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Abstract. The problem of intersecting two parametric surfaces has been one of the main technical chal-

lenges in computer-aided design, computer graphics, solid modeling, and geometrics. This paper aims at

reducing and minimizing time and space required for the computations process of parametric surface inter-

section. To do this, a new numerically accelerating method based on continuation technique was utilized

first by calculating a starting point, and second by tracing sequential points along the intersection curve fol-

lowing Broyden’s method. Two factors have been identified as influential in controlling component jumping:

initial points and step size. Test examples of intersecting two parametric surfaces demonstrated that this

method was highly efficient with high-speed parametric solution. The intersection results are often given as

curve’s points.

1. Introduction

The intersection between two parametric surfaces has been an incessantly fascinating yet challenging topic

in algebraic geometry because it has significant applications in computer graphics, modeling and computer-

aided geometric design. The applications of this geometrical algebraic notion cover a wide-range of varying

computerized processes including simulation of manufacturing processes, boundary evaluations, finite element

of mesh generations, and contouring of scattered data. For its graphically-oriented signification, the topic
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has been of a great appeal to young and old researchers in computing arena. With the mounting interest

in the field of computing designs, intersecting two surfaces in particular became the focus of several studies

in the last decade of the millennium. A cataloguing survey of these studies may include, among many

others, Chapter 12 of [1] Hoschek and Lasser which presented a comprehensive overview to the problem

of intersecting free-form curves and surfaces; Patrikalakis’s [2] review of the surface-surface intersection

(SSI) methods which developed between (1988-1992); Farin’s [3] SSI bibliography of 50 references, including

techniques developed in the era of 1968–1990. Patrikalakis and Maekawa [4, 5] proposed a new results

developed in the late 90s, containing an extensive body of SSI literature. On the other hand, special styles of

surfaces such as sweep surfaces or torus were studied in [6]. A new algorithm for torus/torus intersection was

introduced in [7]. Ku-JinKim [8] suggested a system to calculate all the circles in the intersection curve of

two tori established on the geometric properties of the circles included in a torus. Recent studies include [9]

in which an efficient and robust technique using a Bounding Volume Hierarchy (BVH) for computing the

intersection curve of two freeform surfaces has been discussed. Numerous methods have been suggested to

ray trace parametric surfaces, such as NURBS or Bézier surfaces. Nishita et al. [10] examined the clipping

algorithm for computing the points at which a ray intersects a rational Bezier surface patch. Campagna et

al. in [11] extended and optimized the Nishita et al. algorithm. To speed up Nishita’s method, Wanget

al. [12] combined Bezier-clipping ray coherency and Newton iterations. For computing the self–intersection

and intersection curve(s) of two biquadratic B´ezier surface patches, Chau, Stéphane, et al. [13] introduced

three symbolic–numeric procedures. In [14], Sylvester matrix was used to construct a 9th degree polynomial

coefficients of two cubic B´ezier curves for getting the intersection points of the aforementioned curves

through computing the real roots of this polynomial. Alsaidi, R. A. M [15] presented two methods for

computing the intersection points of two parametric surfaces and one technique for computing the start

point based on extended Newton method. These methods gave an acceptable accurate result for computing

the intersection curve between two surfaces. Continuation technique among these methods uses extended

Newton method frequently. However, Newton method has many disadvantages such as both the Jacobian

matrix and its inverse actions should be calculated for each iteration which consumes quite time depending

on the size of problem system. To overcome this problem, this work uses new accelerating methods known

as Quasi-Newton methods or Broyden’s method [16] instead of Newton method. The paper aims to solve the

dragging problem of intersection parametric surfaces including biquadratic B´ezier form surface intersection

by optimizing Alsaidi’s work [15] through minimizing the required memory and rendering the computations

as simple as possible. In the next section, the problem will be stated. In section 3, Newton method and

Broyden’s method are recalled and compared. The developed technique is explained in section 4. Section 5

deals with the numerical problems so as to compare the develop method with Alsaidi’s work [15]. Section 6

contains summary and the concluding remarks of this work.
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2. Problem Statement

Let S1(u, v) and S2( s, t) be two parametric surfaces defined as:

S1 =


X1(u, v)

Y 1(u, v)

Z1(u, v)

 and S2 =


X2(s, t)

Y 2(s, t)

Z2(s, t)


