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Abstract. The work presented in this paper is concerned with the organic pollution problem and water

quality valuation. Biochemical oxygen demand has been used to evaluate the quality of water. If organic

matter is present the dissolved oxygen is consumed. This article considers an optimal control problem of

coupled system with missing initial conditions, which presents the relation between the biochemical oxygen

demand and the dissolved oxygen. The main objective is to control the concentration of dissolved oxygen

using the information given in the biochemical oxygen demand equation. The main tool used to characterize

the optimal control of the investigate system under the Pareto control formulation.

1. Introduction

The environmental pollution problem is one most serious problems faced by the world. It is always linked

to some terrible problems, which are unable to find a solution and causing irreparable nature damage. The

presence of a sufficient concentration of dissolved oxygen (DO) is all-important and necessary to preserve

water life. If more oxygen is consumed than is produced, dissolved oxygen levels decline and some sensitive

animals may move away, weaken, or die. Oxygen is gained from the atmosphere and plants as a result of

photosynthesis. Running water, because of its churning, dissolves more oxygen than still water. Respiration
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by aquatic animals, decomposition, and various chemical reactions consume oxygen. The required quantity

of dissolved oxygen by aerobic biological organisms which is used for decomposing organic material under

aerobic conditions at a specified temperature is called Biochemical oxygen demand (BOD). The decrease of

BOD is the way for judging the effectiveness of water purification [1–3]. Many studies have been published

in the context of improving the quality of the method and procedure can use to reduce the BOD level,

we refer to works by D.M. Reynolds, S.R. Ahmad in [12], Salguero, Jazmin and Valverde, Jhonny in [13],

Magdalena Zajda and Urszula Aleksander-Kwaterczak in [14], etc.

This article provides the main insights into the debate on optimal control choice of an evolution coupled

system that presents the relation between biochemical oxygen demand and dissolved oxygen. Because the

concentration of dissolved oxygen is of prime importance in considering the quality of water, we try to control

its level by giving an assessment of the biochemical oxygen demand and for studying too its physicochemical

characteristics. Elsewhere, the posed coupled systems are given with unknown initial conditions that present

some barriers. The main aim of our work is to characterize the optimal control. For finding the character-

ization of this optimal control, we dispose of the incomplete data by introducing the concepts of no-regret

control and the sequence of least regret controls. The optimality coupled systems of the no regret control

are formed by passing to the limit.

2. Setting the problem

In this section, we present a mathematical model that is used for studying the pollution problem. This

considered model is not standard because it contains some missing initial conditions.

We consider a fixed final time T > 0, and Ω a bounded open subset of RN , N ∈ 1, 2, 3 of smooth boundary Γ.

We denote by Q = Ω×]0, T [ the space-time cylinder and by Σ = Γ×]0, T [ her boundary. We are interested in

an evolutionary organic pollution problem in surface waters for example lakes or estuaries which is reduced

to this reaction-dispersion/diffusion problem with uncertainly

(2.1)



∂y

∂t
− div(d(x)Oy) + r(x)y = 0

∂z

∂t
− div(d(x)Oz) + r̃(x)z + r(x)y = ωχO

in Q,

y(x, 0) = g1, z(x, 0) = g2 in Ω,

z = 0,
∂z

∂ν
= 0 on Σ,

where y, z are BOD and DO in a given water sample at a certain temperature over a specific time period.

The control function ω presents the sources of dissolved oxygen from the atmosphere and photosynthesis of

plants on the control region O, and χO is the characteristic function of O. We suppose that for all ω ∈ Uad,

we have

(2.2) Uad = {ω ∈ L2(Q) : ωmin ≤ ω ≤ ωmax} is non-empty closed, convex,
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were ωmin and ωmax present the minimum and the maximum concentrations of dissolved oxygen that would

be present in water at a specific temperature, in the absence of other factors. The initial conditions (g1, g2) ∈

G ⊂ H−
1
2 (Ω) × H1

0 (Ω) assumed to be unknown. The boundary conditions (z,
∂z

∂ν
) ∈ H− 1

2 (Σ) × H− 1
2 (Σ).

The functions r, r̃ and d are reaction coefficients.

The coupled systems (2.1) has a unique pair solution (y, g) = (y(ω, g), z(ω, g)) where

(y, z) ∈ L2(Q) ∩ C∞(0, T ;H−
1
2 (Ω))× L2(0, T ;H1

0 (Ω) ∩H2(Ω)) ∩ C∞(0, T ;H1
0 (Ω)).

