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ABSTRACT. In this paper, we consider a one-dimensional porous system damped with a single weakly non-
linear feedback and distributed delay term. Without imposing any restrictive growth assumption near the
origin on the damping term, we establish an explicit and general decay rate, using a multiplier method and
some properties of convex functions in case of the same speed of propagation in the two equations of the

system. The result is new and opens more research areas into porous-elastic system.
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1. INTRODUCTION
In this paper, we consider the following porous system:
PUtt — Wy — b, + pyus + f:f o (s)ug (z,t —s)ds =0, z € (0,1), t >0,
j¢tt_6¢zx+buw+£¢+O‘(t)g(¢t):0’ CUE(O,l), t>07
u(x,0) =ug (x), ut (2,0) =u; (z), x € (0,1), (1)
¢($a0):¢o (33), d)t(mvo):(bl (.I‘), 336(0,1),
Ug (Oat) = Ug (17t)a ¢(07t) = ¢(17t) =0
e (x, —t) = fo (z,1) in (0,1) x (0,72)
Firstly, to deal with the delay term, we introduce the new variable [17]
Z(‘r7pa8at) = Ut (x,t—ps), T € (0?1)7 14 € (071)7 pe (TlaTQ)a t> 0
Then we obtain
Szt (mapa&t) +zP (m,p,s,t) = 07 T e (071)7 P € (Ovl)a 14 S (7—1772)7 t>0
Then problem (1.1) is equivalent to
putt — fUgy — b¢x + Hiut + f:f IU'Q(S)Z (Z‘, 17ta S) ds = Oa T < (Oa l)a > 07
]¢tt7§¢mm+bux+£¢+a(t)g(¢t):03 %G(O,l), t>07
Szt (xvp757t) +ZP (x7p787t) = 07 T e (071)7 1Y € (071)a P € (7—177-2)7 t>0
w(z,0) =ug (), u (x,0) =u (x), x € (0,1), (1.2)

8]

¢ (2,0) = ¢y (2), ¢ (2,0) = ¢ (2), z € (0,1),
U (0,) = ug (1,2), ¢(0,1) = ¢ (1,1) =
Z(CL‘,p,S,O) fo (I ps) (1'7[)78) ( ) X (Oa 1) X (7—1’7—2)

In recent paper, Apalara in [2] considered the following on-dimensional porous system damped with a

single weakly nonlinear feedback

pUtt — gy — b, =0, z € (0,1), t >0,

]¢tt_6¢xx+bux+£¢+a(t)g(¢t):03 xe(ovl)a t>07
w(z,0) =up (), u(x,0) =u (x), x € (0,1),
¢(x70) :¢O ($)7 ¢t (x,O) :¢1 (x)’ T e (Ovl)a

Uy (Ovt) = Ug (lat)a ¢(07t) :¢(1at) =0

Without in pasing an explicit and general decay rate, he used a multiplier method and some proprieties
of convex functions in case of the same speed of propagation in the both equation of the system. The same

author, in [3] considered a porous-elastic system with memory term acting only on the porous equation, with
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the mixed boundary Neumann-Direchlet conditions, he proved a general decay result, for which exponential
and polynomial decay results are special cases.

Back to system (1.1), it is to be noted that when pu; = 1, = 0 and replacing the term « (t) g (¢,) by the
term fot g(t — $)Uyy (z,5) ds then (1.1) is equivalent to the well-known Timoshenko system of memory type
which is exponentially stable depending of the relaxation function g and provided that the wave speeds of
the system are equal (See [1,15]).

Messaoudi and Fareh [16] investigated the following system:

PUt = Uy + b, — B80,, in (0,1) x (0, 00),
JOu = gy — bug +Eo+mb+ 79, in (0,1) x (0,00),
Py = —qz — Buz — me,, in (0,1) x (0,00),
Toqt —q+ kb, =0, in (0,1) x (0, 00),
and established, using the energy method, an exponential decay result. For more results on the subject,
we refer the reader to [5,10,11,19].