Then the problem of intersection between them involves the setting

S1(u, v) = S2(s, t)⇒ S1(u, v)− S2(s, t) = 0

which can be interpreted as three nonlinear polynomial equations in four unknowns (u, v, s, t) as:

(2.1) C(u, v, s, t) =


X1(u, v)−X2(s, t)

Y 1(u, v)− Y 2(s, t)

Z1(u, v)− Z2(s, t)

 =


f1(u, v, s, t)

f2(u, v, s, t)

f3(u, v, s, t)

 =


0

0

0


This system can be solved by computing the set

P =
{

(u, v, s, t)ε[0, 1]4||C(u, v, s, t) = S1(u, v)− S2(s, t) = 0
}

which is defined as a curve in four-dimension space C(u, v, s, t) = (u(α), v(α), s(α), t(α)) On the other hand,

two biquadratic B’ezier surfaces X(u, v) and Y(s, t) are defined by

X(u, v) =
∑2

i=0

∑2
j=0 PijBi(u)Bj(v), Y (s, t) =

∑2
i=0

∑2
j=0 CijBi(s)Bj(t),

where Pij and Cij are restricted to be in Q3, and the quadratic Bernstein polynomials is defined as

Bi(u) =

 2

i

ui(1 − u)2−i Consequently, the intersection curve is computed by solving the following

system X(u, v) = Y(s, t) which is represented by three non-linear equations and four unknown variables.

Note that the intersection curve is as in [0, 1]4.

However, there are many numerical techniques for solving these equations. This paper focuses on con-

tinuation method [15, 17, 18] which is efficient in both cases of parametric surface and biquadratic Bezier

surface.

3. Developed method

In this work, the computation system of the intersection points between two parametric surfaces consists

of two different and successive phases: first, calculating the starting point, then tracing sequential points

along the intersection curve [15,19].

3.1. Computing a starting point. As mentioned above, the intersection problem can be viewed as solving

the system of equation 2.1. There are many numerical methods to solve this problem such as Newton method

which is used in many works such as Alsaidi’s [15]. However, the Newton’s method has the disadvantage

that the Jacobian matrix and its inverse should be calculated at each iteration. This implies that the form of
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the iterative procedure for Newton’s method takes longer time. This work, consequently, utilizes Broyden’s

technique to avoid this problem. In this approach, an approximation matrix is employed instead of the

Jacobian matrix. The approximation matrix can advantageously be changed at each iteration. In this way,

the Broyden’s iterative expression is derived as:

xn+1 = xn −A−1C (xn)

Here is An defined as:

An = An−1 +
yn −An−1Ansn

‖sn‖22
sTn

Where yn = Cn − Cn−1 and sn = xn − xn−1. For a more detailed treatment the reader is encouraged to

consult [16]. For the intent of simplicity, the following algorithm summarizes the steps of the Broyden’s

technique to compute the starting point:

Algorithm 1 (Broyden’s Method).

Input: The function matrix C of 2.1.

An initial point given x0 = (u0, v0, s0, t0).

A given tolerance ε.

Number of iterations M.

(1) Evaluating C (x0).

(2) Computing the Jacobian matrix

J(u, v, s, t) =


∂f1
∂u

∂f1
∂v

∂f1
∂s

∂f1
∂t

∂f2
∂u

∂f2
∂v

∂f2
∂s

∂f2
∂t

∂f3
∂u

∂f3
∂v

∂f3
∂s

∂f3
∂t


(3) Since in this stage there is not enough information to calculate A0, set L = 04 and Aa = J (x0) ⇒

A−10 = I−1 (x0), viz the Jacobian matrix J is computed at initial guess x0.

(4) Extracting the new point by x1 = x0 −A−10 C (x0)

(5) Evaluating C
(
x1
)
.

(6) Calculating y1 = C (x1)− C (x0) and s1 = x1 − x0.

(7) Estimating st1A
−1
0 y1.

(8) Computing A−11 = A−10 +
(

1
st1A

−1
0 y1

) [(
s1 −A−10 y1

)
st1A

−1
0

]
(9) Extracting next point via x2 = x1 −A−11 C (x1) , L = L+ 1

(10) The previous process is repeated by updating initial guess (x0 = x2) in the next stage until the

threshold is created (i.e. C (x2) − C (x1) ≤ ε or L > M). This indicates that the starting point

(i.e.x1 = (u1, v1, s1, t1)) is computed.
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The sequential intersection points can be traced along the tangent direction by the following procedures:

(i) Determination of the tangent unit vector to the path which is uniquely defined by A · λ = 0 and

represented by the solution by q.

