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ABSTRACT. In this paper we introduce the concept of contractive maps and prove some related fixed point
theorems in probabilistic modular spaces. In addition, we investigate the existence of common fixed points
for a finite linear combination of contractive mappings. Finally, some results concerned with the convergence

properties of sequences defined by contractive maps in probabilistic modular spaces are also given.

1. INTRODUCTION

In recent times, fixed point theory has become an important tool in pure and applied sciences, such as
biology [1], chemistry [2], engineering and physics , to cite just a few. The Banach’s fixed point theory, widely
known as the contraction principle, is an important tool in the theory of metric spaces [3], [4]. Moreover,
since the location of the fixed point can be obtained by means of an iterative process it can be implemented
on a computer to find the fixed point of contraction mappings easily. The fixed point theory has been widely
developed and extended to very general classes of spaces such as [5], [7], [16]. The concept of modular space
was firstly introduced by Nakano [8] and it was later generalized by Musielak and Orlicz [9]. Many authors
have worked ever since on the fixed point theory in modular spaces, see [10], [11], [12]. In 2009, Nourouzi

introduced in [13] the notion of probabilistic modular space according to Menger’s probabilistic approach [6].
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In this paper we introduce the concept of ¢-contractive maps in probabilistic modular spaces and prove some
related fixed theorems. There are no such results in probabilistic modular spaces and this paper contributes
to fill in this gap. Moreover, the existence of fixed points for a finite linear combination of p-contractive
mappings in a probabilistic modular space is also investigated. Finally, we will provide some results concerned
with the convergence properties of iterative sequences defined by ¢-contractive maps in probabilistic modular

spaces.

2. PRELIMINARIES

We denote the function min by A, Zy = {z € Z :2 >0}, Zoy = Zy U{0}, R+ = {z € R: z > 0},
Ro; = R+ U {0}.We also will denote the set of all non-decreasing functions f : R — R{ satisfying
infier f(t) = 0, and sup,cp f(t) = 1 by A. The latter properties imply that lim;_,o f(t) = 1. The set of
those distribution functions such that f(0) = 0 is denoted by A™. The space A* is partially ordered by the

usual pointwise ordering of functions, and has a maximal element ¢, defined by

Definition 2.1. Let X be an arbitrary vector space. A functional p : X — [0,00] is called modular if for
any arbitrary x,y € X:
(i) plz) =0, iffz =0,
(ii) plaz) = p(x), for every scalar o with |a| =1,

(i) plaz + By) < p(x) + p(y) for all v,y € X, and o, BE RS, a+ B =1.

Definition 2.2. [13] A probabilistic modular space (briefly, PM-space) is a pair (X, p) in which X is a
real vector space and p is a mapping from X into A (for x € X, the function u(x) is denoted by p,, and
1o (t) is the value of u, at t € R) satisfying the following conditions:

(i) pa(0) =0,

(i) pe(t) =1, forallt >0 iff x =0,

(i) p—g(t) = pg(t), for allx € X,

(V) Haztpy(s+1) > pa(s) A py(t) for alz,y € X, and o, B,s,t €RS, a+ = 1.

Definition 2.3. [13] We say that (X, p) is S-homogeneous, where B € (0,1] if,

Pog (t) = um(ﬁ), for every x € X,t >0 and o € R\ {0}.
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Example 2.1. Let p: X — X be defined by p(z) = L|z|, for every a € R\ {0}. It is easy to see that p is a

modular on X. Define

0 t <0,
pa(t) = .
pwen) t>0

for allx € X. Then (X, ) is a f—homogeneous PM-space, for 8 = 1.

Example 2.2. Consider the real vector space X with p, defined as:

O R
1 t>p(x),

where p is a modular on X. Then (X, ) is a PM-space.

Definition 2.4. [13] Let (X, ) be a PM-space.

1) A sequence {x,} in X is said to be u-convergent to a point x € X and denoted by x, — x, if for every
t >0 and r € (0,1), there exists a positive integer k such that pi, —(t) > 1 —r for alln > k. In this case,
the point x € X is said to be the u-limit of the u-converging sequence {x,}.

2) A sequence {x,} in X is said to be p-Cauchy sequence, if for every t > 0 and r € (0,1), there exists a
positive integer k such that iy, gz, (t) > 1 —7r for alln,m > k.

3) The modular space (X, ) is said to be u-complete if each p-Cauchy sequence in X is p-convergent to a
point of X.

