 1ds,

where K; = CgC’PCp[m]P 1pA(L)—1( n%a% E||| un(t) |2, . Making use of the Holder inequality

and Lemma (2.2) to the third term of the right-hand side of (3.6), we get

(NS

Efll Na(un(t)) I7.] < C(p)E[(J I (t = 5)"" B p(t = 5) | Avg(un(s)) |75 ds)?]

(3.9)

IN

ds,

KQOfEm wn(s) I12,.]

=2, p(2B—1)—2
2 .

where Ky = C(p)CCPCY [i5h—3—
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Using the above estimates (3.6) and (3.9), we have
Bl wns1(t) I7,] < 377 Ell| uo |I,] + 377 (K1 + K2) /E | un(s) |5, 1ds
0

By means of the extension of Gronwall’s lemma, it holds that

sup B[] unt1(t) [|%,] < oo, for each n > 0.
t€[0,T]

Step2 Show that the sequence {u,,(t)},>0 is a Cauchy sequence in the space L (€2; HY).Forany n >m > 1,

applying the similar arguments employed to obtain (3.8) and (3.9), we get

Elll un(t) —um(®) 15,1 < 207 B[] Ni(un-1(8)) = Na(um-1(8)) 1%, ]

(3.10) + 2271 E[|| Na(un-1(t)) — No(um—1(1)) I1%,.]
:
< KBl un-(s) = umea(s) I Jds
in wich
K = 2 HCROP Ot ) (mase Bl (1) 17,.))
+ max Blllum (1) [,.]) + C)CEO O [ =—5) = T

A direct application of Gronwall’s lemma yields

S B[l un(t) = um(t) 5.1 =0,
for all T' > 0. Taking limits to the stochastic sequence {un(t)}n>0 in (3.4) as n — oo, we finish the proof of
the existence of mild solution to (2.1).
Step3 We show the uniqueness of mild solution. Assume u and v are two mild solutions of the problem
(2.1), using the similar calculations as in Step 2, we can obtain
(3.11) sup E[|| u(t) —v(t) [[},] =0,

t€[0,T]

for all T > 0, which implies that v = v, it follows that the uniqueness of mild solution. Obviously, when

v = 0, the above three steps still work. Thus the proof of Theorem 3.1 is completed. O

4. REGULARITY OF MILD SOLUTION

In this section, we will prove the spatial and temporal regularity properties of mild solution to time-space

fractional SKSM based on the analytic semigroup.
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Theorem 4.1. Let Assumptions (3.1) to (3.3) hold with 1 <v < a < 2 and p > 2 let u(t) be a unique mild

solution of the problem (2.1) with P(u(t) € H”) = 1 for any t € [0,T), then there exists a constant C such

that

(4.1) sup || u(t) || Lo vy < Cll o [lr i) * I w(®) | Lo (i)

te[0,T)

)

Proof. Forany 0 <t <T and 1 <v < a < 2, we have

lal) lppauary = (B u) 17,17 =] Avu(t) oo

IA

| Ay Eg(t)uo | Lro;m)

(4.2) + A Oft(’f = )" Ep (t — 5)B(u(s), ¢(9))d5 |l o ey

+ A4 Oft(t —5)P 7 Eg p(t — 5)g(u(s))dW (s) |

LP(Q;H)
= I+I1I+1I1
Using Theorem (2.1), the first term can be estimated by
_Bv
(4.3) I =|| AyEg(t)uo ||Lr0;m)< Cat™ = || uo || Lr(0sm) < 00.
It is easy to know that
r C
_Bv ! a=py
(4.4) /Oat o [ uo ||oeio;m dt = 5 _;VT o | uo [lze(;m)
0
The application of Theorem (2.1) and Assumptions (3.2), we get
t
(nr < E[( A, Of(t —8)' T A Bp 5(t — 5)B(u(s), c(s)) || ds)?]
t pla—1- B, 1 t
(4.5) < Cg(of(t —8) p=1 ds)P~ gE[H A_1B(u(s),c(s)) ||, ]ds
< Oy sup B[] u(s) [[%,];

5
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1 _ _ Bty
where Cy = C’ngCf{p[B_ﬁW}p IpplB==—0-1 4 (tgfoaf;] Ell| u®) | g:])-