(ii) Selection the desired distance 4 and the tangent vector direction.

(iii) Extraction of the initial guess via x0 = x1 + (q ×4), where 4 is the step size.

(iv) To find next point, solve eq. 2.1 using Broyden’s technique.

(v) Evaluation of the relation error (E). If ≤ ε, then the next point is computed and then go to Step III.

(vi) Else, go to step (iv).

3.2. Type convergence of Broyden’s Method. It should be noted that Broyden’s technique converges

superlinearlly. This indicates that limn→∞
‖xn+1−p‖
‖xn−p‖ = 0, where p is the solution to the system C(x) = 0,

and xn and xn+1 are successive approximations to p.

4. Numerical implementations

The develop system has been applied and its performance was measured by some representative numerical

applications. All the computations were performed on a computer with 8 GB RAM and 2.50 GHz Intel Core

i5 processor and the code was applied in MATLAB. The average of accuracies for every experiments was

100%.

Figure 1. Two biquadratic Bezier surfaces B1 and B2
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4.1. First example: Consider two biquadratic surfaces (B1 and B2 ) having the following control points:

B1(u, v) =


(
1
7 , 0,

3
5

) (
3
5 ,

1
5 ,

3
4

) (
1, 0, 7

10

)
(
3
8 ,

4
9 ,

2
3

) (
2
3 ,

3
4 ,

1
3

) (
6
7 ,

3
8 ,

5
7

)
(
1
5 ,

6
7 ,

4
7

) (
3
4 ,

7
8 ,

3
4

) (
7
8 ,

7
9 ,

5
8

)


B2(s, t) =


2
7 ,

1
7 ,

2
5

) (
3
5 ,

1
10 ,

2
3

) (
1, 0, 45

)
(
3
8 ,

4
9 ,

2
3

) (
1
3 ,

1
2 , 1
) (

5
7 ,

3
8 ,

2
7

)
(
1
5 ,

6
7 ,

3
7

) (
3
4 ,

7
8 ,

5
8

) (
7
8 ,

4
7 ,

1
2

)
 The two Bezier’s surfaces are displayed in figure 1.

It is worth pointing out here that the performance of the proposed system needs to select the appropriate

initial guess which was chosen as x0 = (0.9994, 0.2501, 0.9994, 0.2502) and the step size was determined as

0.02. The resulting intersection curve between B1 and B2 as points is shown in figure 2.

Figure 2. The intersection curve points between B1 and B2 on the u,v space

A Comparison between the time performance of proposed system and Alsaidi’s work is done. It is provided

for some points in Table 1.
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Kth

Point
Develope’s Point Coordinates Alsaidi’s Point Coordinates Number of iterations Time performance in seconds

Developed Alsaidi Developed Alsaidi

1st (0.7307, 0.2501, 0.7936, 0.3184) (0.7274, 0.2327, 0.7849, 0.2990) 12 6 0.0479425 5.1307965

30th (0.5193, 0.5305, 0.6851, 0.6779) (0.5367, 0.5272, 0.7021, 0.6699) 3 3 0.010677 0.1008304

61at (0.1332, 0.6325, 0.2210, 0.7251) (0.1474, 0.6275, 0.2400, 0.7278) 3 3 0.013063 0.066004

100in (0.2801, 0.2146, 0.2897, 0.2206) (0.2643, 0.2274, 0.2758, 0.2336) 4 3 0.017218 0.071702

127th (0.6313, 0.1290, 0.6533, 0.1722) (0.6160, 0.1248, 0.6355, 0.1653) 3 3 0.01235 0.062806

166th (0.5656, 0.5205, 0.7289, 0.6544) (0.5791, 0.5164, 0.7409, 0.6460) 4 3 0.017066 0.067136

200th (0.1389, 0.6306, 0.2286, 0.7936) (0.1493, 0.6268, 0.2425, 0.7281) 3 3 0.018479 0.078431

Table 1. A comparison between the time performance

Table 1 shows that the present system runs faster and achieves the best performance in the first example.

4.2. Second example: Given the two surfaces

S1(u, v) =


u

v

u2 + v2

 and S2(s, t) =


s

t

45−s2−t2
5

.

Figure 3 shows the two surfaces.