Lemma 2.1. [13] Let (X, ) be a PM-space. Then the p-limit of any p-convergent sequence is unique.
Lemma 2.2. [13] The operations +,. in the B-homogeneous P-modular space (X, 1) are continuous.

Definition 2.5. [13] Let (X, p) and (Y,v) be two PM-spaces. A mapping T from (X, p) to (Y,v) is said
to be sequentially PM-continuous (probabilistic modular continuous) at x € X if T(x,) — T(z) for every

sequence {x,} of points in X that converges to x € X, x, 2y
The definition below is introced by Sherstnev in 1963, [14].

Definition 2.6. A random normed space (briefly, RN -space) is a triple (X, v,T) where X is a vector space,
T is a continuous t-norm, and v is a mapping from X into AT (for x € X, if v, denotes the value of v € X,
the following conditions hold:

(i) va(t) =eo(t), for allt >0 iff x =0,

(il) Vae(t) = Vx(ﬁ), for every x € X,t >0 and a € R\ {0}.

(iil) Vayy(s+1t) > T(vz(s),vy(t)) for allz,y € X and s,t > 0.

Theorem 2.1. Let (X,v,T) be a RN -space with t-norm T(a,b) = min(a,b) for all a,b € X. Then (X,v)

is a PM-space.
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Proof.
(1) veo(t) = v—1)a(t) = VI(I_t—ll) =1,(t), for all z € X.
(2) Let 7,y € X, a,8,s,t € R} and o+ B = 1. Hence

Vax+ﬁy(t) = V(mc-‘rﬁy((a + B)t)

Z T(Vax (at)7 Vﬁy(ﬁt))
at Bt

= Twa(5).1(5)

=T (va(t), vy (1))

> T(va () (3)

~
N

(2.1) = va(3) Aw():

3. FIXED POINT THEOREMS FOR (-CONTRACTIVE MAPPINGS

In this section we define the notion of ¢-contractive mapping in probabilistic modular spaces and prove

some fixed point theorems related to this concept. Let us introduce the following definition:

Definition 3.1. A function ¢ : [0,00) — [0,00) is said to be a D-function if it satisfies the following
conditions:

(i) @(t) is continuous,

(ii) @(t) is strictly monotone increasing and o(t) — 0o as t — oo,

(iii) @(at) < ad(t), for all a € (0,1) and t > 0.

It is easy to see that the condition (iii) of Definition 3.1 is equivalent to the following one:

©(0) = 0.
Example 3.1. ¢(t) =k t", is a simple example of ®-function for k >0 and r > 1.

Lemma 3.1. A direct consequence of condition (iv) of Definition 2.2 is:

t t t
(3.1) P (8) 2 pay (C) A proa () o A pra (),

n

for all z1,z9,...,2, € X and «o;,t € RS‘ with X7 a; = 1.
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Proof. Tt is obtained by induction as follows:

(n—=1)t t
ME?ZICK'LQH (t) - Mzzgllaimi""anzn(T + ﬁ)
(n—1t t
=H o s e — 4 )
(Eio o )13271 +anTn) n n
i=1 “i
n—1)t t
Z Psrlags, ((7) A B, (=)
T n
Tio1 @i
t t
(32 2 1oy (1) Mg (1) At ().

O

Definition 3.2. Let (X, u) be a probabilistic modular space (PM-space). A mapping T : X — X is said
to be p-contractive if

(33) e m(9)) 2 e (0(5),

where l,c € (0,1) and ¢ € P.

It is easy to see that every @-contractive map is sequentially P M-continuous. In fact, if x,, — x, hence,

for every t > 0 and r € (0, 1), there exists N such that p,, _.(t) > 1 —r for all n > N. Therefore we get

Wra,~1o(0(t) = o, —a(p(3)) > 1 7.
Remark 3.1. We can see that the definition 3.2 generalizes the previous ones introduced in [15].

Theorem 3.1. Let (X, u) be a B-homogeneous p-complete PM-space and T : X — X be a p-contractive
map. Then T has a unique fized point x* € X and the iterative sequence {T™(xg)}, generated by the initial

element o € X, converges to the fized point x* € X asn — oo .

Proof. Choose x € X arbitrarily. We first prove that {T"(x)} is a u-Cauchy sequence. Let s > 0 be given.