There are many factors that can be reduced the level of dissolved oxygen like the respiration of the plant

life and the animal life, decomposition of organic matter, reduction due to other gases, temperature increase,

and others. For these reasons, the main goal of this work is to control the evolutionary organic pollution

problem. Exactly, we control the level of dissolved oxygen, where we point out here that we did not insert

any control function in the biochemical oxygen demand equations.

For fixed pair (yd, zd) ∈ (L2(Ω))2 and for N > 0, g = (g1, g2) ∈ G, we define the quadratic cost function

associated to (2.1)

(2.3) J(ω, g) = ‖y(ω, g)− yd‖2L2(Q) + ‖z(ω, g)− zd‖2L2(Q) +

∫ T

0

∫
O
Nω2dtdx.

Let us minimize the following optimal control with incomplete data:

(2.4) inf
ω∈Uad

J(ω, g) ∀g ∈ G.

The problem (2.4) has no sense in the case of the space G is infinite. Then, if G is finite we try to solve the

inf – sup problem

(2.5) inf
ω∈Uad

sup
g∈G

J(ω, g).

However, in this situation, it is very difficult to ensure that supg∈G J(ω, g) is bounded.

In (1992), J.L.Lions has done a good idea by adding an additional concept which is called ”no regret

control. The concept of no-regret control (or, equivalently, Pareto control) of distributed systems with

missing data is used by J.L. Lions in [4, Pareto control of distributed systems, page 90]. In [4–7], J.L. Lions

applied the Pareto control and he associated it with a sequence of low-regret controls defined by a quadratic

perturbation for deterministic distributed systems with incomplete data. In [10], O. Nakolima, R. Dorville,

and A. Omrane studied how the no regret control can be extended to the hyperbolic case. They also

generalized these concepts in the case of ill-posed deterministic problems, without assuming Slater’s condition

[8,9]. In [11], Hafdallah A, and Ayadi A applied no regret and low regret concepts to control a thermoelastic

body with missing initial conditions. A. Hafdallah, A. Ayadi, and C. Laouar applied the no-regret control

notion to control an ill-posed wave equation, see [15].
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The principle of this idea is based on looking for controls such that

(2.6) J(ω, g) ≤ J(0, g) ∀g ∈ G.

Condition (2.6) implies

sup
g∈G

[
J(ω, g)− J(0, g)

]
is bounded.

In that case, we solve the following problem

(2.7) inf
ω∈Uad

sup
g∈G

[
J(ω, g)− J(0, g)

]
.

In the following, we are defining the no regret control for the partially known problem (2.1).

3. Defining the no-regret control

We say that ω̂ ∈ Uad defines a no-regret control for (2.1) if it is the optimal solution of (2.7).

Lemma 3.1. For every ω ∈ Uad the problem (2.7) is equivalent to

(3.1) inf
ω∈Uad

(
J(ω, 0)− J(0, 0) + 2 sup

g∈G

∫
Ω

[
g1.ζ(ω)(x, 0) + g2.ξ(ω)(x, 0)

]
dx, g = (g1, g2) ∈ G,

where (ζ, ξ) = (ζ(ω, 0)(x, t), ξ(ω, 0)(x, t)) satisfies the following backward coupled equations

(3.2)



−∂ζ
∂t
− div(d(x)Oζ) + r(x)ζ + r(x)ξ = y(ω, 0)

−∂ξ
∂t
− div(d(x)Oξ) + r̃(x)ξ = z(ω, 0)

in Q,

ζ(x, T ) = 0, ξ(x, T ) = 0 in Ω,

ζ = 0,
∂ζ

∂ν
= 0 on Σ.

Proof. By linearity, we can write the solution to (2.7) in the form y(ω, g) = y(ω, 0) + y(0, g), z(ω, g) =

z(ω, 0) + z(0, g). Then, the functional J(ω, g) can be written

J(ω, g) = J(ω, 0)− J(0, 0) + 2

∫∫
Q

[
y(ω, 0)y(0, g) + z(ω, 0)z(0, g)

]
dtdx.

We introduce (ζ(ω), ξ(ω)) the solution of (3.2). Then, we use integration by parts, we obtain

(3.3)

∫∫
Q

−(
∂ζ

∂t
+ div(d(x)Oζ) + r(x)ζ + r(x)ξ)y(0, g)dtdx

=

∫
Ω

g1ζ(ω)(x, 0)dx+

∫∫
Q

ξr(x)y(0, g)dtdx,

and

(3.4)

∫∫
Q

(−∂ξ
∂t
− div(d(x)Oξ) + r̃(x)ξ)z(0, g)dtdx

=

∫
Ω

g2.ξ(ω)(x, 0)dx+

∫∫
Q

ξ(
∂z

∂t
(0, g)− div(d(x)Oz(0, g)) + r̃(x)z(0, g))dtdx.



