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SOME REMARKS ON G-METRIC SPACES AND FIXED
POINT THEOREMS

VESNA COJBASIC RAJIC

Abstract. We notice some remarks on G-metric spaces and the
fixed point results of contractive mappings defined on such
spaces. Our results generalize, extend and complement recent
fixed point theorems established by ]Jleli and Samet [M. Jleli
and B. Samet, Remarks on G-metric spaces and fixed point
theorems, Fixed Point Theory Appl. 2012:210 (2012)].

1. Introduction

Mustafa and Sims [8, 12] introduced G-metric spaces, as a generalization
of a metric space. Many fixed point results on such spaces can be found in
[2], [3], [6], [10], [13], [14], [15], [16], [18], [19], [20]. There is a close relation
between a usual metric space and a G-metric space ([9-14]). Jleli and Samet
[5] observed that some fixed point theorems in G-metric space can be
concluded by some existing results in quasi-metric and metric space (see
[7]). Actually, the authors concluded that d(x, y) = G(x, y, y) forms a quasi-
metric. The aim of this paper is to continue the study of the G-metric and
quasi metric space. The following definitions and results will be needed in
the sequel.

Definition 1.1. [12] Let X be a nonempty set. Suppose that G: X x X x X —
[0,+90) is a function satisfying the following conditions:
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(1) G(x,y,z)=0ifand only if x =y = z;
(2)0<G(x,x,y) forallx, y e Xwithx #y;
(3) G(x, x,y) < G(x,y,z) forall x,y, z € X withy #z;
(4) G(x,y, z) = G(x, z, y) = G(y, z, x)=...(symmetry in all three variables);
(5) G(x,y,2z) < G(x,a,a)+ G(a,y,z) forallx,y,z,a € X.

Then G is called a G-metric on X and (X,G) is called a G-metric space.

Definition 1.2. [5] A G-metric space (X, G) is said to be symmetric if G(x, y,
y)=G(y, x, x) forallx,y € X.

Note that, if (X,G) is symmetric than many fixed point theorems on G-
metric spaces are particular cases of existing fixed point theorems in
metric spaces (see [5]). Here, we discuss the non-symmetric case.

Definition 1.3. [5] Let X be a nonempty set and d: x x x - [0,») be a given

function which satisfies
1) d(x,y)=0 if and only if x=y;
2) d(x,y) <d(x,z) + d(z,y) for any points x,y,ze X.

Then d is called a quasi-metric and the pair (X, d) is called a quasi metric
space.

Examples 1.4. Any metric space is a quasi-metric space, but the converse is
not true.

(i) Let (X, d) = ([0,+oc], d), where d is given by

[y —x if x<vy,
d(x,y) =1 . .
[2(x—y) if x>y.

Then (X,d) is a quasi-metric space, which is not a metric space.

(i)  Let (X, d)=(R, d), where d is given by

if x =y,

JO
d(x,y) = ) .
[|y| if x=y.
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Then (X,d) is a quasi-metric space, which is not a metric space.

(iii) Let (X, d) = ([0,1], d), where d is given by

ifx,ye X andy=#0o0orx=y =0,

[
d(x,y)=
§! ify=0and 0< x<1.

Then (X,d) is a quasi-metric space, which is not a metric space.

Definition 1.5. [5] Let (X, d) be a quasi-metric space, {x.} be a sequence in
X, and x € X. The
sequence {x,} converges to x if and only if

limng)oo d(xn, .’)C) = llmn%oo d(x, Xn) = 0.

Definition 1.6. [5] Let (X, d) be a quasi-metric space and {x,} be a sequence
in X. We say that
{x.} is left-Cauchy (resp. right-Cauchy) if and only if for every ¢ > 0 there
exists a positive integer N = N(¢) such that d(x,, x») < e foralln > m > N
(resp.m > n > N).

Definition 1.7. [5] Let (X, d) be a quasi-metric space and {x.} be a sequence
in X. We say that

{x.} is Cauchy if and only if for every ¢ > 0 there exists a positive integer N
= N(¢) such that d(x,, x») < € for all m, n > N.

Note that a sequence {x,} in a quasi-metric space is Cauchy if and only if it
is left-Cauchy and right-Cauchy.