By means of Theorem (2.1), Assumptions (3.1) and Lemma (2.2), we can deduce

(e < E[(l A, fll $)P 1 A1 Bp (t — 5) |7l Arg(u(s)) [|7g ds)*]
¢ plp—1- =Dyt
(4.6) < Co([(t—s)" 7= —ds)"= [E| Aig(u(s)) |I7g ds
0 0
< Cs sup E[f u(s) |[%,];

te[0,T)

Br—=1)
- P P —2 p=2 PRO-1-— ]2
where 03 = C(p)C’BC’pC'l [m] z T 2

Thus, we conclude the proof of Theorem (4.2) by combining with the estimates (4.2)- (4.6). O

Next, we will devote to the temporal regularity of the mild solution.

Theorem 4.2. Let Assumptions (3.1) to (3.3) hold with0 <v < a <2 andp > 2 for any 0 <1 <ty <T,
the unique mild solution u(t)to the problem (2.1) is Holder continuous with respect to the norm || . || 1y, i)

and satisfies
(4.7) [ ulta) = w(ts) || oy < Clt2 — 1)
Proof. Foor any 0 < t; < to < T, for the mild solution (2.5), we have

u(tz) —u(ty) = Eg(ta)uo — Ep(t1)uo

n f(t2 — §)B1Ey 5(ts — 5)Blu(s), c(s))ds

tl

= J(tr=5)7 1 Egp(ts — 5)B(u(s), c(s))ds

(4.8)
+ :f to — 8) 5 16— 1EB g(ta — s)g(u(s))dW (s)
= [t = 9P (0 - Gl
= L+ L+,

where

Il = Eﬁ(tg)uO — Eg(tl)uO,
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and

and

(4.10)

P

I3

zg(tg — 8)P7LEg g(ta — s)B(u(s), c(s))ds

:fl(tl —8)P"LEg 5(t1 — s)B(u(s),c(s))ds

tl

Of(tl —5)7 7 Epp(ta — 5) — Egp(ts — 5)|B(u(s), c(s))ds

tl

bf[(tl — )77t = (t2 = 5)" "1 Ep p(t2 — 5)B(u(s), c(s))ds

ta

[tz = 5)7" 1 Eg p(ta2 — 5)B(u(s), c(s))ds

t1

= Iy + Iy + I3,

to

J(tz — )7 B g(t2 — 5)g(u(s))dW (s)

t1

Of(tl — )7 B p(th — s)g(u(s))dW (s)

:ﬂtl )Py (s — 5) — Ep p(ts — 5)]g(u(s))dW (s)

ty

Of[(t2 —5)77 = (t1 = 5)"" 1 Eg p(t2 — 5)g(u(s))dW (s)

ta

tf(tz — 5)P ' Bp 5(t2 — 5)g(u(s))dW (s)

I3y + I3g + I33.

For any 0 < v < a < 2 and p > 2, by by virtue of Theorem (2.2), it follows that

(4.11)

Ell L[] = Ell Au[Es(t2) — Bs(ta)]uo |I7]

IA

O, (ta — t1) "% EY|| ug [|7).
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For the first term I5; in (4.9), applying the Assumption (3.2) and Theorem (2.2) and Hélder’s inequality, we

have
Ell L1 |%,] = E| :f(h — )P A [Bg p(t2 — 5) — Ep st — 5)]B(u(s), ¢(s))ds ||7]
(4.12) < O (ts—t) ) 2 f (trs) pifl ds)P~ 1fE | A1 B(u(s), c(s)) 1%, ]ds
0

_ _ pB(rv+1)
< CPCYOR, TP (=) (swprepo,r Elll uls) 7)) (t2 — 1)
Using the Assumptions (3.2), Theorem 2.1 and Holder’s inequality, we get
t1
Ell Iz %, = Ell [{(tz—5)""" = (ts — 5)° '] Au Ep 5(t2 — 5)B(u(s), c(s))ds ||"]
0
o't -1 -1 LICEST R I
< CR(J{lt2 = 8)P7t = (1 = 8)" 7 x (t2 — 5)~ 71 ds)P™
0
(4.13)
t1
X {E[II A1B(u(s), c(s)) |5, ]ds
_ pBla—v—1)—«
< CpCpCpT{BTin]l}p Ysuprero.r Elll uls) [ ])(ta — t2) = ;
and
to
Ell Is I ] = Ell tf(t23)ﬂ_1AuE,8ﬂ(t2 — 5)B(u(s), c(s))ds [|”]
ta v+1) . P
< OBl — 5P T sy
(4.14)