Int. J. Anal. Appl. 19 (6) (2021) 988

Adding (3.3) to (3.4), we get∫∫
Q

[
y(ω, 0)y(0, g) + z(ω, 0)z(0, g)

]
dtdx =

∫
Ω

[
g1.ζ(ω)(x, 0) + g2.ξ(ω)(x, 0)

]
dx. �

Remark 3.1. The no regret control exist only if g1 and ζ(ω)(x, 0) (respectively g2 and ζ(ω)(x, 0)) are

perpendicular to each other in H−
1
2 (Ω) (respectively in H1

0 (Ω)). For this reason, we consider the following

set of admissible controls

Ûad = {ω ∈ Uad : 〈g1, ζ(ω)(x, 0)〉
H−

1
2 (Ω)

= 0, 〈g2, ξ(ω)(x, 0)〉H1
0 (Ω) = 0}.

In [4–7], J.L. Lions applied the no control and he associated it with a sequence of low-regret controls defined

by a quadratic perturbation for deterministic distributed systems with incomplete data. The sequence of

low-regret controls is expected to converge to the no regret control.

4. Defining the sequence of low-regret controls (Least regret controls)

For every γ > 0, we relax the problem (3.1) by introducing a quadratic perturbation such that

J(ω, g)− J(0, g) ≤ γ‖g‖2G , ∀g ∈ G.

We say that ω̂γ ∈ Uad is the sequence of low-regret controls for (2.1) if ω̂γ is the solution to

(4.1) inf
ω∈Uad

sup
g∈G

[
J(ω, g)− J(0, g)− γ

(
‖g1‖2

H−
1
2 (Ω)

+ ‖g2‖2H1
0 (Ω)

)]
.

Lemma 4.1. Problem (4.1) can be written as

(4.2) inf
ω∈Uad

J γ(ω),

where

(4.3) J γ(ω) = J(ω, 0)− J(0, 0) +
1

γ
‖ζ(ω)(x, 0)‖2

H−
1
2 (Ω)

+
1

γ
‖ξ(ω)(x, 0)‖2H1

0 (Ω).

Proof. From (3.1) and (3.2), the problem (4.1) is written as

inf
ω∈Uad

(
J(ω, 0) − J(0, 0) + sup

g∈G

∫
Ω

[
(2g1ζ(ω)(x, 0) − γg2

1) + (2g2ξ(ω)(x, 0) − γg2
2)
]
dx
)
.

The functions f : g1 7→ (2g1ζ(ω)(x, 0) − γg2
1) and f̃ : g2 7→ (2g2ξ(ω)(x, 0) − γg2

2) are concave. Then, it’s

absolutely clear that

sup
g1∈H−

1
2 (Ω)

f(g1) =
1

γ
‖ζ(ω)(x, 0)‖2

H−
1
2 (Ω)

, sup
g2∈H1

0 (Ω)

f̃(g2) =
1

γ
‖ξ(ω)(x, 0)‖2H1

0 (Ω). �

Lemma 4.2. The problem (4.2)-(4.3) has a unique solution ω̂γ , which called sequence of least regret controls.

Furthermore, when γ → 0, the control ω̂γ converges weakly to the unique no regret control ω̂.
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Proof. Since the set of admissible controls Uad is non-empty closed and bounded, we have

J γ(ω) ≥ −J(0, 0) = −‖yd‖2L2(Ω) − ‖zd‖
2
L2(Ω), ∀ω ∈ Uad.

Then there exists

dγ := inf
ω∈Uad

J γ(ω) ≥ 0.

Let (ωγn) ∈ Uad be a minimizing sequence such that dγ = limn→∞ J γ(ωγn) = J γ(ωγ). Then, we get

dγ ≤ J γ(ωγn) < dγ +
1

n
< dγ + 1.

