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Abstract. This paper discusses a possible generalization of the transport model describing the chlorine

concentration decay in pipes. The proposed generalized model is governed by a second-order fractional partial

differential equation. The exact solution of the generalized model is obtained via the Laplace transform

method and the method of residues. The exact solution reduces to the corresponding published one as the

fractional order α tends to one. Analytical expression for the dimensionless cup-mixing average concentration

is deduced. Influences of various parameters on the behavior of the dimensionless cup-mixing average

concentration are discussed. It is shown that the physical interpretation of the dimensionless cup-mixing

average concentration in view of the fractional calculus is completely different than its interpretation in the

classical calculus.

1. Introduction

Chlorine is the most commonly employed disinfectant in most countries and minimum levels of chlorine

must be maintained to ensure the disinfection capacity of distributed water [1,2]. Studying the chlorine decay

reflects its importance in engineering and industrial sciences [3]. In this paper, we propose a generalized
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model of the chlorine transport in pipes. The standard model was formulated by Biswas et. al [4]. The

proposed model, in dimensionless form, is governed by the fractional partial differential equation (FPDE):

(1)
∂αu

∂xα
=
A0

r

∂

∂r

(
1

r

∂u

∂r

)
−A1u, α ∈ (0, 1],

under the boundary conditions (BCs):

u(0, r) = 1, 0 ≤ r ≤ 1,(2)

∂

∂r
u(x, 0) = 0, 0 ≤ x ≤ 1,(3)

∂

∂r
u(x, 1) +A2u(x, 1) = 0, 0 ≤ x ≤ 1,(4)

where u(x, r) is the chlorine concentration, α is the order of the fractional derivative in Caputo sense. The

dimensionless parameters A0, A1 and A2 are related to the chlorine decay. The parameter A0 stands for

the radial diffusion. It depends on the pipe length, the effective diffusivity of chlorine, and the flow rate

throughout the system. In addition, A1 depends on the reactivity of chlorine with species such as viable cells

or chemical compounds in the bulk liquid phase and on the residence time in the system. The parameter

A2 reflects the wall consumption and depends on the wall consumption rate V ∗d , the pipe radius r∗0 and the

effective diffusivity of chlorine D, where A2 = V ∗d r
∗
0/D. The objective of this paper is to apply the Laplace

transform (LT) method to obtain the exact solution of the system (1)-(4). The LT is a well-known method

for solving ordinary differential equations (ODEs) and fractional differential equations (PDEs). Such LT

method has been successfully applied on several models such as diffusions [5], heat transfer of nanofluids

suspended with carbon-nanotubes [6], singular boundary value problems (SBVPs) related to fluid flow of

carbon-nanotubes [7,8], and the MHD Marangoni convection over a flat plate [9]. Furthermore, the LT was

successfully applied to solve the Ambartsumian delay equation [10]. Moreover, one can find in Refs. [11-24]

other interesting applications of the LT.
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2. The LT method

The application of LT, L(·), on both sides of Eq. (1) gives

(5) L

(
∂αu

∂xα

)
= L

(
A0

r

∂

∂r

(
1

r

∂u(x, r)

∂r

))
− L (A1u(x, r)) ,

or

(6) sαU(s, r)− sα−1u(0, r) =
A0

r

d

dr

(
1

r

dU(s, r)

dr

)
−A1U(s, r),

From the BC (2) and Eq. (6), we have

(7)
d2U(s, r)

dr2
+

1

r

dU(s, r)

dr
−
(
sα +A1

A0

)
U(s, r) = −s

α−1

A0
.

The solution of Eq. (8) is

(8) U(s, r) = ρ1J0

(
i

√
sα +A1

A0
r

)
+ ρ2Y0

(
i

√
sα +A1

A0
r

)
+

sα−1

sα +A1
,

where i =
√
−1. Besides, J0 (·) and Y0(·) are Bessel functions and ρ1 and ρ2 are unknown constants.

Physically, u(x, r) is bounded at r = 0, hence ρ2 must be vanishes and therefore,

(9) U(s, r) = ρ1J0

(
i

√
sα +A1

A0
r

)
+

sα−1

sα +A1
,

and

(10)
dU(s, r)

dr
= −ρ1i

√
sα +A1

A0
J1

(
i

√
sα +A1

A0
r

)
,

where J ′0(λr) = −λJ1(λr). The BC (4) gives

(11)
dU(s, 1)

dr
+A2U(s, 1) = 0.

