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Abstract. This paper focus on the heat recovery from the metallurgical and mining wastes. We propose

and study a new and more realistic mathematical model for heat recovery from molten slag. Our model

is based on time delay differential equations. In the theoretical part, we prove that a unique solution

exists to the mathematical problem. In the numerical part, we establish an algorithm based on explicit

fourth order Runge-Kutta method with delay; the new feature is that the delay must be larger enough

than the step of integration. Compared to the classical model (without time delay), the numerical

test proves that our model is more efficient and industrially more profitable.

1. Introduction

In metallurgy, heat recovery from molten slag is nowadays one of the relevant manners to valorize

the huge amount of thermal energy provided by such mining waste. This very high temperature liquid
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slag is refrigerated then solidified by quenching procedure via fluids (gas or liquid), in general. After

that, the heat recuperated is used for many purposes that range from industrially to domestically

use. Such huge thermal energy can be used for producing electrical energy, or heating buildings,

for example. A review paper about this subject is [13]. The report [11] deals with this matter in

Australia. The paper [10] presents a global study of the problem, with focus on South Africa mining

and metallurgical industry.

In the literature, from mathematical point of view, models dealing with heat recovery from molten

slag are formulated using ordinary differential equations that are taking in account only instantaneous

properties of the molten slag. Thus, they naturally consider the ordinary time derivative. Such classical

models were given by the ordinary differential equation of the form:

dT

dt
(t) = f (t, T (t)),

where T is the temperature of the molten slag, t is the time variable and f is a given function that

describes the process of energy transfer. From physical point of view, as stated in [8], models above

are based on the fact that convection and radiation are mainly the two manners of heat dissipation,

when liquid slag is quenched. The heat transfer between the quenching fluid and the very hot slag is

governed by the energy equality

cV ρ
dT

dt
(t) = Ah(T (t)− Tf ) + Aεσ0(T

4(t)− T 4f ), (1.1)

where T is the unknown temperature of the molten slag, it depends only on the time t. The parameters

V and A are respectively the volume and the surface of the molten slag; Tf is the fixed temperature

of the incoming quenching fluid; c and ε state for the heat of the alloy and its integrated radiant

remittance, ρ is the melt density, h is the heat transfer coefficient of the interface and finally σ0 refers

to the blackbody radiation coefficient.

However, we think that models above are neither realistic nor so much efficient. In fact, from physical

and industrial point of view, there are two intersecting issues (a property and a phenomenon) that

should be considered:

• Memory effects caused by the viscoelasticity of the molten slag: As for such property, based

on physical experiences and chemical analysis the detailed review paper [9] and references

therein putted in evidence the viscoelastic response of molten slag, where according to the

authors "at high temperatures (which is our case), the time dependent constitutive relations

are needed not only for the stress-stress relationship, but also for the heat flux vector"(page

26). Also, they reviewed and discussed "the various existing implicit constitutive models for

non-linear viscoelastic materials that can be used to model the rheological characteristics of

slag" (page 28).
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• Time delay phenomena occurring in the interconnections of different parts of a system: As

for such phenomena, authors in [6] used a space-averaging technique and the method of

characteristics to propose a time-delay system modelling the flow temperatures of a heat

exchanger; they believe that "time delay phenomena naturally occur in the interconnections

of different parts of a system, as propagation of matter is not instantaneous. In particular,

it occurs in tubular heat exchangers, which are very common devices in industry". Tubular

heat exchangers are exactly the case of quenching systems used for molten slag. In [12], a

dual-phase-lagging model of the micro-scale heat conduction is re-derived analytically from

the Boltzmann transport equation. Then, based on such model, a delay-advanced partial

differential equations governing the micro-scale heat conduction are established, as a more

realistic model.

To take in account facts signaled above, we will opt for a model governed by a time-delay equations.

Mathematically speaking, this is based on delay differential equations (DDEs), where the derivative of

the unknown molten slag temperature T at a time t is expressed by the values of the temperature at

previous times that is
dT

dt
(t) = f (t, T (t − τ)), (1.2)

where T (t−τ) is the delay term that takes in account the memory effects of the system, and τ is the

delay time. In the first chapter of the book [1], it was discussed, in details, how delayed differential

equations are a reliable mathematical tool to modelize systems with memory. Based on (1.2), to make

the model of heat recovery from molten slag more realistic, we propose the following new governing

equation:

cV ρ
dT

dt
(t) = [Ah(T (t − τ1)− Tf ) + Aεσ(T 4(t − τ2)− T 4f )], (1.3)

where we performed a correction via different time delays τ1 and τ2, respectively in the convective

term and the radiation term.

However, to simplify this model, we recall the following: By one hand, as radiation is an electromagnetic

wave travelling, heat transfer by radiation occurs at the speed of light. By the other hand, as convection

is a phenomenon related to the physical medium, heat transfer by convection takes place at the speed

of convective medium. Thus, we are lead to consider that

τ2 << τ1,

because heat transfer by radiation is faster than heat transfer by convection. Mathematically speaking,

we can neglect τ2 compared to τ1. Thus, model (1.3) reads

cV ρ
dT

dt
(t) = [Ah(T (t − τ1)− Tf ) + Aεσ(T 4(t)− T 4f )]. (1.4)

Above, we mean by "faster" the way to transfer energy from one medium to another in least amount

of time.
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From numerical point of view, it is already known, in the literature, that numerical investigation

of delayed differential equations is so delicate and some times problematic. Among others, authors in

the recent publication [4] discussed several problems that arise while implementing numerical methods

to solve delay-differential equations, as overlapping, difficulties with error estimation, discontinuities

of solution derivatives and their detection, with focus on the Runge–Kutta methods. Let us explicitly

say that, one of serious problems in such investigation is the fact that integration in time variable

will be perturbed by some shift effects due to delays. In [2, 7], this anomaly was overcome by

interpolation. Here, we will take the step of time integration so small compared to the delay. So,

the time shift will not be in the interval of integration. This allows us to establish an explicit delayed

fourth order Runge-Kutta algorithm (DFOR-K) valid for our proposed model. To the best of our

knowledge, our idea is new and original.