So, we deduce the bounds

(4.4) ‖ωγn‖L2(0,T ;O) ≤ Cγ , ‖y(ωγn, 0)‖L2(Q) ≤ Cγ , ‖z(ωγn, 0)‖L2(Q) ≤ Cγ ,

1
√
γ
‖ζ(ωγn)(x, 0)‖

H−
1
2 (Ω)

≤ Cγ , 1
√
γ
‖ξ(ωγn)(x, 0)‖H1

0 (Ω) ≤ Cγ .

where Cγ is a positive constant and (yγn, z
γ
n) = (y(ωγn, 0), z(ωγn, 0)) solves the coupled systems

(4.5)



∂yγn
∂t
− div(d(x)Oyγn) + r(x)yγn = 0

∂zγn
∂t
− div(d(x)Ozγn) + r̃(x)zγn + r(x)yγn = ωγnχO

in Q,

yγn(x, 0) = 0, zγn(x, 0) = 0, in Ω,

zγn = 0,
∂zγn
∂ν

= 0 on Σ.

Multiplying the first equality of (4.5) by yγn and the second equality by zγn. We integrate over Ω, we find

1

2

d

dt

∫
Ω

|yγn(t)|2dx+

∫
Ω

r(x)|yγn(t)|2dx−
∫

Ω

div (d(x)yγn(t))yγn(t)dx = 0,

and

1

2

d

dt

∫
Ω

|zγn(t)|2dx+

∫
Ω

r̃(x)|zγn(t)|2 − div( d(x).zγn(t))zγn(t) + r(x)yγn(t)zγn(t)dx

=

∫
O
ωγn(t)zγn(t)dx.

By integrating over [0, T ] and by applying the Gronwall lemma we obtain

‖yγn‖L∞(0,T ;Y) ≤ Cγ , ‖zγn‖L∞(0,T ;H1
0 (Ω)) ≤ Cγ ,

where Cγ is a positive constant. From (4.4), we deduce

‖∂z
γ
n

∂t
− div(d(x)Ozγn) + r̃(x)zγn + r(x)yγn‖L2(0,T ;O) ≤ Cγ .
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Then, there exists a subsequence of (ωγn), that we denote with the same indices such that, when n goes to

+∞,

ωγn ⇀ ω̂γ weakly in L2(0, T ;O), yγn ⇀ ŷγ weakly in L∞(0, T ;Y),

zγn ⇀ ẑγ weakly in L∞(0, T ;H1
0 (Ω)),

∂zγn
∂t
− div(d(x)Ozγn) + r̃(x)zγn + r(x)yγn ⇀ f weakly in L2(0, T ;O).

The space L∞(Q) (respectively L∞(0, T ;H1
0 (Ω))) is continuously embedded in L2(Q)

(respectively L2(0, T ;H1
0 (Ω))). Clearly, we have

(4.6) yγn ⇀ ŷγ weakly in L2(Q), zγn ⇀ ẑγ weakly in L2(0, T ;H1
0 (Ω)).

Multiplying two equalities in (4.5) by two test functions ϕ,ψ ∈ D(Q), we obtain

〈yγn,−
∂ϕ

∂t
− div(d(x)Oϕ) + r(x)ϕ〉L2(Q) = 0,

〈zγn,−
∂ψ

∂t
− div(d(x)Oψ) + r̃(x)ψ〉L2(Q) + 〈yγn, r(x)ψ〉L2(Q) = 〈ωγn, ψ〉L2(Q).

By adding the last two equalities and passing to the limit, we get

(4.7)


∂ŷγ

∂t
− div(d(x)Oŷγ) + r(x)ŷγ = 0

∂ẑγ

∂t
− div(d(x)Oẑγ) + r̃(x)ẑγ + r(x)ŷγ = ω̂γχO

in L2(0, T,O).

From (4.6) and (4.7), we get

ŷγ(x, 0) = 0, ẑγ(x, 0) = 0.

Now, we have to prove that (ζγn , ξ
γ
n) converges to (ζ̂γ , ξ̂γ). Let ζγn = ζ(ωγn) and ξγn = ξ(ωγn). Reverse time

variable by taking ζ̃γn(x, t) = ζγn(x, T − t), ξ̃γn(x, t) = ξγn(x, T − t), ỹγn(x, t) = yγn(x, T − t) and z̃γn(x, t) =

zγn(x, T − t). Then, we have

−∂ζ̃
γ
n

∂t
− div(d(x)Oζ̃γn) + r(x)ζ̃γn + r(x)ξ̃γn = ỹγn

−∂ξ̃
γ
n

∂t
− div(d(x)Oξ̃γn) + r̃(x)ξ̃γn = z̃γn

in Q,

ζ̃γn(x, 0) = 0, ξ̃γn(x, 0) = 0 in Ω,

ζ̃γn = 0,
∂ζ̃γn
∂ν

= 0 on Σ.