< Bl AB6).c) ] )ds

_ pBla—v—1)
CPCY O —ttm— 1 ( sup Bl uls) D)2 — 1)
te[0,T]

IN
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Next, by following the similar arguments as in the proof of (4.12)- (4.14) and using the Lemma (2.2), there

holds
Bl I |%,.] =
<
<
<
and
Bl I3z []]
(4.15)
and
Bl L33 []]
(4.16)

IN

IA

IN

t

EY| Ofl(h — )77 A [Ep p(t2 — 5) — Epp(ts — 5)]g(u(s))dW (s) ||*]

C(p)E[(g} I (tr = )" A[Eg p(t2 — 5) = Bg (ts = s)] %]l g(u(s)) 175 ds)?]

2p(B—1)

CwIE 12— 1) ([t~ 95 )2 [ B | gtu(o) Iy s

2106 P 1 _ _ pBv
C(p)CE,T (552=5)P " sup B[] u(t) [IP])(tr — t2)"",
t€[0,T)

El| ;fl[(tz =) = (tr — 5)" 1AL Epp(ta — 5)g(u(s))dW (s) ||7]

f I ((t2 = $)°71 = (tr = )" ) Ay Egp(ta — 5) |*]l g(uls)) [172)%]ds

t1

CEICEAl(t2 = )77t = (t1 = 5)7 ] x (t2 — )~

0

Br —2

3 }p 2d5) pl

[ 21l atu(s) 17, as

) 211!3(&*2) —(p+2)a
« b

a(p— =2
COICIO T itrma) = ( 2up Elllu(®) )t ~ 1

= El ;fz(ta — )77 AL Epg(tz — s)g(u(s))dW (s) ||”]

to

C(p)E[f (t2 = 5)°~ Ay Bgp(tz — 5) |Pll g(u(s)) 175 ds)?]

ty

IN

to

CE)CH([[(ts — 5)°~ 1 %772 ds) "2 fE I9(u) 175 ds

t1

IN

IN

COICEC b ) = sup Bl u(t) [P)(t2 — 1) 57,

2pBla—v)—(p12)a o
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Taking expectation on the both side of (4.8), and in view of the estimates (4.11)- (4.16), we conclude that
(4.17) I ult2) —u(t2) ooy < Cltz — 1),

in which we tak v = min{%, pﬂ(a*;afl)fa, 2”5(“7;2;(1&2)0‘}, whene 0 < to — t; < 1.

Otherwise, if to — t; > 1 then we set v = max{ 5(”;1), B(a_a”_l), zpB(aQ;Z)_W}. This completes the proof of

Theorem (4.2)

5. EXISTENCE AND UNIQUENESS OF MILD SOLUTION

Our main purpose of this section is to prove the existence and uniqueness of mild solution to the problem

(2.6). To do this, the following assumptions are imposed.

5.1. Assumption. The measurable function f : Q x H — L2 satisfies the following global Lipschitz and

growth conditions:
(5.1) | F@) < Cllolly | ) = F@) < C llu—v |,
for all u,v € H.

5.2. Assumption. Let C| is a positive real number, then the bounded bilinear operator

L : L3(D) — H~1(D) satisfies the following properties:

(5.2) I L) lg-2<C el
and
(5.3) | L(c) = L) g Cl e+ v D) e=v],

and for all v,c € L(D).

5.3. Assumption. Assume that the initial value cq : @ — H" is a Fo-measurable random variable, it holds

that
(5.4) I co |l o (e, vy < 00,
forany 0 <v<a<?2.