Concerning the weight of the delay, we assume that

T2
[ sl ds <

1

and establish the well-posedness as well as the exponential stability results of the energy F (t), defined by

1 1
E(t) = 5 / [pui + pu? + £6% + 692 + jo; + 2bgu, | dx
0

1 1 1 T2
5 [ sl st dsdpds (1.3)
2 0 0 T1
2. PRELIMINARIES

In this section, we present some materials needed in the proof of our result. We assume « and g satisfy
the following hypotheses:

(H1) «a:R* — Rf is a non-increasing differentiable function;

(H2) g: R — R is a non-decreasing C°-function such that there exist positive constants c;, co, 7 and

G € C! ([0,00)), with G (0) = 0, and G is linear or strictly convex C2—function on (0,7] such that
2+ g% (s) <G (sg(s)) forall |s| <n
c1ls| <lg(s)| < co|s| for all |s| >n
Remark 2.1. Hypothesis (H2) implies that sg (s) > 0 for all s # 0.
* According to our knowledge, hypothesis (H2) with n = 1 was first introduced by Lasiecka and Tataru [13].

They established a decay result, which depends on the solution of an explicit nonlinear ordinary differential

equation. Furthermore, they proved that the monotonicity and continuity of g guarantee the existence of the

function G defined in (H2).
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For completeness purpose we state, without proof, the existence and regularity result of system (1.1). First,

we introduce the following spaces:

H=H!(0,1) x L2(0,1) x H* (0,1) x L?(0,1) x L?((0,1) x (0,1) x (71, 72)), (2.1)
and
H = o€ [H2(0,1)NH!(0,1)] x H(0,1) x [H?(0,1) N H" (0,1)]
xH' (0,1) x L2 ((0,1) x (0,1) x (11,72)),
where

1
2o ={verron: [ vwa=of.
0
H, (0,1) = H'(0,1) x L7 (0,1),
H2(0,1) = {¢ € H*(0,1) : ¢, (0) = ¢, (1) = 0} .
For U = (u,uy, ¢, ¢, 2) , we have the following existence and regularity result:

Proposition 2.1. Assume that (H1) and (H2) are satisfied. Then for all Uy € H, the system (1.1) has a

unique global (weak) solution
ue C(Ry;HL(0,1))NCH (R L2(0,1)), ¢ € C(Ry; H' (0,1)) NCH (Ry5 L2 (0,1)) .
Moreover, if Uy € ’}-[, then the solution satisfies
ue L™ (Ry; HZ (0,1) N HY (0,1)) N Wh™ (Ry; HY (0,1)) N W™ (Ry; L2 (0,1)),
¢ € L™ (Ry; H? (0,1) N Hy (0,1)) N WH™ (Ry; Hy (0,1)) N W (Ry; L*(0,1))
Remark 2.2. This result can be proved using the theory of mazimal nonlinear monotone operators (see [8]).

3. TECHNICAL LEMMAS

In this section, we state and prove our stability results for the energy of system (1.1) by using the multiplier

technique. To achieve our goal, we need the following lemmas.

Lemma 3.1. Let (u, ¢, z) be the solution of(1.2), then we have

1 1
B () < —me / Wdz / o (1) dug (6) da < 0 (3.1)
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Proof. Multiplying (1.2)1, and (1.2)2 by wu¢, ¢, respectively, and integrating over (0, 1), using integration by
parts and the boundary conditions, we obtain
1d [!
2 dt

/01 <>¢tg<¢t>dx—u1/ utdx—/ ut/ (52 (2.1, £.5) dsda

Multiplying (1.2)3 by |uo(8)] z, integrating the product over (0,1)x(0,1)x (71, 72), and recall that z (z,0, s,t) =

(puf + pul + EQF + 65 + i + 2bguy,) da = (3.2)

U, we get

2dt/ / / s |ua(8) 2% (x, p,t, ) dsdpder = —f/ / o (8)| 2% (2,1, ¢, 5) dsdx
+3 / ” / s ()] dsda. (3.3)
0 T1

1 1 1 T2
E (t):—/o a(t)¢tg(¢t)dx—u1/o ufdx—/o ut/ wo(8)z (z,1,t,s) dsdx

1

A combination of (3.2) and (3.3) gives

with
1 T2 1 T2
,/ ut/ 1o (8)z (z,1,t, ) dsdx < 5/ |u2(5)\/ 2da 4 = / / lps (s (x,1,t,s)dsdx
0 T1 T1
then
1 T2 1
< [awogide— (- [l [
0 T1 0
taking (ul — f:f \,uz(s)|> = m, we obtain (3.1). O

Lemma 3.2. Assume that (H1) and (H2) hold. Then, for all Uy € H, the functional

1 bp 1 T
t) :j/ o pdx + —/ cb/ uy (y) dydx (3.4)
0 B Jo 0
satisfies, for any e; >0