Then, we deduce that

ζ̃γn ⇀ ζ̂γ weakly in L2(Q), ξ̃γn ⇀ ξ̂γ weakly in L2(0, T ;H1
0 (Ω)).

Hence,

ζ̃γn(x, 0) ⇀ ζ̂γ(x, 0) weakly in H−
1
2 (Ω), ξ̃γn(x, 0) ⇀ ξ̂γ(x, 0) weakly in H1

0 (Ω).
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At last, we have

lim
n→∞

J γ(ωγn) = J γ(ωγ) = inf
ω∈Uad

J γ(ω).

The functional J γ is quadratic coercive, thus ω̂γ is unique. �

The characterization of the sequence of least regret controls is given in the following Proposition 4.1.

Proposition 4.1. The unique sequence of least regret controls ω̂γ is characterized by the following coupled

system

(4.8)



∂ŷγ

∂t
− div(d(x)Oŷγ) + r(x)ŷγ = 0

∂ẑγ

∂t
− div(d(x)Oẑγ) + r̃(x)ẑγ + r(x)ŷγ = ω̂γχO

in Q,

ŷγ(x, 0) = 0, ẑγ(x, 0) = 0, in Ω,

ẑγ = 0,
∂ẑγ

∂ν
= 0 on Σ,

(4.9)



−∂ζ̂
γ

∂t
− div(d(x)Oζ̂γ) + r(x)ζ̂γ + r(x)ξ̂γ = y(ω − ω̂γ)

−∂ξ̂
γ

∂t
− div(d(x)Oξ̂γ) + r̃(x)ξ̂γ = z(ω − ω̂γ)

in Q,

ζ̂γ(x, T ) = 0, ξ̂γ(x, T ) = 0 in Ω,

ζ̂γ = 0,
∂ζ̂γ

∂ν
= 0 on Σ,

(4.10)



∂ρ̂γ

∂t
− div(d(x)Oρ̂γ) + r(x)ρ̂γ = 0

∂σ̂γ

∂t
− div(d(x)Oσ̂γ) + r̃(x)σ̂γ + r(x)ρ̂γ = 0

in Q,

ρ̂γ(x, 0) = − 1

γ
ζ(ω − ω̂γ)(x, 0), σ̂γ(x, 0) = − 1

γ
ξ(ω − ω̂γ)(x, 0) in Ω,

ẑγ = 0,
∂ẑγ

∂ν
= 0 on Σ,

and

(4.11)



−∂p̂
γ

∂t
− div(d(x)Op̂γ) + r(x)p̂γ + r(x)q̂γ = ŷγ − yd + ρ̂γ

−∂q̂
γ

∂t
− div(d(x)Oq̂γ) + r̃(x)q̂γ = ẑγ − zd + σ̂γ

in Q,

p̂γ(x, T ) = 0, q̂γ(x, T ) = 0 in Ω,

p̂γ = 0,
∂q̂γ

∂ν
= 0 on Σ.

Furthermore, for all ω ∈ Uad, we have

(4.12)

∫ T

0

∫
O

(q̂γ +Nω̂γ)(ω − ω̂γ)dxdt ≥ 0.

Proof. The functional J γ is quadratic coercive, thus it possesses a unique minimum ω̂γ . This minimum

is a solution to the Euler equation, thus for all ω ∈ Uad, we have

lim
h→0

Jγ
(
ω̂γ + h(ω − ω̂γ)

)
− Jγ(ω̂γ)

h
≥ 0.
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So, we have

(4.13)

∫∫
Q

[
y(ω − ω̂γ)(ŷγ − yd) + z(ω − ω̂γ)(ẑγ − zd)

]
dtdx+

∫ T

0

∫
O
Nω̂γ(ω − ω̂γ)dtdx

+
1

γ

∫
Ω

[
ζ̂γ(x, 0)ζ(ω − ω̂γ)(x, 0) + ξ̂γ(x, 0)ξ(ω − ω̂γ)(x, 0)

]
dx ≥ 0.