Theorem 5.1. Let Assumptiom (5.1) to (5.3) be satisfied for some p > 2, then there exists a unique mild
solution (c(t))icjo, 1) in the space L”(Q,H”) with

0<r<a<?.
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Proof. We fix an w €  and use the standard Picard’s iteration argument to prove the existence of mild

solution. To begin with, the sequence of stochastic process {c,(t)}n>0 is constructed as

cnt1(t) = Eg(t)co + Ni(en(t)) + Na(cn(t)),

(5.5)
Co(t) = Cp,

where

t

Ni(en(t)) = [(t = 5)"" Ep 5(t — 5)L(cn(s))ds,
(5.6) .0
Na(en(t)) = Of(t —5)7 7 By p(t — 5) f(cn(s))dW (s).
The proof will be split into three steps.
Stepl For each n > 0, we show that
sup E]| en(t) [I%,] < oo,
note that
Elll ena(t) 17,1 < 377E[| Es(t)eo 17,1+ 3P~ E[l| Ni(en(t)) II7,]

(5.7)

+ 3PE[| Na(en () 1%,.]-

The application of the Lemma (2.1) gives

Bl Es(t)e [15,] < ﬂ?%@mm&wwmﬁwﬂ

l*?[:foMﬁ(ﬁ)(Zoo (Aae™"040 ¢, e,)2) 2 d6)

n=1

1

E[ZOMBW)(ZZO:MAauOv6’t3“%en>2)fd9]

sEfmmw%mpmzmwmml

Applying the following Holder inequality to the second term of the right-hand side of (5.7)

E[ll Ni(en(®) II7.] < E[({t It =)~ AEp p(t — 5)Ay_1L(ca(s)) || ds)?]

p(ﬁ—l—g) t

(5.9) s<mﬁv@ P ) [ Bl Ay L(en(s) s

KjEWM@me

IN
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whete Ky = CECP ko] 17900 (ama. Bl (0 I, ).

Making use of the Holder inequality and Lemma (2.2) to the third term of the right-hand side of (5.7), we

get
Bl No(ea ) 1) < I (6= 9 Bt ) [ Auflento) I3 d
(5.10)
< Ko [ Bl ) 1.
whore Ky = C)C3OY by T2

Using the above estimates (5.7)- (5.10), we have

t
Bl en1(t) I15,] < 377" Bl co II7, ] + 3771 (K1 + K2)/E[|| cn(s) [I%. 1ds
0
. By means of the extension of Gronwall’s lemma, it holds that

sup E[|| cnt1(t) ||I%,,] < oo, for each n > 0.
t€[0,T]

Stepl: Show that the sequence {c, (t)}»>0 is a Cauchy sequence in the space LP(; H”). Foranyn >m > 1,

applying the similar arguments employed to obtain (5.9) and (5.10), we get

Elll ea(t) = cn(t) 5] < 27 B[l Nu(ea-a(t) = Niemr () I.]
(5.11) + 2B No(euo1(t)) = Nalen—1 () I%.]
< KBl ea-1(5) = em-1(5) [, 1ds,
in wich
Ko = 2 HOROP Mt 1) (mae Bl ena (1) I17,)
(5.12)
+ max Bl ena(0) I1,) + CO)CEC [ =—) T T ),

A direct application of Gronwall’s lemma yields

sup Bl cu(t) — em(t) [|%,] =0, for all T > 0.
t€[0,T)
Taking limits to the stochastic sequence {c,(¢)}n>0 in (5.5) as n — oo, we finish the proof of the existence

of mild solution to (2.6).

Step 3: We show the uniqueness of mild solution. Assume ¢ and v are two mild solutions of the problem
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(2.6), using the similar calculations as in

Step 2, we can obtain

(5.13) sup Efl| c(t) —v(t) [I},,] =0,
t€[0,T)

for all T > 0, which implies that ¢ = v, it follows that the uniqueness of mild solution. Obviously, when

v = 0, the above three steps still work. Thus the proof of Theorem (6.1) is completed. ]

6. REGULARITY OF MILD SOLUTION

In this section, we will prove the spatial and temporal regularity properties of mild solution to time-space

fractional SKSM based on the analytic semigroup.

Theorem 6.1. Let Assumptions (5.1) to (5.3) hold with 1 <v < a <2 and p > 2, let ¢(t) be a unique mild
solution of the problem (2.6) with P(c(t) € H”) = 1 for any t € [0,T], then there exists a constant C such
that

(6.1) sup || e(t) | Loy < CUl o lLosmy + sup | e(@) | Lo(ayn))-
te[0,T] t€[0,T]

Proof. Forany 0 <t <T and 1 <v < a < 2, we have

le®) oy = (Ellc®) 17,17 =Il Ave(t) Lo

IN

I AvEs(t)co l|Le(o;m)
! 1
(6.2) + H Ay g(t - S)B_ Eﬂ”@(t - S)L(C(S))ds ||LP(Q;H)

LA j(t S B 4t — ) fe(s))dW () |

LP (5 H)

I+IT+111.