From Eqs. (9), (10) and (11), we obtain ρ1 as

(12) ρ1 = − A2s
α−1

(sα +A1)
[
A2J0

(
i
√

sα+A1

A0

)
− i
√

sα+A1

A0
J1

(
i
√

sα+A1

A0

)] .
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Substituting (12) into (9), yields

(13) U(s, r) = −
A2s

α−1J0

(
i
√

sα+A1

A0
r
)

(sα +A1)
[
A2J0

(
i
√

sα+A1

A0

)
− i
√

sα+A1

A0
J1

(
i
√

sα−1+A1

A0

)] +
sα−1

sα +A1
,

which can be written as

(14) U(s, r) = −A2H(s, r) +
sα−1

sα +A1
,

where

(15) H(s, r) =
sα−1J0

(
i
√

sα+A1

A0
r
)

(sα +A1)
[
A2J0

(
i
√

sα+A1

A0

)
− i
√

sα+A1

A0
J1

(
i
√

sα+A1

A0

)] .
Applying the inverse LT on Eq. (14) leads to

(16) u(x, r) = −A2h(x, r) + Eα (−A1x
α) ,

where h(x, r) is the inverse LT of H(s, r) and

(17) h(x, r) = L−1

 sα−1J0

(
i
√

sα+A1

A0
r
)

(sα +A1)
[
A2J0

(
i
√

sα+A1

A0

)
− i
√

sα+A1

A0
J1

(
i
√

sα+A1

A0

)]
 .

3. The exact solution

In order to find the exact solution, it should be first evaluate the inverse LT of (17). We observe from

Eq. (15) or Eq. (17) that the denominator has simple poles at sα = −A1 and i
√

sα+A1

A0
= λ1, λ2, . . . λn, . . .

Hence, we have simple poles at s = (−A1)1/α and s = (−A1 − A0λ
2
n)1/α, n = 1, 2, 3, . . . , where λn are the

roots of

(18) A2J0 (λn)− λnJ1 (λn) = 0.
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So, h(x, r) can be evaluated by applying theorem 1, in appendix A, by calculating the residues of esxH(s, r)

at s = (−A1)1/α and s = (−A1 −A0λ
2
n)1/α, and then by taking their sum. At s = (−A1)1/α, we have

(Res esxH)s =(−A1)1/α
= lim
s→(−A1)1/α

(
s− (−A1)1/α

)
esxsα−1J0

(
i
√

sα+A1

A0
r
)

(sα +A1)
[
A2J0

(
i
√

sα+A1

A0

)
− i
√

sα+A1

A0
J1

(
i
√

sα+A1

A0

)] ,
= e(−A1)

1/αx lim
s→(−A1)1/α

sα−1J0

(
i
√

sα+A1

A0
r
)

A2J0

(
i
√

sα+A1

A0

)
− i
√

sα+A1

A0
J1

(
i
√

sα+A1

A0

) ×
lim

s→(−A1)1/α

s− (−A1)1/α

sα +A1
,

= e(−A1)
1/αx

(
(−A1)(α−1)/αJ0 (0)

A2J0 (0)− 0

)
. lim
s→(−A1)1/α

1

αsα−1
,

=
e(−A1)

1/αx

αA2
, where J0 (0) = 1.(19)

At s = (−A1 −A0λ
2
n)1/α, we have

(Res esxH)s=(−A1−A0λ2
n)

1/α = lim
s→(−A1−A0λ2

n)
1/α

(
s− (−A1 −A0λ

2
n)1/α

)
esxsα−1J0

(
i
√

sα+A1

A0
r
)

(sα +A1)
[
A2J0

(
i
√

sα+A1

A0

)
− i
√

sα+A1

A0
J1

(
i
√

sα+A1

A0

)] ,

or

(Res esxH)s=(−A1−A0λ2
n)

1/α = lim
s→(−A1−A0λ2

n)
1/α

s− (−A1 −A0λ
2
n)1/α

A2J0

(
i
√

sα+A1

A0

)
− i
√

sα+A1

A0
J1

(
i
√

sα+A1

A0

) ×
lim

s→(−A1−A0λ2
n)