We introduce (ρ̂γ , σ̂γ) = (ρ(ω̂γ , 0)(x, t), σ(ω̂γ , 0)(x, t)) solution to (4.10). By integration by parts, we get

(4.14)

∫∫
Q

ζ̂γ(
∂ρ̂γ

∂t
− div(d(x)Oρ̂γ) + r(x)ρ̂γ)dtdx

=

∫∫
Q

ρ̂γ(−∂ζ̂
γ

∂t
− div(d(x)Oζ̂γ) + r(x)ζ̂γ)dtdx+

1

γ

∫
Ω

ζ̂γ(x, 0)ζ(ω − ω̂γ)(x, 0)dx = 0,

and

(4.15)

∫∫
Q

ξ̂γ(
∂σ̂γ

∂t
− div(d(x)Oσ̂γ) + r̃(x)σ̂γ + r(x)ρ̂γ)dtdx =

∫∫
Q

σ̂γz(ω − ω̂γ)dtdx

+

∫∫
Q

ρ̂γ r̃(x)ξ̂γdtdx+
1

γ

∫
Ω

ξ̂γ(x, 0)ξ(ω − ω̂γ)(x, 0)dx = 0.

Adding (4.14) to (4.15) amounts to

(4.16)
1

γ

∫
Ω

[
ζ̂γ(x, 0)ζ(ω − ω̂γ)(x, 0) + ξ̂γ(x, 0)ξ(ω − ω̂γ)(x, 0)

]
dx

=

∫∫
Q

[ρ̂γy(ω − ω̂γ) + σ̂γz(ω − ω̂γ)]dtdx.

Replacing (4.16) in (4.13), we find

(4.17)

∫∫
Q

[
y(ω − ω̂γ)(ŷγ − yd + ρ̂γ) + z(ω − ω̂γ)(ẑγ − zd + σ̂γ)

]
dtdx

+

∫ T

0

∫
O
Nω̂γ(ω − ω̂γ)dtdx ≥ 0.

We introduce now the coupled adjoint state (p̂γ , q̂γ) = (p(ω̂γ , 0)(x, t), q(ω̂γ , 0)(x, t)) solution to (4.11). Fi-

nally, we obtain (4.12) by replacing (4.11) in (4.17) and integration by parts. �

We need some a priori estimations, which we make in the following Lemma.

Lemma 4.3. There exist some positive constants C independent of γ satisfy the following estimations:

(4.18) ‖ω̂γ‖L2(0,T,O) ≤ C, ‖ŷγ‖L2(Q) ≤ C, ‖ẑγ‖L2(Q) ≤ C,

1
√
γ
‖ζ̂γ(x, 0)‖

H−
1
2 (Ω)

≤ C, 1
√
γ
‖ξ̂γ(x, 0)‖H1

0 (Ω) ≤ C,
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and,

‖ŷγ‖L2(Q) ≤ C, ‖
∂ŷγ

∂t
‖L2(Q) ≤ C, ‖ẑγ‖L2(0,T ;H1

0 (Ω)) ≤ C, ‖
∂ẑγ

∂t
‖L2(Q) ≤ C,(4.19)

‖ζ̂γ‖L2(Q) ≤ C, ‖
∂ζ̂γ

∂t
‖L2(Q) ≤ C, ‖ξ̂γ‖L2(0,T ;H1

0 (Ω)) ≤ C, ‖
∂ξ̂γ

∂t
‖L2(Q) ≤ C,(4.20)

‖ρ̂γ‖L2(Q) ≤ C, ‖
∂ρ̂γ

∂t
‖L2(Q) ≤ C, ‖σ̂γ‖L2(0,T ;H1

0 (Ω)) ≤ C, ‖
∂σ̂γ

∂t
‖L2(Q) ≤ C,(4.21)

‖p̂γ‖L2(Q) ≤ C, ‖
∂p̂γ

∂t
‖L2(Q) ≤ C, ‖q̂γ‖L2(0,T ;H1

0 (Ω)) ≤ C, ‖
∂q̂γ

∂t
‖L2(Q) ≤ C.(4.22)

Proof. Since ω̂γ is the sequence of least regret controls, we have

J γ(ω̂γ) ≤ J γ(ω) ∀ω ∈ Uad.

In particular case when ω = 0, we get

J(ω̂γ , 0)− J(0, 0) +
1

γ
‖ζ̂γ(x, 0)‖2

H−
1
2 (Ω)

+
1

γ
‖ξ̂γ(x, 0)‖2H1

0 (Ω) ≤ 0.

Thus, we have

(4.23) ‖ŷγ − yd‖2L2(Q) + ‖ẑγ − zd‖2L2(Q) +N‖|ω̂γ‖2L2(Q) +
1

γ
‖ζ̂γ(x, 0)‖2

H−
1
2 (Ω)

+
1

γ
‖ξ̂γ(x, 0)‖2H1

0 (Ω)

≤ ‖yd‖2L2(Ω) + ‖zd‖2L2(Ω) = Constant.