Using Theorem (2.1), the first term can be estimated by

_ By
(6.3) I=|| A Es(t)co || Lo < Cat™ @ || co || Lr(osm)< 00.
It is easy to know that

O[Oo( a—Bv

T
_By ,
(6.4) /Cat o |l co llzr(om) dt = o ﬂ]/T « |l eo lpro;m) -
0
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The application of Theorem (2.1) and Assumptions (5.2), we get

(nr < B[ A Oft(t — )P A Ep p(t — 5)L(c(s)) || ds)P]
t pla—1- B0 t
(6.5) < gt—sJ—vﬁ——%gwﬂgEmAqL@@»ngjﬁ
< Oy sup B[] e(s) [[%,],

t€[0,T]

CICEEN]
where Cp = CECP {W}p Lrels- =1y (tfe%”%]E[” () lgnl)-

By means of Theorem (2.1), Assumptions (5.1) and Lemma (2.2), we can deduce

1y < C)E[(| A”‘of I (t =) Ay 1 Bp p(t = 5) |71l Avf(c(s)) Il g ds)*]

t 2p[ﬁ—1—w bz b
(6.6) < Ch([(t—s) 7= —ds) = [E | Aif(c(s)) |17, ds
0 0 :

IN

Cs sup El[| c(s) [I%.];
t€[0,T)

Ly pl2e—1-80=L)
where Cy = C(p)CHCP[ PR "5 T :

Thus, we conclude the proof of Theorem (6.1) by combining with the estimates (6.2)- (6.6). O

Next, we will devote to the temporal regularity of the mild solution.

Theorem 6.2. Let Assumptions (5.1) to (5.3) hold with0 < v <a <2 andp > 2, for any0 <t; <ty <T,
the unique mild solution c(t)to the problem (2.6) is Holder continuous with respect to the norm || . || 1., frv)

and satisfies

(6.7) [etz) = e(t) [l Lo vy < Otz = 1)
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Proof. Foor any 0 < t; <ty < T, for the mild solution (2.6), we have

where

and

c(tz) —c(tr) = Eg(tz)co — Eg(ti)co

I

n j(t2 — )P 1By 4(ts — $)L(c(s))ds

tl

— Of(tl —8)P LB s(t1 — s)L(c(s))ds

+ j(tz — )P 4 (ty — 5) f(c(s))dW (s)

- fj(tg I (1 — 5)C ()W (s)

= L1+ 1+ 13,

I = Eg(tz)Co — Eﬁ(tl)CO,

to

Of(tg —8)PYEg 5(ta — s)L(c(s))ds

tl

{(tl —8)P "L Eg s(t1 — s)L(c(s))ds

tl

[ 01— 5)7 (B (0 = 5) — Bt — 8)] e(s)ds

tl

{[(tl =)0 = (ta — 5)" " Eg p(t2 — s)L(c(s))ds

ta

J(ta = )P Eg g(t2 — 5)L(c(s))ds

ty

= Iy + Iz + I3,
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and
I = ;ﬂtz LBt — 5)F(c(s))dW (s)
=t = Bl = el aw )
= :)f (t1 — s) Eg g( 92— 8) — Egyg(tl —3)]f(c(s))dW (s)
(6.10)

t1

+ g’[(tz = 5)77 = (t1 = 5)° 1 Ep p(t2 — s)g(u(s))dW (s)

to

+ [tz — )" B p(ta — 5)f(c(s))dW (s)

ty

= I31 + I3z + I33.

For any 0 < v < a < 2 and p > 2, by virtue of Theorem (2.2), it follows that

E[ll Iy 1. ] E[ll Av[Ep(t2) — Ep(t)]co ||7]

(6.11)

IN

2, (ks = 1) "= B[] ¢ ||7).

For the first term Iy in (6.9), applying the Assumption (5.2) and Theorem (6.2) and Holder’s inequality, we

have
Ell I [5,] = El fjal—swIAV[Eﬁ,mz—s)—Ew(m—s)]uc(s))ds 7
(6.12) < 0§y<tz—t1>”%’*”<;fl<t1—s>”fl ds)P- leHA 1L(c(s)) |17, 1ds

pB(r+1)
o .