Since ¢ is continuous at 0 and ¢(0) = 0, we can find ¢ > 0 such that ¢(t) < s. Hence, we have:

Hrng_Tntpg(S) > g _pntrg (@(1))

~—

)
)

t
> Ul(T"*lrc—T’“rP*lm)(sp(z

= ppn-1g_patr—1, (1 p(

t
> ,UIT"—lac—T"‘”’—lw((p(E))

Q| =+
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On the other hand, we have:

4 4

MI*TPI(SD(CT%)) = N(ac—T:c)-l—(Tx—TPac)(QD( ))

cn
1t

1 t
> Mz(szx)(?P(ch)) A MQ(waTPa:)(§90(

)

o
> oo (e o)) A ire vy #()

> ALHx(sO(ﬁ)) A uTsz(so(ﬁ))

> a1 () A ige- 110 @ ayr)
= Ux—Tw(@(ﬁ)) A P‘xprflx(liﬁ@(W))

t t
(3.5) 2 Mx—Tx(@(W)) A Mm—TP*1E(<p(W))'

By induction we get:

t t t
“%TW(@(CTL)) > Msz(@(W)) A ,U*szm(‘p(W)) AREN

t
(3.6) A Mmem(@(W))'

According to property (i7) of ®-function and since p(co0) = 1, from (3.4) and (3.6) we get limy, 00 firng_pntrg(s) =

1. Since X is p-complete, there exists x* € X with lim, ., T"x* = z*.

We will prove now that z* is a fixed point of T'. The @-contractivity of T" yields sequentialy P.M-continuity.
Therefore, * = lim,, oo 7" 2* = lim,, o, T(T"x*) = Tx*; i.e x* is a fixed point of T'. In order to prove
that the fixed point if unique, assume that there exists another fixed point y* € X such that y* = Ty*.

Hence, T"z* = z* and T"y* = y*, and there exists ¢; > 0 such that pi,»_z«(t1) = a < 1. Then,

Q= [hy* — g~ (t1) > Hoy* —z* (p(1))

= /_LTny*—T"w* ((p(t))

(3.7) > uy*_z*(l’"%(i))-

cn
Letting n — oo in (3.7), according the property (i7) of ®-function and since p(oo) = 1, we get a > 1, that is

contradiction. Therefore y* = x*. O

The following Theorem shows that a linear combination of a family of ¢-contrative mappings possesing a

common fixed point has a fixed point and it can be calculated by using an interative process.

Theorem 3.2. Let (X, pu) be a S-homogeneous p-complete PM-space and f; : X — X (i=1,2,--- ,m)
be a finite family of p-contractive maps for ¢ € ® and c € (0, 2). Define f = 31", A fi, where \; € [0,1],
X i =1. Then f has fized point x* € X, which is common to each linear operator’s one and the iterative

sequence {f™(x)} defined by the initial element xg € X, converges to z* € X.



Int. J. Anal. Appl. 19 (5) (2021) 766

Proof. Since f; have a common fixed point z* € X, then:
(38) f(l‘*) = /\1f1(l‘*) + A2f2($*) —+ ...+ /\mfm(x*) = (/\1 + X+ ...+ )\m)x* = .13*,

This means that z* is a fixed of f (and common to ech operator’s fixed point). Now we prove that f is a

p-contractive map. We have:

ie—py(P() = psm  xifizi—5om afiy (0(0)

1 1 1
2 o= iy (PO A bpaa—pay (@) Ao A gy gy (—o(2))

> e (@) A s iy () A A g gu(0(0)
t n;f t
> uz(xfy)(@(%)) A Mz(zfy)(sé’(%)) ARERNA Ml(mfy)(@<%>)
> igem(#(-)
(3.9) = ,U*l(x—y)(@(é))a

where k € (0,1). Hence, f is ¢-contractive and according to Theorem 3.1, the sequence {f™(zo)} converges

to the fixed point z* € X for any arbitrary initial element xg. O

The subsequent results are concerned with the convergence properties of p-contractive maps. P.M-space.

Lemma 3.2. The following property hold:
IfT, : X — X,Vn € Z are continuous and {T,,} uniformly converges to {T'}, then {T"} uniformly converge

to {T™}, Vm € Z,.

Proof. We prove these properties with induction. Assume that {T7} converge to {1V}, as n — oo, for all
1 < j <m and for any given m € Z,. We have:

t t
(3.10) “Tﬂ;(Tnx)—Tj(Tw)(t) > “z(Ti(an)—Ti(Tnz))(5) N H2(T3 (Tyz)~T (Tx))(§)

since T, : X — X is continuous and {77} converge to {77}, there exists a big enough n such that
T (Tyz)—13 (T2) (£) > 1 — X and uTg(Tnz)ij(Tnm)(%) > 1— M\, for any given A € (0,1). Thus, from (3.10), we
have

Hopitty_pitig(t) > (L=A)A(1=A)=1-A
Thus, T,{‘H converge to T3t as n — oo, for all 1 < j<m.