Definition 1.8. [5] Let (X, d) be a quasi-metric space.We say that

(1) (X, d) is left-complete if and only if each left-Cauchy sequence in X is
convergent;

(2) (X, d) is right-complete if and only if each right-Cauchy sequence in X
is convergent;
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(3) (X, d) is complete if and only if each Cauchy sequence in X is
convergent.

Theorem 1.9. [5] Let (X, G) be a G-metric space. Let d : X x x - [0,») be the
function defined by d(x, y) = G(x, y, y). Then

(1) (X, d) is a quasi-metric space;

(2) {x.} = X is G-convergent to x € X if and only if {x,} is convergent to x in
(X, d);

(3){xn} = X is G-Cauchy if and only if {x,} is Cauchy in (X, d);

(4) (X,G) is G-complete if and only if (X, d) is complete.

Lemma 1.10. [4, 17] Let (X, d) be a quasi metric space and let {y.} be a
sequence in X such that

hmnaco d (yn, yn+1) =0 and hmn»oo d (ym—l, yn) =0.

If {y.} is not a left-Cauchy sequence (resp. right-Cauchy) in (X, d), then
there exist € > 0 and two sequences {m(k)} and {n(k)} of positive integers
such that n(k) > m(k) > k (resp. m(k) > n(k) > k) and the following four
sequences tend to e+ when k — o :

d(ym(k) , yn(k)) ’ d(ym(k), yn(k)+1) ’ d(ym(k)—l, yn(k)) , d(ym(k)—l, yn(k)+1) .
(resp. d(Yuw, Ymw ) , AYntort, Ymw) , AYnto, Yo-1) , AWty Ymio-1) )-

Proposition 1.11. [1] Let f and g be weakly compatible self maps of a set X.
If f and ¢ have a unique point of coincidence w = fx = gx, then w is the
unique common fixed point of fand g.

Theorem 1.12. [5] Let (X,G) be a G-metric space. Let 4 : X x X —[0,) be
the function defined by d(x, y) = G(x, v, y). Then

(1) (X, d) is a quasi-metric space;
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(2) {x.} = X is G-convergent to x € X if and only if {x,} is convergent to x in
(X, d);

(3){xn} = X is G-Cauchy if and only if {x,} is Cauchy in (X, d);

(4) (X,G) is G-complete if and only if (X, d) is complete.

Remark 1.13. [5] Every quasi-metric induces a metric. If (X, d) is a quasi-
metric space, then the function § : X xX—[0,) defined by é(x, y) =
max{d(x, y), d(y, x)}is a metric on X.

2. Main results

Definition 2.1. The two classes of following mappings are defined as

V={ | :[0,0) - [0,) is continuous, nondecreasing and  ~'({0}) ={0}},
¢ ={0| ¢:[0,0) = [0,0) is continuous and ¢'({0}) ={0}}.

Our first main result is inspired from Theorem 3.2. [5] and is more
general than it.

Theorem 2.2. Let (X, d) be a complete quasi-metric space and f, g: X — X
be two mappings
satisfying

¥ (@d(fx, fy) < W(d(gx, gy)) — (d(gx, gy)) (2.1)

for all x, y €X, where ¥ €V, 6. If the range of ¢ contains the range of f
and f (X) or g (X) is a closed subset of X, then f and ¢ have a unique point
of coincidence in X. Moreover, if f and g are weakly compatible, then f and
¢ have a unique common fixed point.

Proof. Let us prove first that the point of coincidence of f and g is unique
(if it exists). Suppose that wi and w, are two distinct point of coincidence of
fand g. From this follows that there exist two points u; and u, such that fu;
= qu1 = w1 and fuy = gup = wy.Then (2.1) implies that
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¥ (d (wi,w2)) = B(d (fus, fuz)) < (@ (gu1, g112))) — O(d(Q1h, gu2))
= P((d(wr,w2))) = ¢ (d(wr,w2)) < P((d(wr,w2))) ,

a contradiction.

Now, let xo be an arbitrary point in X. Choose a point x;€ X such that fx, =
gxi. This can be done, since the range of ¢ contains the range of f.
Continuing this process, having chosen x, in X, we obtain x,.1in X such
that fx, = ¢x,.1. Consider the two possible cases.