< CPCRTP(E )P (sup Bl e(s) 77 ])(t2 — t1)
te[0,7
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Using the Assumptions (5.2), Theorem (6.2) and Holder’s inequality, we get

tl
Ell[ Iz Iy, = Ell J[(tz =)0 = (t1 = )1 Ay Eg p(t2 — 5)L(c(s))ds ||”]

t1
< Og(bf{[(tz =)0t —(t1 — )]
(6.13)
ey, o ooy »
X (ta—s)" " }rrds)P < [ E[|| AiL(c(s)) |I%,,]ds
0
P —1 -1 2p pBa—v—1)—«
< CpCﬁT{W}p (tes[lé%] Elll e(s) 7Dt —t) =,
and
to
Bl s |1%.] = £l tf(tz — )P A, Epp(ty — s)L(c(s))ds ||7]
t2 v+1 P
< OY([lts — 5)P ST P T ds)r !
t1
(6.14)
to
x [ B[l AiL(c(s)) |%,,]ds
t1
p —1 -1 2p phla—v=1)
< OOl (;B%ﬂ” c(s) a2 =)= .

Next, by following the similar arguments as in the proof of (6.12)- (6.14) and using the Lemma (2.2), there
holds
ty

Elll Is1 1.,] = Ell Of(tl = 8)/ LA [Ep p(t2 — 5) = Ep p(ts — )|f (u(s))dW (s) |I7]

< amm@nm—aWMA%ﬂm—@—&wm—QMQf@@wgwﬁ}
< COICE (1) ¥ ([0 =) 55 d) 7 [ B S(e(9) I ds
< Cp)Ch, T (Hhe)P " (sup B[] e(t) [Pt — t2) ",

t€[0,T
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and
Bl Is || = E 2*[(@ = 5)871 = (11— 5)° YA, Egg(ta — ) f(c(5))dW (s) |7
< fll ty— )7 = (t — )P ) Ay Baa(ts — 5) |12 f(c(s)) |2,)¥)ds
(6.15) < Cp)Cy( f{ ty — 8)B71 — (t — 8)871] x (ty — 5) " F } 7 2ds) T
x fEH 2
< c@)%mﬂ%%(t;@ Bl elt) Itz = ) TR
and
Bl Iss [ = El| :fm — 5)3 1A, Bgs(ts — ) f(c(5))dW (s) |17
< c<p>E[jf<tz = 57 A Bt — 5) |2 f(e(s)) 125 ds)?]
(6.16)
< OOt =¥ a7 f 2 S
< OO a2 "= (sup E| cft) [P]) (2 — t1)

te[0,T]

Taking expectation on the both side of (6.8), and in view of the estimates (6.11)- (6.16), we conclude that

(6.17) [ e(tz) = e(tr) o)< Clt2 = 1),

ﬁv pBla—v—1)—a 2pB(a—v)—(p+2)a

in which we tak v = min{Z* e ) Ipa

}, whene 0 < to — t; < 1.

Otherwise, if t5 — ¢; > 1 then we set v = max{ ﬂ(‘:rl), ’8(0‘7;71), 2pﬂ(a2;2)7po‘}. O

This completes the proof of Theorem (6.2)
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7. APPENDIX A

Considering the following abstract formulation of time-space fractional stochastic of equation (2.1)

(7.1) ‘Dlu(t) = —Aqu(t)+ Bu(t),c(t)) + glu(t) 228 ¢ >0,

u(0) = .

We derive the mild solution to (7.1) by means of Laplace transform, which denoted by ~. Let A > 0, and

we define that

a(\) = / e Mu(s)ds, B(\) = / e M B(u(s), c(s))ds,
0 0
and
G0 = [ e ltu) T Das = [ guts)a )
0 0

Upon Laplace transform, using the formula Cf)f u(\) = A0 — NP~lug. Then applying the Laplace transform

to (7.1), we obtain

a\) = Lug+ S (—A)aN) + H[BO) + GO

(7.2) = MTUNT+ A) " tug + (VT + Ay) 7 [B(A) + GV
= ML [ e VS, (s)uods + [ e~ 550 (s)[B(N) + G(N)]ds,
0 0

tA

in which I is the identity operator, and S, (t) = e~**= is an analytic semigroup generated by the operator