So (4.18) holds. Multiplying the first equality of (4.8) by ŷγ and the second equality by ẑγ and we integrate

over Ω, we find

∫
Ω

ŷγ(t)
(∂ŷγ(t)

∂t
− div(d(x)Oŷγ(t)) + r(x)ŷγ(t)

)
dx

=
1

2

d

dt

∫
Ω

|ŷγ(t)|2dx+

∫
Ω

r(x)|ŷγ(t)|2dx−
∫

Ω

div (d(x)ŷγ(t))ŷγ(t)dx = 0,

and

∫
Ω

ẑγ(t)
(∂ẑγ(t)

∂t
− div(d(x)Oẑγ(t)) + r̃(x)ẑγ(t) + r(x)ŷγ(t)

)
dx

=
1

2

d

dt

∫
Ω

|ẑγ(t)|2dx+

∫
Ω

r̃(x)|ẑγ(t)|2dx−
∫

Ω

div( d(x).ẑγ(t))ẑγ(t) +

∫
Ω

r(x)ŷγ(t)ẑγ(t)dx

=

∫
O
ω̂γ(t)ẑγ(t)dx.

By integrating over [0, T ] and by applying the Gronwall lemma we obtain

‖ŷγ‖L2(Q) ≤ Cγ , ‖
∂ŷγ

∂t
‖L2(Q) ≤ Cγ , ‖ẑγ‖L2(0,T ;H1

0 (Ω)) ≤ Cγ , ‖
∂ẑγ

∂t
‖L2(Q) ≤ Cγ ,

where Cγ is a positive constant. From the last estimations we get (4.19). We follow a similar method to

demonstrate (4.19) for finding (4.20). �
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When we pass to the limit when γ → 0, the sequence of least regret controls converges ω̂γ to the no regret

control ω̂.

Theorem 4.1. The no regret control ω̂ = limγ→0 ω̂
γ is characterized by the unique set {(ŷ, ẑ), (ζ̂, ξ̂), (ρ̂, σ̂), (p̂, q̂)}

solution to the following coupled optimality system (SO)

(4.24)



∂ŷ

∂t
− div(d(x)Oŷ) + r(x)ŷ = 0

∂ẑ

∂t
− div(d(x)Oẑ) + r̃(x)ẑ + r(x)ŷ = ω̂χO

in Q,

ŷ(x, 0) = 0, ẑ(x, 0) = 0, in Ω,

ẑ = 0,
∂ẑ

∂ν
= 0 on Σ,

(4.25)



−∂ζ̂
∂t
− div(d(x)Oζ̂) + r(x)ζ̂ + r(x)ξ̂ = y(ω − ω̂)

−∂ξ̂
∂t
− div(d(x)Oξ̂) + r̃(x)ξ̂ = z(ω − ω̂)

in Q,

ζ̂(x, T ) = 0, ξ̂(x, T ) = 0 in Ω,

ζ̂ = 0,
∂ζ̂

∂ν
= 0 on Σ,

(4.26)



∂ρ̂

∂t
− div(d(x)Oρ̂) + r(x)ρ̂ = 0

∂σ̂

∂t
− div(d(x)Oσ̂) + r̃(x)σ̂ + r(x)ρ̂ = 0

in Q,

ρ̂(x, 0) = ρ0, σ̂(x, 0) = σ0 in Ω,

σ̂ = 0,
∂σ̂

∂ν
= 0 on Σ,

and

(4.27)



−∂p̂
∂t
− div(d(x)Op̂) + r(x)p̂+ r(x)q̂ = ŷ − yd + ρ̂

−∂q̂
∂t
− div(d(x)Oq̂) + r̃(x)q̂ = ẑ − zd + σ̂

in Q,

p̂(x, T ) = 0, q̂(x, T ) = 0 in Ω,

p̂ = 0,
∂p̂

∂ν
= 0 on Σ,

with the variational inequality

(4.28)

∫ T

0

∫
O

(q̂ +Nω̂)(ω − ω̂)dxdt ≥ 0,

with the following limits:

ρ0 = − lim
γ→0

1

γ
ζ(ω − ω̂γ)(x, 0), σ0 = − lim

γ→0

1

γ
ξ(ω − ω̂γ)(x, 0).