Fl(t) < (j. sﬂw)/ (;Stdx—](S/ ¢dx+b]51/ udx+4glu/1ufdx
+(sae+ ) [ Far+ 50 [ (35)

Proof. Differentiating F} (t), taking into account (1.2) using integrating by parts, and Young’s inequality,

F(t) < /(bt x—y&/ ¢dx+bjz€1/udx+ /(bdx—f]cp/ P2 dx

—j/ola(w b9 <¢t>dx+b:/0 qst/o w (y) dyda

bp [t d e
+; ; ¢£ </o ut(y)dy>dx

we obtain



Int. J. Anal. Appl. 19 (6) (2021) 817

By Caucy-Schwartz inequality, it is clear that

1 T 2 1 1 1
/ (/ u (y) dy) dz < / (/ utdac> dzx < / uldz
0 0 0 0 0
1 1 1 e,bj 1 1
F/(t) < j/ qbfd:c—j&/ ¢idx+bjgl/ uidx+p—/ qbidx—gjcp/ P2 dx
0 0 0 de1 o 0

—j/l (t) 69 (6,) de

slb’)/ $2dz (/Omut(y)dy> dz

bp d
— dy ) d
Tl o </0 o) y) ‘
thus we obtain

/ . €1bp ! ! w2
Fi(t) < |7+ qﬁt dx — jé d) dzx + bjey uldr + uydz
0 451M

+(j04()€1+—§3> 1

2

then

9
0
]
Lemma 3.3. Assume that (H1), (H2) and (3.8) hold. Then, for all Uy € H, the functional
1 1
t) = b/ ¢ urdx + b/ Ppuzdx (3.6)
0 0
satisfies, for any eq >0
T\ A2 o °
1o / W2dz + e, / $2dz + a )/ 2(¢,) da
degp
—|-*f/ / o ()] 2% (x,1, 5, 1) dsdx (3.7)

Proof. Simple computaions give

b2 b2 1
Fy(t) = ¢d—7/udx

7/ - dxfbul/ b updx
+7/0 (j)muzdx—f/ pugydx
_% /01 b, /sz wo(8)ug (z,1,t, 8) dsdx — ;)_/01 a(t)uzg (o) dz
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taking into account the fact that

SRS
S

and using young’s inequality

mo < (Fratt) [ <wf+?a<f>>/oluidx
+f€“21p/ dm+a2—/ P*dx + a )/019 (¢;) da
_2/01 5. /T ()2 (z, 1,1, 5) dsda
Lo M sasir < 1 [Tt [ a2 [ [T i1 s dsis

/ LAY b”O) <b§b > L2
Fy(t) < <p+€2 + /¢ x— | — e ja(t) /Ouxdx

1
1 b / u?daz+52—§/ ¢2dx+?a(t)/ 9° (¢,) d
0

degp

_'_77// o (8)| 2% (2,1, 5,t) dsdx

with [7%|15(s)| ds = no O

Lemma 3.4. The functional
1
F5(t) = —p/ upudz (3.9)
0

satisfies, for any ez >0

' noCp by
F5(t) +<,u+ > Jrcpbsg)/o usdx

463 / Oude = ( ) /o1 upde
1o (8)| 22 (2, 1, ¢, ) dsda (3.10)
Sh L

Proof. A simple differentiation of F3 (t), using the first equation in (1.2), give

1 1
—p/ ufdx—ku/ u?dx
0
+Cpb€3/ud$+g/¢d
! 1
+p153(:p/ ulde + - / uldx
des Jo

1 T2
+/ / o (s)uug (z,1,t, s) dsdx
0 T1
1 T2 c T2 1 1 1 T2
/ u/ o (s)ug (z,1,t, ) dsdx < Ep/ \u2(5)|/ u?dx + 5/ / |y (8)| 2% (x,1,t, 5) dsdx
0 T1 T1 0 0 T1