—A,. We introduce the following one-sided stable probability density function:

i(—w-leﬂ"-lwsmmﬂ), 6 € (0,0),

n=1

(7.3) Wg =
whose Laplace transform is given by

(7.4) /e*”Wﬁ(e)do =M 0<pB<1
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Making use of above expression (7.4), then the terms on the right-hand side of (7.2) can be written as

AL [ e N5 G (sYugds = [ MLe A S, (48 ugdt
0 0

B 1e= (0" 5 (18 )uydt

Il

14 1= O0°)S, (% ugdt

S
=
[

I

[ 0W5(0)e=>0S, (£7 ) ugdbdt
0

Il

e[ [ W5(0)Sa(Lr)uodb)dt,
0
and

[ e¥55,(s)B(\)ds
0

= T 007 s, (18) B\
0

BtB=1e=(M" G (t8)e=2tB=1 B(u(s), c(s))dsdt

I

(7.6)
BW5(0)e=M0S,, (tP)e 2 tP~ 1 B(u(s), c(s))dfdsdt

|

tP NPt

= _:fo :fo :fo BWs(0)e= M+ S, (22) = B(u(s), ¢(s))dfdsdt

and

= [ BtFle= (A0S (tF)G(N)dt
0

BtB—1e=(A’ G (t8)e=2s g(u(s))dW (s)dt

I
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BW5(0)eMOS, (tP)e A tF~Lg(u(s))dOdW (s)dt

I
o3
o3
o3

P!

(7.7) = T T T B (8)e0+9) 5, (1) £ g (u(s))dOAVY (s)dt

= oo ] Twao)su (G S gluteasaw s)ar

Together with (7.2) and (7.5)- (7.7) helps us to get

oo

a0 = Z‘oe—kt[ / W5(0)Sa (L2 yuodbdt

(7.8) + Zo e M8 Oft :fowﬁ(e)sa(“;?B)(t—;#B(u(s),c(s))deds]dt

[ee] t oo B _g)B-1
+ [ eMIB T [ Ws(6)SalH550) g (u(s) doaW (s)ldt,
Now, by means of inverse Laplace transform to (7.8), we have achieved that

ut) = Zowﬁ(e)sa(;é)uode

(6)Sa(U525) U= B(u(s), c(s))dbds

_|_
=
o
oy
S

(0) S0 (U=22y =9 0y (5)) dOW (s)

+
=
o &
oy
=

(7.9)
= [ L0757 Ws(077)Sa(tP0)uodd
0

0~ T W5(0~5)Sa((t — s)P0)(t — 5)P~1 B(u(s), c(s))dfds

+
o o

Oft 0% Ws (0~ 5 )Sa((t — 8)P0)(t — 5)P~Lg(u(s))dOdW (s).

Here, we also introduce the Mainardi’s Wright-type function

& (o
M) = D e AT )

nlonl

- i T sinn)
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where 0 < 8 < 1 and 0 € (0,00). Further, the relationships between the probability density function Wp(9)

and Mainardi’s Wright-type function Mg(6#) are shown that
1
My (0) = Be—%—lwg(e—%).

We denote the generalized Mittag-Leffler operators E,(t) and Egg(t) as

/ M5 (0)S.(t°6)d6,

and
oo

Epgp(t) = /ﬁaMﬁ(Q)Sa(tﬂG)dQ.
0
Therefore, the equation (7.9) can be written as

u(t) = Eg(t)uo+ j(t —8)P L Egs(t — s)B (u(s),c(s)) ds
(7.10) .
+ J (t —s)P1Egg(t — s)g(u(s))dW (s),

Up to now, we have deduced the mild solution (7.10) to the time-space fractional stochastic equation (2.1).

8. APPENDIX B

Considering the following abstract formulation of time-space fractional stochastic of equation (2.6)

‘Dic(t) = —Aac(t) + L(c(t)) + flc(®) 2B [t >0,
c(0) = Co,

(8.1)

We derive the mild solution to (8.1) by means of Laplace transform, which denoted by . A > 0, and we

define that . o
é(\) = / e e(s)ds, LX) = / e M L(c(s))ds,
and o i 0 .
A0 = [N T as = [ setopaws),
0 0

Upon Laplace transform, using the formula ©DP¢(X) = Mé — M~L¢y. Then applying the Laplace transform

o (8.1), we obtain

(N = oo+ B (—AEN) + S EO) + HO)