O

Theorem 3.3. Let (X, ) be a B-homogeneous u-complete PM-space and {T,} be a sequence of sequentially

P M-continuous operators with Fiz(T,) = {z}}, such that:
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(i) {Tn} uniformly converge to T for some T : X — X.
(ii) T is p-contractive, with T'(z*) = x*.

Then {z} — z*.

Proof. According to the definition of convergence in PM-space, we show that lim,, e ftex —o+(t) = 1, for

every t > 0. In this way, we have:

faz—a+ (0()) = prpas —Tma- (9())

t t
> N2(T77L"'wjl—TmI;‘L)((p(§)) A #2(T%:L—Tm;v*)(<ﬂ(§))

t

t
(3.11) > M2(T,f”z;7Tma:jL)(<p(§)) A Mx;—z*(w(w)), Vn,m € Zy+,

If we take the limit m — oo in (3.11) we get limy, o0 oz — o= ((t)) = 1. Thus, {z}} — {2*}.

Theorem 3.4. Let (X, i) be a B-homogeneous p-complete P M-space and {T,,} be a sequence of p-contractive
operators T, : X — X for some l,c € (0,1), ¢ € ® with Fix(T,) = {x}}. Moreover, let T : X — X be a
p-contractive mapping with Fix(T) = {x*}. Assume the following properties hold:
(a) {T} converge to T,
(b) There exists a subsequence {x;, } of {x}}, converging to a point z € X.

Then z = x* and the iterated sequence generated by x,11 = Thx, converges to the fized point x*, for any

given xo € X andn € Z4

Proof. We first prove that {z;; } converge to z*. Proceed by assuming, since {z}, } — {z} and {T,,} = T,
for any given § € (0,1) and ¢ > 0 there exists Ni(€ Zoy) = N1(d,t) such that for n,m > Ny, pex  —.(p(t)) >

1 -0 and pr, .—71.(p(t)) >1—6 , where p € ®. Therefore,

pax —12(p(t)) = K, —1(p(t))

nm

> /~L2(Tnmr;m—Tan)(SD(t)) A N2(Tnmz—TZ)(90(t))
Pl )) At (27 ()
>1-=0)A(1-9)

(3.12) =(1-9).
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This result means that {z}, } converges to T'z. Hence, by the uniqueness of the limit, we get Tz = z implying

that z = a*. Also for « € (0,2¢) we have:

Pz i1~ (P(E) = T, 0, —Tar ((1))

> Wo(Tpan—Tpa) (@P()) A po(T, 2 —1a) (1 — a)p(t))

at
(313) > L (90(76)) A /J'Q(Tnm*sz*)((l - a)(p(t))
On the other hand:
at ot at
(3.14) an,ﬂ(@(%)) 2 Mznflfx*(sﬂ(m)) A (1, 2 —Tar) (1 — 04)90(%))

By induction from (3.13) and (3.14), we have

at

Mz, iq—z* (‘p(t)) > Hao—a* (@(W

on )) A /J'Q(Tnx*me*)((l - a)(p(t))

at
A W1z —Ta) (1 = 0‘)%0(70)) ANEN

a”t
(3.15) A tiz(r,ze ey (1= ) (ormry 2))-
Letting n — oo in (3.15) we get lim ji,, ., 2+ (0(t)) > 1, i.e {z,,} — 2. O

Theorem 3.5. Let (X, u) be a B-homogeneous p-complete PM-space, and {T,} be a sequence of operators
such that {T,,} are p-contractive for some l,c € (0,1) and ¢ € . Assume that {T,} converge to T for some
T: X — X. Then the following properties hold:

(a) T is p-contractive for some c € (0, 1),

(b) {z:} — «*, where Fix(T,) = {zX}, Vn € Zy, and Fix(T) = {z*},

(¢) The iterative sequence generated by x,+1 = Tpx, converges to x*, for any given xog € X arbitrary and

TLGZ+,

Proof. First we prove that T is p-contractive. For any x,y € X we have:

t

(3.16) PTo=Toy (P(1) 2 Hia—y) (2(2))-
Additionally,
MTa:ny(SO(t)) = FLTxanrJrTna:ny((P(t))
> pra(Ta—Tno) (1 — @)p(t) A po(1,0—1y) (p(t))
(3.17 > o (PO (P01,
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On the other hand

uTnmey(@(;;t)) 2 maﬁ-ny)(ﬁﬁ% A MQ(Tny—Ty)((;éitl))
> 1 (P gy ) A -1y ()
(5.18 > o) (0 ) My (o).
By using equation (3.17) and (3.18) we have
619 prenye®) > oo ECZ ) f oS iy (),
Letting n — oo in (3.19), we get
ctat

pra—1y(P(t) = 1A Ml(z—y)(@(m)) N

c 1t
= Ml(x—y)(@(m))

(3.20) > um_y)(so(é)),

where k € (0, i) Hence T is ¢-contractive. Finally, according to Theorem 3.3, {z}} converges to z* and by
the same method of proof of Theorem 3.4, {x,,} converges to z*.