Fy (1)
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then

1
noc
Fit) = + (u + pEscy + % + cpb53> / u?dx
0

1
2
453/ qbdx—(p—()/o uydx
// Lo (s)] 22 (2, 1,t, s) dsdx

Lemma 3.5. The functional

/ / / T uy(s)| 2 (x, p, t, ) dsdpdx

satisfies, for some positive constant m1, the following estimate

T2 1
Fi(t) < —ml/ / lpo(8)] 27 (x,1,¢ s)dsd:r+/ \,uz(s)|ds/ uldz
T1 T1 0

—ml/ / / S g (s (z,p,t,s)dsdpdx

Proof. With
sz (x,p,t,8) + 25 (x,p,t,5) = 0in (0,1) x (0,1) x (71,72) x (0,00)
1
2t (I7p7ta5) = T3 (xvpvtas)
s

Differentiating Fy (£), and using the equation (3.13), we obtain

Fit) - / / / e |ug(s)| 220 (&, pr 1, 8) dsdpd
- -2 / / / e~ |1y(s)| 2% (2, 1, 5) dsdpda
/// e |y (s)| 2 (x, p, t, 5) dsdpda

1 T2
—/ / o(s)| [e7%02% (z,1,t,8) — 2° (2,0,t, 5)] dsdz
T1

/// e |y (s)| 2% (x, p, t, 5) dsdpda

Using the fact that z (x,0,t,s) = u; and e™* < e % < 1, for all p € [0,1], we obtain

T2 1
/ / () e (a1t ) dsda+ [ (o)l ds [ ubdo

T1 0
/// €= 1y(5)| 22 (3, ., ) dsdpd

Because —se™* is an increasing function, we have —se™* < —se™ 72, for all s € [r1, 2]

(3.11)

(3.12)

(3.13)
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Finally, setting m; = e~72, with f |po(s)] < pq, we obtain

T2 1
Fi(t) < —ml/ / lpo(8)] 27 (x,1,¢ s)dsdﬂc—i—/ \,uz(s)|ds/ uldz
T1 T1 0
—ml/ / / s |pa(s (z,p,t,s)dsdpdx

O

Lemma 3.6. Suppose (H1), (H2), and Eq. (3.8) hold. Let Uy € H. Then, for N, Ny, No, N3 > 0 sufficiently

large, the Lyapunov functional defined by
L (t) =NFE (t) + N1F1 (t) + N2F2 (t) + F3 (t) + N3F4 (t)

satisfies, for some positive constants dy,ds and ky

diL(t) < E(t) <doL(t), VE>0 (3.14)
and
1
L'(t) < —kE(t)+ c/ (62 + 6% (¢,)) d, ¥Vt >0 (3.15)
0
with
bp by i / !
' Ny — Nme + N. LN, — (p—
L' (t) e Me + 3u1+4€2 (p e | dx

‘ o

2 €3 0
bj 1

M@J; ()N2>/1 (6)da
N (2 <bN2+1> mlNg)/ / g (s)] 22 (z, 1, 5, 1) dsda
7m1N3/ / / s pig(s)| 22 (2, pi t, ) dsdpdx—N/ t) b9 (¢,) dov

At this point, we have to choose our constants very carefully. First, choosing €3 << 1, and €1, small

enough such that
bpN by IN:
€1 < P ; €2 < kb
4p (Nme — Napuy) 4p
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Moreover, we pick N; ¢ = 1,2, 3 large enough so that

bje1 N1 + (,u + 5+ b€3)

Ny >

- b? b b
T 0
and
()

After that, we can choose N large enough such that

1 [bpN Nob
N>[p1+N3u1+ 2M1—<p—u1)]-
derp

me 4€2p 4eg

Consequently, there exists a positive constant 7, such that (3.15) becomes
d ! 2 2 2 ! 2 2
%E t) < —-a (“t tus+or+¢ ) dx + co (¢t +g (¢t)) dx
0 0
1 To
—03/ / o (s)| 2% (2,1, 5,t) dsda. (3.16)
0 T1
In this section, we state and prove our stability result.

4. STABILITY RESULT

Theorem 4.1. Suppose (H1), (H2), and (3.8) hold. Let Uy € H. there exist positive constants a1, az,as and
1y such that the solution of (1.2) satisfies

E(t) <a1G7! (ag /Otoz(s) ds—|—a3> , t>0, (4.1)

where

1
_ 1
Gl = /t o (S)ds and Gy (s) = tG' (not) .
Remark 4.1. G strictly decreases and is convex on (0,1] and tlirr(l)Gl (t) = +o0.
—
Proof. We multiply (3.15) by « (t) to get

o (t) L (1) < —kra (1) E (t) + ca (1) / (62 + % (4,)) du. (4.2)

Now, we discuss two cases:

Case I: G is linear on [0,7]. In this case, using (H2) and Eq.(3.1), we deduce that

a(t) L' (t) < —kia(t) E () + ca(t) /0 (67 + 9% (¢1)) dz = k1 (t) E (t) — cE' (1),

which can be rewritten as

(@ () L)+ cE () —a' () L(t) < —kia(t) E(t).
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Using (H1), we obtain

(@) L) +cB() < ~ka(t)E(t).