(8.2) = NI+ A e+ (AT + Aa) L) + H(V)]

= N [ eV (s)eods + [ e N3 Sa()[E(N) + H(N)]ds
0 0
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tA

in which I is the identity operator, and S, (t) = e~*?« is an analytic semigroup generated by the operator

—A,. We introduce the following one-sided stable probability density function:

1 & r 1
(8.3) W5 = W;(—U"loﬂ"l% sin(nm3), 6 € (0,00),
whose Laplace transform is given by
(8.4) /e_’\9W5(0)d9 —e 0<B<1
0

Making use of above expression (8.4), then the terms on the right-hand side of (8.2) can be written as

P fe_’\ﬂsSa(s)cods = f)\ﬂ_le_’\ﬂtﬁsa(tﬁ)codt
0 0

= [ BO)E e S, (t8)codt
0

= [ [OWs(0)e=M0S, (t%)codbdt
00

oo

— :f VL AUENCOREDT

and
Te*AﬁsSa(s)E(A)ds
0
= 7’0 BtA~1e= (0" S, (19) L(N)dt
0
= TTﬁtﬁilef(”)ﬁSa(tﬁ)ef)‘stﬁflL(C(S))dsdt
00
(8.6)
= T 70 70 BW5(0)eMOS,, (t%)e A tF~1L(c(s))dfdsdt
00O
= ZO ZO ZO BW5(0)e 2+ S, (L)L I(e(s))dOdsdt

B_M[ﬂ

Il
o3
Ot —

® _)B . (t—g)B—1
Ofwﬁwwa(%; ) =2 L(e(s))dfds)dt,
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and

e N385, (s)H(N)ds

o3

[ ptP=Le= D" 5 (tFYEH (\)dt
0

BtB=1e= (0" (tB)e=2s f(c(s))dW (s)dt

o3
o3

BW5(0)eMOS, (t7)e A tP=1 f(c(s))dOdW (s)dt

o3
o3
o3

BWs(0)e 2149 S (1)L f(c(s))dOdW (s)dt

o3
o3
o3

Wi (0)Sa(Lo2) =7 50 (s))dOdW (s)]dt.

o3
('b‘

X
=
[SYE
o3

Together with (8.2) and (8.5)- (8.7) helps us to get

e

oo

. Zoe%[ T Ws(0)Sa(L )codb]dt

[}

+ Zoe*”[ﬂ j Z“Owﬁ(a)sa(“;;)‘*)“*gg"”L(c(s))dads]dt

+ Zoe’)‘t[ﬂ J Zowg(a)sa(“;g)ﬁ)“*;Qf‘l F(c(s))dodW (s)]dt.

Now, by means of inverse Laplace transform to (8.8), we have achieved that

ot) = Z‘owﬁ(e)sa(;é)code

_s)B\ (t—g)B1
(0)Sa (U52) U= L(c(s))dfds

+
=
o o
oy
=

Wis(0)Sa (U525 ) U= f(c(s))dOdWV (s)

+
=
o &
oy
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= [ L1075 Ws(077)Sa(t70)codd
0

(8.9) + Oft 209_71517[/5(9_%*)5&(@ —5)0)(t — 5)P~1L(c(s))dbds
oft Zoa_%wﬁ(m%)sa((t = 5)70)(t — 5)°7 1 f(c(s))dOdW (s).

Here, we also introduce the Mainardi’s Wright-type function

Mp(0) = nz::o nOT(1 — B(1 +n))

nlenl

= 1 Z 1) I'(ng) sin(nwB),

where 0 < f < 1 and 0 € (0, 00). Further, the relationships between the probability density function Wp(9)

and Mainardi’s Wright-type function Mg(6#) are shown that
1 _1_q 1
Mj(6) = 507 Ws(67H),

We denote the generalized Mittag-Leffler operators E,(t) and Egg(t) as

o0

Eo(t) = / M5(0)S4(t70)do,
0

and

(o}

Bsolt) = [ BOMy(6)S0(t70)as.
0

Therefore, the equation (7.9) can be written as

c(t) = Eg(t)eo+ ft(t - s)/’)’lEgg(t — s)L(c(s))ds
(8.10) . 0
+ Of(t — )P Egp(t — 5) f(c(s))dW (s).

Up to now, we have deduced the mild solution (8.10) to the time-space fractional stochastic equation (2.6).
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