Suppose that gx, = gx..1 for some neN. Hence, gx. = fx, is a point of
coincidence and then the proof is finished. Thus, suppose that gx, # gxun
for any n > 0. In this case, we have

U (d(g2m1, §Xn)) = U (Ad(fxn, f20-1)) SO (A(QXn, §Xn1))=O(d (§Xn, gXn1)) < U (d (g2,
QXn1)) (2.2)

Now, according to the properties of function 1 it follows that the sequence
{d(gxn1, gx4)} is a decreasing sequence of positive numbers. Therefore,
d(gxns1, gxn)— 1 2 0 when n — . Passing to the limit in (2.2) when n — o,
we obtain that ¥ (r) < ¥ (r) — ¢(r) and r = 0 by the properties of functions
eV, ¢e®. Thus, we have

h‘.mn%w d(an+1, an)= 0.
Using the same technique, we also have

limy e d(gxn, §Xni1)= 0.
We next prove that {gx,} is a Cauchy sequence in the quasi-metric space (X,
d), that is, {gx.} is a left-Cauchy and right-Cauchy. It is sufficient to show
that {gx,} is a left-Cauchy (resp. right-Cauchy) sequence. Suppose that is

not a case. Then using Lemma 1.8. we get that there exists ¢ >0 and two
sequences {n(k)} and {m(k)} of positive integers and sequences
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d(]/m(k) ’ yn(k)) , d(]/m(k) , yn(k>+1) , d(]/m(k)—l, Ynioy ) , d(ym(kH, yn<k)+1)

all tend to e+ when k - . Applying condition (2.1) to elements x=xuand
y=Xuw+1 and putting y,=fx,=g¢x..1 for each n>0, we get that

W Ad(foxmay, 1)) = Y (@AY, Yuior1)) < YA(§Xmw, §Xntr+1))—HA(§Xmpr, §Xnity+1))
(2.3)

= WAYmwr1, Ynw)) = HAYmio-1, Yuw))

Letting k —o in (2.3) we obtain y(g)<y(¢)- ¢(s) which is a contradiction if
e>0.

This shows that {gx.} is a left-Cauchy sequence in the quasi-metric
space (X, d). Similarly, we can show that {gx,} is a right-Cauchy sequence
in the quasi-metric space (X, d).

Since g(X) is closed in (X, d), there exists u€X such that

limy e d (gX4, gu) = limused (gu, gxx) = 0. (2.4)

Now, we have

¥ (d(fxn, fu)) < Pd(gxn, gu)) — $(d(gxn, g11))

or

P (d(gxnn, fu)) < Y(d(gxn, gu)) — (A(gXn, S11))- (2.5)

Letting n—o in (2.5) we have lim,.. d (gx,, fu)=0. Similarly, we have
limued (fu, gx.) = 0. It follows from (2.4) and (2.5) that fu= gu. Hence, f
and g have a (unique) point of coincidence. By the Proposition 1.9. fand g
have the unique common fixed point. O
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Corollary 2.3. Let (X, d) be a complete quasi-metric space and f: X — X be
a mapping satisfying
¥ (@(fx, fy) < Wd(x, y)) = ¢(d(x, y)) (2.6)

for all x, y € X, where ) €V, ¢e®. Then f has a unique common fixed point.

Proof: Follows from the Theorem 2.2. by taking g=ix (the identity map).
U

Corollary 2.4. Let (X, d) be a complete quasi-metric space and f,g: X —» X
be two mappings
satisfying

d(fx, fy))< kd(gx, gy)) (2.7)

for all x, y e X and for k < [0,1) . If the range of ¢ contains the range of f and

f (X) or g (X) is a closed subset of X, then f and ¢ have a unique point of
coincidence in X. Moreover, if f and g are weakly compatible, then fand g
have a unique common fixed point.

Proof: Follows by taking {(f)= t and ¢(t)=(1-k)t in Theorem 2.2. This is an
extension of a well-known Jungck theorem on a quasi-metric space.
[

Corollary 2.5. Let (X, d) be a complete quasi-metric space and f: X — X be
a mapping satisfying

d(fx, fy))< kd(x, y)) (2.8)

for all x, y eX and for k €[0,1) . Then f has a unique common fixed point.