1/α

esxsα−1J0

(
i
√

sα+A1

A0
r
)

sα +A1
,

which can be written as

(20)

(Res esxH)s=(−A1−A0λ2
n)

1/α =
e(−A1−A0λ

2
n)

1/αx
(
−A1 −A0λ

2
n

)(α−1)/α
J0 (−λnr)

−A0λ2n
. lim
s→(−A1−A0λ2

n)
1/α

Q(s, r).
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Using the L’Hospital’s rule, we have

lim
s→(−A1−A0λ2

n)
1/α

Q(s, r) =
lims→(−A1−A0λ2

n)
1/α

(
s− (−A1 −A0λ

2
n)1/α

)
lims→(−A1−A0λ2

n)
1/α

[
A2J0

(
i
√

sα+A1

A0

)
− i
√

sα+A1

A0
J1

(
i
√

sα+A1

A0

)] =
0

0
,

=
lims→(−A1−A0λ2

n)
1/α

d
ds

(
s+A1 +A0λ

2
n

)
lims→(−A1−A0λ2

n)
1/α

d
ds

[
A2J0

(
i
√

sα+A1

A0

)
− i
√

sα+A1

A0
J1

(
i
√

sα+A1

A0

)] ,
=

1

σ
,(21)

where σ is defined by

(22) σ = lim
s→(−A1−A0λ2

n)
1/α

d

ds

[
A2J0

(
i

√
sα +A1

A0

)
− i
√
sα +A1

A0
J1

(
i

√
sα +A1

A0

)]
.

Assume that y = i
√

sα+A1

A0
, then

σ = lim
s→(−A1−A0λ2

n)
1/α

d

ds
[A2J0(y)− yJ1(y)]

= lim
s→(−A1−A0λ2

n)
1/α

[
−A2J1(y)

dy

ds
− y

2
(J0(y)− J2(y))

dy

ds
− J1(y)

dy

ds

]
,

= lim
s→(−A1−A0λ2

n)
1/α

dy

ds
[−A2J1(y)− yJ0(y)] ,(23)

where the properties of Bessel functions are used, see appendix B. The magnitude dy
ds is

(24)
dy

ds
= −αs

α−1

2A0y
.

We also note at s = (−A1 −A0λ
2
n)1/α that

(25) y = −λn,
dy

ds
=
α(−A1 −A0λ

2
n)(α−1)/α

2A0λn
.

Inserting Eqs. (25) into Eq. (23), noting that the functions J0 and J2 are even and J1 is odd, we find

(26) σ =
α(−A1 −A0λ

2
n)(α−1)/α

2A0λn
(A2J1 (λn) + λnJ0 (λn)) .

From (26) and (21), it then follows

(27) lim
s→(−A1−A0λ2

n)
1/α

Q(s, r) =
2A0λn

α(−A1 −A0λ2n)(α−1)/α (A2J1 (λn) + λnJ0 (λn))
.
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Substituting (27) into (20) and simplifying, gives

(28) (Res esxH)s=(−A1−A0λ2
n)

1/α = − 2

α

∞∑
n=1

e(−A1−A0λ
2
n)

1/αxJ0 (λnr)

λn [A2J1 (λn) + λnJ0 (λn)]
.

Hence, h(x, r) in Eq. (17) is given by

h(x, r) = (Res esxH)s=(−A1)1/α
+ (Res esxH)s=(−A1−A0λ2

n)
1/α ,

=
e(−A1)

1/αx

αA2
− 2

α

∞∑
n=1

e(−A1−A0λ
2
n)

1/αxJ0 (λnr)

λn [A2J1 (λn) + λnJ0 (λn)]
.(29)

Inserting (29) into (14), and after simplifying, we obtain the solution u(x, r) as

(30) u(x, r) = − 1

α
e(−A1)

1/αx +
2

α

∞∑
n=1

A2e
(−A1−A0λ

2
n)

1/αxJ0 (λnr)

λn [A2J1 (λn) + λnJ0 (λn)]
+ Eα (−A1x

α) ,

Eq. (18) implies

(31) A2 =
λnJ1 (λn)

J0 (λn)
.