By exploiting (3.14), it can easily be shown that
So(t):=at)L(t)+cE(t)~E(t). (4.3)
So, for some positive constant A1, we obtain
SO () +Ma(t)Sy(t) <0, VE>0 (4.4)
The combination of Eq. (4.3) and (4.4), gives
E(t) < E(0)e ™ Joo)ds — po)Gy? ()\1 /O " () ds) . (4.5)
Case II: G is nonlinear on [0,7]. In this case, we first choose 0 < 7; < 7 such that
sg(s) <min{n, G (n)}, V|s| < ;. (4.6)

Using (H2) along with fact that ¢ is continuous and |g (s)| > 0, for s # 0, it follows that

2492 (s) <G 1 (sg(s)), V|s| <
9 () < G (s (), Vsl < o
cils| <lsg ()] < eals], V[s| =m
To estimate the last integral in Eq. (4.2), we consider the following partition of (0,1):
L ={ze0,1): ¢ <m}, Ta={x € (0,1):[d]>m}.
Now, with I (¢) defined by
I(t) = | ¢9 (¢¢) d,
we have, using Jensen inequality (note that G=1 is concave and recall (4.6))
GTHI(t) = c ’ G (019 (¢1)) d. (4.8)
The combination of Eq. (4.7) and (4.8) yields
1
o) [ @@ = o) [ @+ @) doral) [ (6F+5 @) ds
0 1 2
< alt) [ 6 G s+l [ a9
Il I2
< ca(t)GTHI () —cE (t). (4.9)

So, by substituting (4.9) into (4.2) and using (4.3) and (H1), we have

Sh(t) < —kia (t) E(t) +ca (t) G (I (1)) (4.10)
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Now, for n; < n and §y > 0, using (4.10) and the fact that E' < 0, G’ > 0, G’ > 0 on (0,7n), we find that
the functional Sy, defined by

510= 6 (o 51 ) S0 (0 + BB ().

satisfies, for some by, by > 0,

1Sy (1) < E () < bsS; () (4.11)
and
S0+ =mp 6 (g ) So +G’( V) S0+ (0
< a0 EOC (g )+ (g ) 6 EO)+0E @0 (112

Let G* be the convex conjugate of G defined by

-1

’ ’ -1
G (s) =5 (d) @)-G[Q}) @ﬂ,ﬁse(QG%mL
satisfying the following general Young’s inequality
AB<G*"(A)+G(B), if A€ (0,G'(n)], Be (0,n].

With

using (4.6), we obtain

ca (t) G’ (Wo%) GTHI () <ca(t)G* (G’ <770E(0))> +ca(t)I(t).

By exploiting (3.1) and the fact that

G*(s) <s(G")" " (s), we get
ca (t) G’ < g(((?)) G (1) <cal(t) nog(((?)G' <n0§,((é))) —cE' (¢) (4.13)
By substituting (4.12) into Eq. (4.13), we obtain
S{0) < ka0 556 (g ) = ke @60 () (4.14)

where k > 0 and Gy (t) = tG’ (n,t) .
Note that
Go (t) = G" (ngt) + metG” (not) -

So, using the strict convexity of G on (0, 7], we find that G (t), G} (t) > 0 on (0,1] . With S (¢) := blés(lo()t) it

is obvious that S (¢) < % < 1. Now, using (4.11) and (4.14), we have

S(t) ~ E(t) (4.15)
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and, for some as > 0

S’ (t) < —asa (t) Go (S (1)) . (4.16)
Inequality (4.16) implies that
LGS (1) > ama),
where
G1 (t) = ﬁ Gol(s) dS

Thus, by integrating over [0, t], we obtain, for some a3 > 0,

S(t) <Gyt <a2 /Ot a(s)ds+ a3> ) (4.17)

Here, we used, based on the properties of Gy, the fact that Gy is strictly decreasing on (0, 1] .Finally, using
(4.17) and (4.15), we obtain (4.1). O
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