Proof. From inequality (4.23), we may extract some some subsequence of (ω̂γ , ŷγ , ẑγ)γ that we denote

with the same indices such that, when γ goes to 0, we have

ω̂γ ⇀ ω̂ weakly in L2(0, T ;O), (ŷγ , ẑγ) ⇀ (ŷ, ẑ) weakly in L2(Q) × L2(0, T ;H1
0 (Ω)).
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On the other hand, from the optimality coupled systems in Proposition 4.1, the sequences (
∂ŷγ

∂t
−div(d(x)Oŷγ)+

r(x)ŷγ)γ and (
∂ẑγ

∂t
− div(d(x)Oẑγ) + r̃(x)ẑγ + r(x)ŷγ)γ are bounded in L2(Q). So, we have

∂ŷγ

∂t
− div(d(x)Oŷγ) + r(x)ŷγ ⇀

∂ŷ

∂t
− div(d(x)Oŷ) + r(x)ŷ weakly in L2(Q),

∂ẑγ

∂t
− div(d(x)Oẑγ) + r̃(x)ẑγ + r(x)ŷγ ⇀

∂ẑ

∂t
− div(d(x)Oẑ) + r̃(x)ẑ + r(x)ŷ in L2(Q).

Taking to the limit γ → 0, we get (4.24). Also, from to a priori estimates of Lemma 4.3, and by using the

same method we found (4.25)-(4.27). From (4.18), we have

− 1

γ

(
ζ(ω − ω̂γ)(x, 0), ξ(ω − ω̂γ)(x, 0)

)
⇀ (ρ0, σ0) weakly in H−

1
2 (Ω)×H1

0 (Ω).

In close, the inequality (4.28) can be deduced using the weak convergence of p̂γ , q̂γ and ω̂γ . �

5. Conclusion

This work examined an evolution coupled system, with missing initial conditions that presented the

relation between biochemical oxygen demand (BOD) and dissolved oxygen (DO). Since the decrease of BOD

is a good way for judging the effectiveness of water purification, our main objective was to control the level of

dissolved oxygen, for giving more information about it. We gave the characterization of the optimal control

through applied the idea of no regret, where we solved an optimal control problem with uncertainly. The

obtained method optimization problem is to be transformed into classical optimal control via the notion of

low regret control. Finally, the coupled optimality system for the least regret control converges weakly to

the coupled optimality systems for no regret control or the optimal control.

Conflicts of Interest: The author(s) declare that there are no conflicts of interest regarding the publication

of this paper.

References

[1] J. J. Mocuba, Dissolved oxygen and biochemical oxygen demand in the waters close to the Quelimane sewage discharge.

MS Thesis. The University of Bergen (2010).

[2] J. Liu, G. Olsson, B. Mattiasson, Short-term BOD (BODst) as a parameter for on-line monitoring of biological treatment

process, Biosensors Bioelectron. 20 (2004), 562–570.

[3] J. Liu, B. Mattiasson, Microbial BOD sensors for wastewater analysis, Water Res. 36 (2002), 3786–3802.
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données manquantes, C. R. Math. Acad. Sci. Paris, Ser. I, 338(12) (2004), 921–924.

[10] O. Nakoulima, A. Omrane, J. Velin, No-regret control for nonlinear distributed systems with incomplete data, J. Math.

Pures Appl. 81 (2002), 1161–1189.

[11] A. Hafdallah, A. Ayadi, Optimal control of a thermoelastic body with missing initial conditions, Int. J. Control. 93 (2020),

1570–1576.

[12] D. M. Reynolds, S. R. Ahmad, Rapid and direct determination of wastewater BOD values using a fluorescence technique,

Water Res. 31 (1997), 2012–2018.

[13] J. Salguero, J. Valverde Flores, Reduction of the Biochemical Oxygen Demand of the water samples from the lower basin of

the Chillon River by means of Air-Ozone MicroNanobubbles, Ventanilla - Callao, J. Nanotechnol. (Lima). 1 (2017), 25-35.

[14] M. Zajda, U. Aleksander-Kwaterczak, Wastewater Treatment Methods for Effluents from the Confectionery Industry – an

Overview, J. Ecol. Eng. 20 (2019), 293–304.

[15] A. Hafdallah, A. Ayadi, C. Laouar, No-Regret Optimal Control Characterization for an Ill-Posed Wave Equation, Int. J.

Math. Trends Techno. 41 (2017), 1-6.


	1. Introduction
	2.  Setting the problem
	3. Defining the no-regret control 
	4. Defining the sequence of low-regret controls (Least regret controls) 
	5. Conclusion
	References