Substituting (31) into (30), yields

(32) u(x, r) = − 1

α
e(−A1)

1/αx +
2

α

∞∑
n=1

λnJ1 (λn) J0 (λnr) e
(−A1−A0λ

2
n)

1/αx

(A2
2 + λ2n) J2

0 (λn)
+ Eα (−A1x

α) ,

As α→ 1, Eq. (32) reduces to

(33) u(x, r) = −e−A1x + 2

∞∑
n=1

λnJ1 (λn) J0 (λnr) e
−(A1+A0λ

2
n)x

(A2
2 + λ2n) J2

0 (λn)
+ E1 (−A1x) ,

which can be simplified to

(34) u(x, r) = 2

∞∑
n=1

λnJ1 (λn) J0 (λnr) e
−(A1+A0λ

2
n)x

(A2
2 + λ2n) J2

0 (λn)
,

where E1 (−A1x) = e−A1x. The solution (34) is identical to the same result obtained by Biswas et al. [4]

for the chlorine decay model with classical partial derivative with respect to x.
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4. Results and Discussion

According to Biswas et al. [4], the dimensionless cup-mixing average concentration is defined by

(35) uav = 2

∫ 1

0

u(x, r) rdr.

Substituting (32) into (35), yields

(36) uav =

(
Eα (−A1x

α)− 1

α
e(−A1)

1/αx

)∫ 1

0

2rdr + 4

∞∑
n=1

λnJ1 (λn) e(−A1−A0λ
2
n)

1/αx

(A2
2 + λ2n) J2

0 (λn)

∫ 1

0

rJ0 (λnr) dr,

or

(37) uav = Eα (−A1x
α)− 1

α
e(−A1)

1/αx + 4

∞∑
n=1

J2
1 (λn)

(A2
2 + λ2n) J2

0 (λn)
e(−A1−A0λ

2
n)

1/α
x.

Implementing the relation (31) we have

(38) uav = Eα (−A1x
α)− 1

α
e(−A1)

1/αx + 4

∞∑
n=1

A2
2

λ2n (A2
2 + λ2n)

e(−A1−A0λ
2
n)

1/α
x.

If the pipe walls act as a perfect sink, i.e., V ∗0 →∞ or A2 →∞, then the cup-mixing average concentration

is obtained from Eq. (38) by the limit:

(39) uav = Eα (−A1x
α)− 1

α
e(−A1)

1/αx + 4 lim
A2→∞

( ∞∑
n=1

A2
2

λ2n (A2
2 + λ2n)

e(−A1−A0λ
2
n)

1/α
x

)
,

which gives

(40) uav = Eα (−A1x
α)− 1

α
e(−A1)

1/αx +

∞∑
n=1

4

λ2n
e(−A1−A0λ

2
n)

1/α
x,

where λn’s are the roots of J0 (λn) = 0. Moreover, if V ∗0 → 0 or A2 → 0 (i.e., the pipe walls are inert and

no chlorine consumption takes place at the walls), then u(x, r) in Eq. (19) reduces to

(41) u(x, r) = Eα (−A1x
α) ,

and accordingly,

(42) uav = 2

∫ 1

0

Eα (−A1x
α) rdr = Eα (−A1x

α) .
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Following Biswas et al. [4], we consider the first three terms of the series (38), hence, three roots λ1, λ2,

and λ3 of Eq. (18) are to be used. Table 1 presents the three roots λ1, λ2 and λ3 of Eq. (18) at different

values of A2 in the range 0.01 ≤ A2 < 1. The roots are calculated using the command “FindRoot” in

MATHEMATICA. In Tables 2 and 3, the values of λ1, λ2 and λ3 are listed for selected values of A2 in the

range 1 ≤ A2 < 10 and in the range 10 ≤ A2 < 1000, respectively.

Table 1. The first three roots 1 ,  2 , and 3 of Eq. (27) at different values of A2 in the range

.101.0 2  A  

A2  1   2  3  

0.01 0.141245 3.83431 7.01701 

0.1 0.441682 3.85771 7.02983 

0.2 0.616975 3.88351 7.04403 

0.5 0.940771 3.95937 7.08638 

 

Table 2. The first three roots 1 ,  2 , and 3 of Eq. (27) at different values of A2 in the range

.101 2  A  

A2  1   2  3  

1 1.25578 4.07948 7.1558 

2 1.59945 4.29096 7.28839 

5 1.98981 4.71314 7.61771 

 