O

Remark 3.2. Every probabilistic modular space (X, ) induces a probabilistic metric space (X, F,A) with
F:XxX = AviaFyy= gy foralz,yecX.

4. NUMERICAL EXAMPLES

In this section we present some numerical examples in order to illustrate the main results discussed in the

previous sections.

Example 4.1. Let X =R and p,(t) = %, z,y € X, t >0, where p(x) = |z| is a modular functional on

X. Define a mapping f : R — R by f(xz) = £ for all z € R. Let (t) = 2 t*. Then f is p-contractive with

the constants | = % and ¢ > % Indeed, for x,y € R, we have

22 / 262
trfo—fy(p(t)) = 21 oy’ Pi(z—y) (@(E)) = m
It is easy to see that
212 207

c2

2t2—|—l‘l‘— |2E L. oyl
8 Y 2 +2|$ y‘

for all c € [%, 1). Accordingly, [ is p-contractive and it has a unique fixed point, as predicted by Theorem

3.1. In addition, it is easy to check that x = 0 is the fixed point of f.
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Example 4.2. Let X =R and p,(t) = %, x,y € X, t >0, where p(x) = |x| is a modular functional
on X. Define the mappings f; : R — R by fi(z) = % and fo(z) = % for all z € R. Let o(t) =t, | = 2
and ¢ = %. Define f = %fl + %fg We can see that f1 and fo are p-contractive maps. We prove that

flz) = %fﬂ + %fzx = 32 s p-contractive.

8
t t it
— t = T 3 — - = 3 )
ppe— fy(p(1)) Iy M 0 (@(2)) 2y
Thus,
t 3t

> )
t+3le—yl = gt+ e -y
Consequently, f is a p-contractive map and it has a unique fixed point, as predict by Theorem 3.2. It is easy

to check that x = 0 is the fized point of f.

Example 4.3. Let X =R and p,(t) = %, xz,y € X, t >0, where p(x) = |x| is a modular functional on
X. Let o(t) =t and define Ty, x,, = % We show that T, is p-contractive. We have:
PP () P — GRS ]tk )L —
t+ T Cn+3)(1+22)(1+y)t+ (n+ 1)z —y|
and
t L t

Hage—y) (P(7)) = T lle—y  i¥ide g

So the condition (3.3) becomes:

(2n+3)(1+2?)(1 4+ y)t - t
Cn+3)(1+22)(1+y)t+n+1)|x—yl = t+lcz—y|

(4.1)

Eq. (4.1) leads to %(1 +22)(1 +y) > £, that holds for every l,c € (0,1). Hence T, is ¢-contractive.

On the other hand we have:
(n+ 1)z x

T=lim T, = Ii = .
ratao nooo (2n+3)(1+22)  2(1+a2)

Similarly to the above method, we can see that T is also @-contractive. Therefore, Theorem 3.5 holds and

the iterative scheme:

(n+ Da,

(42) Tl = o T3 (0 4 22)

converges to the unique fized point of T'. It is easy to check out that x* = 0 is the fized point of T. Figure 1
shows the evolution of the iterative scheme (4.2) for different initial conditions. In Figure 1, we can observe

that the sequence {x,} converges to zero as predicted by Theorem 3.5.
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3 T T T T T T
2 -
1 ]
=<~ 0F

qF 4
) ]
_3 1 1 1 1 1 1

0 1 2 3 4 5 6 7

Iteration (n)

FIGURE 1. Evolution of the sequence of iterates for different initial conditions

5. CONCLUSIONS

This paper has introduced the concept of p-contractive maps in probabilistic modular spaces. Further-
more, the existence of fixed points for these operators in probabilistic modular spaces is investigated as well.
Afterwards, the results are extended to a finite linear combination of ¢-contractive mappings. Finally, we
also investigate some convergence properties of sequences constructed by these operators which are either
convergent to either a ¢-contractive map.
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