Figure 3. Two parametric surfaces S1(u,v) and S2(s,t)

Ideally specify an initial point[u0, v0, s0, u0] = [1, 1, 1, 1]. After the introducing system has been applied,

the outcome intersection curve represented as points (i.e. 151 points) is illustrated in figure 4.
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Figure 4. The intersection curve points between S1 and S2 on the u,v space

It is to be noted that the experiment was performed under the same environment which Alsaidi [15] used.

The comparison results indicate that the developed system consistently outperformed the Alsaidi’s methods

as shown in Table 2.

2* Kth Point Develope’s Point Coordinates 2* Alsaidi’s Point Coordinates Number of iterations Time performance in seconds

Developed Alsaidi Developed Alsaidi

1st (1, 2.5495, 1, 2.5495) (1.936, 1.936, 1.936, 1.936) 9 6 0.0097 0.299215

25th (−2.092, 1.767,−2.092, 1.767) (−1.198, 2.463,−1.198, 2.463) 4 3 0.003846 0.110219

71st (0.257,−2.726, 0.257,−2.726) (−0.85,−2.603,−0.85,−2.603) 4 3 0.003947 0.126905

105th (2.633, 0.754, 2.633, 0.754) (2.7148,−0.3605, 2.7148,−0.3605) 4 3 0.004042 0.118836

127th (0.433, 2.704, 0.433, 2.704) (1.473, 2.31, 1.473, 2.31) 4 3 0.003772 0.129153

151st (−2.419, 1.284,−2.419, 1.284) (−1.702, 2.146,−1.702, 2.146) 4 3 0.004643 0.132114

Table 2. Showing the results of the comparison between in example2.

Significantly observed, Alsaidi’s work-run took an average of 0.121591624 Sec which is considerably more

than the average of 0.004146306 sec of the proposed system. Hence, it can be said that the developed system

offers the best quality–runtime ratio.

5. Analysis

The execution of the proposed system is significantly affected by the following factors: initial guess and

step lengths through tracing the control component jumping. The effect of these parameters is investigated

in the previous example.
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5.1. Effect of initial guess: It is well-known that the select of an initial guess is very efficient in the

computation of any proposed method. However, there is no common solution that fits all concrete problems

or cases. There are many works that set some criteria to determine the initial guess but they did not reach the

efficiency in problem solving. Consequently, the best choice of the initial guess in this work was determined

experimentally by taking into consideration that the initial guess is close to the solution (see table 3 .

Initial guess Run-time(average)

[1, 1, 1, 1] 0.004146305960265

[0, 1, 1, 1] 0.003603891390728

[1, 0, 1, 1] 0.003603891390728

[1, 1, 0, 1] 0.004146305960265

[1, 1, 1, 0] 0.004146305960265

[1, 1, 0, 0] 0.003347392052980

[1, 0, 0, 0] 0.002750917880795

[0, 0, 0, 0] convergence not achieved

Table 3. Influence of initial guess on Run-time and convergence

5.2. Effect of step size: The efficiency of the tracing in a proposed system is dependent on getting good

step size to avert bisection. Nevertheless, too small step size increases the number of segments that are

required for approximating the intersection curve within a given tolerance [20]. In this work, the effect was

investigated through the performance of the develop system with different size of step lengths while another

parameter was kept fixed. The result shows in table 4.

Size length Run-time(average)

0.02 0.003288

0.2 0.004146306

0.6 0.003288048344371

Table 4. Effect of step size on Run-time and convergence
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(a) step size=0.2 (b) step size=0.06 (c) step size=0.02

Figure 5. plots of effect of step size

6. Conclusion

This work introduces a develop continuation algorithm method based on Broyden’s technique to compute

points of curve yielded from an intersection between two parametric surfaces.

It has experimentally been found that the proposed algorithm can be applied to a variety of parametric

surfaces efficiently. The comparisons between the developed technique and Alsaisi’s work has been applied

to measure out and validate the efficacy of the developed method. Moreover, the effect of factors as well as

possible restrictions has been numerically examined.

The main contribution of this research work has been the reducing of the dragging intersection problem

by speeding up the computation process. The developed system offers the best quality–runtime ratio and

achieves the best performance in biquadratic Bezier surfaces.

It is recommended to extend the application of the current intersection technique on implicit surfaces and

rational B-spline surfaces to more general and complex surfaces.
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