Proof: Follows from the Corollary 2.4. by taking g=ix (the identity map).
This is an extension of a Banach contraction principle on a quasi-metric
space. O
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The next theorem is inspired from Theorem 3.3. [5] and is more
general than it.

Theorem 2.6. Let (X, G) be a G-complete metric space and f, g : X — X be
two mappings satisfying

Y (G(fx, fy, fy)) < W(G(gx, gy, &Y)) — HG(8x, gy, 8Y)) (2.9)

for all x, y €X, where ¥ €V, ¢e. If the range of g contains the range of f
and f (X) or g (X) is a closed subset of X, then f and ¢ have a unique point
of coincidence in X. Moreover, if f and g are weakly compatible, then f and
¢ have a unique common fixed point.

Proof: Let us consider the quasi-metric d(x,y)=G(x,y,y) for all x,ye x .
From (2.9) follows

¥ (d(fx, fy)) < ¥(d(gx, gy)) — #(d(gx, gy)),

for all x,y e x . Result follows from the Theorem 2.2.
]

Corollary 2.7. Let (X, G) be a G-complete metric space and f, g : X — X be
two mappings satisfying

Y (G(Fx, fy, ) < WG(x, y, ) = §(G(x, y.y) (2.10)

for all x, y €X, where { €V, 6. If f (X) is a closed subset of X, then f has
a unique common fixed point.

Proof: Follows from the Theorem 2.5. by taking g=ix (the identity map).
U

From Corollary 2.6. follows Theorem 3.3. from [5] when we
consider v as an identical map.
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Theorem 2.8. Let (X, G) be a G-complete metric space and f: X — X be a
mapping satisfying

G(fx, fy, fz) < kG(x, y, z) (2.11)
for all x, y € X, where ke[0,1). Then f has a unique fixed point.
Proof: If we take y=x than from (2.11) follows
G(fx, fx, fz) < kG(x, x, z) (2.12)
If we take y=z than from (2.11) follows
G(fx, fz, fz) < kG(x, z, z). (2.13)
From (2.12) and (2.13) we have
G(fx, fx, f2)+ G(fx, fz, fz) <kG(x, x, z)+ kG(x, z, 2).

Let us consider the metric d  (x,y) =G (x,y,y) + G (x,x,y) forall x,y e x . From
(2.12) follows

dg (fx, fz) <kd; (x,2)

for all x,y e x . Now, f has a unique fixed point by Banach theorem.
O

Most theorems from the Section 3 in [2] can be proved by using
previous method. In that section, proofs are long and not as simple as the
proof of the Theorem 2.8. For example, we prove the next theorem.

The next theorem is inspired from Theorem 3.1. [2] and is more
general than it.
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Theorem 2.9. Let (X,G) be a G-metric space. Let T: X -X and g : X - X be
two mappings
such that

G(Tx, Ty, Tz) < kG(gx, gy, 82) (2.14)
for all x, y, z. Assume that T and g satisfy the following conditions:

(A1) T(X) < g(X),
(A2) g(X) is G-complete,
(A3) T and g are weakly compatible

If k € [0,1), then there is a unique x € X such that gx = Tx = x.

Proof: Like in the Theorem 2.8., let us consider the metric
do (X, ¥) =G (x,y,y)+G(x,x,y) forall x,ye x . From (2.14) follows

dg (Tx,Tz) < kdg (9x,92)

for all x,y e x . Now, f has a unique fixed point by Banach contraction

principle.

The next theorem is inspired from Theorem 3.7. [2]. If we assume
that function ¢ is a superadditive function than the proof is the same as in
Theorem 2.8.

Theorem 2.10. Let (X, = ) be an ordered set endowed with a G-metric and

T: X »X and g: X—X be given mappings. Suppose that the following
conditions hold:

i) (X,G) is G-complete;
ii) T is G-continuous;
iii) T is g-nondecreasing;

o~ o~~~

iv) there exists xoe X such that gxo~ Tx;
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(v) T(X) c g(X) and g is G-continuous and commutes with T;
(vi) there exists a superadditive function ¢ ® (where @ is defined in the
Definition 2.1.) such that for all x, y, z € X with gx™ gy~ gz,

G(Tx, Ty, Tz) < &(G(gx, gY, 82))- (2.15)

Then T and ¢ have a coincidence point, that is, there exists we X such that
gw=Tw.
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