Table 3. The first three roots 1 ,  2 , and 3 of Eq. (27) at different values of A2 in the range

.100010 2  A  

A2  1   2  3  

10 2.1795 5.03321 7.95688 

50 2.35724 5.4112 8.48399 

100 2.3809 5.46521 8.56783 

 

The curves of the cup-mixing average concentration uav are depicted in Figs. 1-4 versus A1, at the outlet

x = 1 of a pipe, for several values of A0 and A2 when α = 1/3. Figure 1 indicates that the uav is a decreasing
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function in the parameter A1 in the absence of A2 (i.e., A2 = 0). However, the behavior of uav is different

in the case A2 6= 0 where uav decreases in two subdomians of A1 and increases in a certain domain. This

last conclusion can be also confirmed and seen in Figs. 2-4 for the curves of uav when A2 has a specified

nonezero value, i.e., A2 doesn’t vanish.

The influence of the fractional order α on the cup-mixing average concentration uav is displayed in Fig.

5. It can be seen from this figure that uav is a decreasing function in the full domain of the parameter A1

when α = 1 (classical derivative) of while uav is of different behavior when α = {1/3, 1/5, 1/7} (fractional

derivative). The discussion above may give some lights about the modeling of chlorine decay in view of the

fractional calculus.

A2=0.0

A2=0.1

A2=0.3

A2=0.5

2 4 6 8 10
A1

-2.0

-1.5

-1.0

-0.5

0.5

1.0

uav

Figure 1. The cup-mixing average concentration uav versus A1 at different values of A2

when α = 1/3 and A0= 1.4.
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A2=1

A2=3

A2=5

A2=7

2 4 6 8 10
A1

-1.0

-0.5

uav

Figure 2. The cup-mixing average concentration uav versus A1 at different values of A2

when α = 1/3 and A0 = 1.4× 10−3.

A2=10

A2=20

A2=30

A2=40

2 4 6 8 10
A1

-1.5

-1.0

-0.5

uav

Figure 3. The cup-mixing average concentration uav versus A1 at different values of A2

when α = 1/3 and A0 = 1.4× 10−2.
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A2=100

A2=200

A2=300

A2=400

2 4 6 8 10
A1

-2.0

-1.5

-1.0

-0.5

uav

Figure 4. The cup-mixing average concentration uav versus A1 at different values of A2

(higher values) when α = 1/3 and A0 = 1.4× 10−2.

α=1

α=1/3

α=1/5

α=1/7

2 4 6 8 10
A1

-6

-5

-4

-3

-2

-1

uav

Figure 5. Influence of the fractional order α on the cup-mixing average concentration uav

when A0 = 1.4 and A2 = 0.5.
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5. Conclusion

A possible generalization of the transport model describing the chlorine concentration decay in pipes

was analyzed. The exact solution of the generalized model was obtained using the LT and the method of

residues. The obtained exact solutions reduced to the corresponding published solutions as the fractional

order α tends to one. Analytical expression for the dimensionless cup-mixing average concentration was

deduced. The effects of the impeded parameters on the dimensionless cup-mixing average concentration

were discussed and analyzed. The results showed that the behavior of the dimensionless cup-mixing average

concentration in view of the fractional calculus is completely different than its behavior using the classical

calculus.

Appendices:

A. Residues method

A basic theorem for obtaining the inverse LT using the method of residues is given below.

Theorem 1: The inverse LT of a function H(s, r) using the method of residues is given by h(x, r) =

Sum of residues of esxH(s, r) at all poles of H(s, r), see Ref. [25] for details.

B. Properties of Bessel functions

The Bessel functions J0(y), J1(y), and J2(y) are defined by

J0(y) =

∞∑
k=0

(−1)k

(k!)
2

(y
2

)2k
,(B.1)

J1(y) =

∞∑
k=0

(−1)k

k!(k + 1)!

(y
2

)2k+1

,(B.2)

J2(y) =

∞∑
k=0

(−1)k

k!(k + 2)!

(y
2

)2k+2

,(B.3)
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and satisfy the properties:

d

dy
(J0(λy)) = −λJ1 (λy)(B.4)

d

dy
(J1(λy)) =

λ

2
(J0(λy)− J2(λy)) ,(B.5)

yJ2(y) + yJ0(y) = 2J1(y).(B.6)
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