The remainder of this paper will be as follows. In section two, we will prove that our model

is mathematically well posed; that is a unique solution exists to the corresponding Cauchy problem.

Section three deals with the numerical investigation, we will establish an explicit forth order Runge-

Kutta algorithmi, after which numerical test will be presented to validate the model. This paper will

be achieved by a closely conclusion.

2. Functional setting and theoretical results

In this section, we will prove that a solution to our model exists and it is unique. Following

mathematical material in [5], we recall the following.

• The naturel functional setting used to study retarded differential equations is the set of con-

tinuous functions mapping the interval [−r, 0] into Rn, r > 0, denoted by C = C([−r, 0],Rn),

and endowed with the usual norm defined by

|φ| = sup
−r≤θ≤0

|φ(θ)|,

for any given function φ ∈ C.
• If we consider σ ∈ R, A ≥ 0 and x ∈ C([σ − r, σ + A],Rn), then for any t ∈ [σ − r, σ + A],

we let xt ∈ C be defined by

xt(θ) = x(t + θ), −r ≤ θ ≤ 0.

• If D is a subset of R × C, f : D → Rn is a given function and "." represents the derivative,

then we say that the relation

(DDE) ẋ(t) = f (t, xt)

is a delayed (retarded or advanced) differential equation (also said functional differential equa-

tion) on D and will denote this equation by (DDE). Equation (DDE) is a very general type
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of equation and includes ordinary differential equations

ẋ(t) = f (t, x(t))

whenever r = 0 (and thus θ = 0); differential equations in the form

ẋ(t) = f (t, x(t), x(t − τ)), 0 ≤ τ ≤ r,

for example which is our case, in this paper.

• A delayed initial value problem is simply a delayed differential equation supplemented by an

initial value φ at σ:

(DIV P )

{
ẋ(t) = f (t, xt)

xσ = φ,

where σ ∈ R, φ ∈ C are given.

• A function x is said to be a solution of a delayed differential equation on [σ− r, σ+A) if there

are σ ∈ R and A > 0, such that x ∈ C([σ − r, σ + A),Rn), (t, xt) ∈ D and x(t) satisfies

equation (DDE) for t ∈ [σ, σ + A). It follows that x(σ, φ, f ) is a solution to the delayed

initial value problem (DIV P ), that is a solution of (DDE) with initial value φ at σ or simply

a solution through (σ, φ), if there is an A > 0, such that x(σ, φ, f ) is a solution of equation

(DDE) on [σ − r, σ + A) and xσ(σ, φ, f ) = φ.

For interested readers, [5] and [1] are complete references about this topic. Using notation above, we

introduce the existence result (Theorem 2.3 page 42), in [5]:

Theorem 2.1. Suppose Ω is an open subset in R × C and f : Ω → Rn is continuous, and f (t, φ) is

Lipschitzian in φ in each compact set in Ω. If (σ, φ) ∈ Ω, then there is a unique solution of equation

(DDE) passing through (σ, φ).

We use theorem above to deal with existence and uniqueness of solution to our model.

(1) Existence of solution: the function T : t → T (t) should belong to C(J), so it should be

continuous in time t on some time interval J ⊂ R. This interval will be defined in practice

by the duration of the quenching process. Thus, the operator f : J × C(J) → R, such that

f (t, T (t)) = aT (t− τ) +bT 4(t) + c is continuous in (t, T ) as a polynomial in the variable T ,

here we note that there is no explicit dependence of the operator f on the time t and such

dependence is implicitly through the temperature T . Above, the coefficients a, b and c are

given by the parameters of the model after standard computation. So, at this step a solution

to our model (1.4) exists.

(2) Uniqueness of solution: Also, as a polynomial, the operator f is Lipschitzian in T in each

compact set in J × C(J). Thus, if we supplement our model by the initial value Tσ = Tin,

theorem above asserts that our model has a unique solution T (σ, Tin, f ) passing through

(σ, φ = Tin). Here, we note that Tin is the temperature of the molten slag before the
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beginning of the quenching process and we recall that Tσ is defined by Tσ(θ) = T (σ + θ),

−r ≤ θ ≤ 0, r > 0, so that Tσ ∈ C as it is a constant function of time equal to Tin everywhere.

The value of σ can be taken equal to zero, without loss of generality.

3. Numerical investigation

3.1. The delayed fourth order Runge-Kutta algorithm. The classical fourth Runge-Kutta method

consists in integrating a differential equation of the form

dT

dt
(t) = f (t, T (t)),

using the formula: tn+1 = tn + h, where h is the time step and

Tn+1 = Tn +
1

6
(K1 + 2K2 + 2K3 +K4) , for n = 1, 2, . . . , m − 1, (3.1)

where

K1 = hf (tn, Tn)

K2 = hf (tn +
h

2
, Tn +

K1
2

)

K3 = hf (tn +
h

2
, Tn +

K2
2

)

K4 = hf (tn + h, Tn +K3)

(3.2)

and m is the number of integration’s steps.

Let us consider the following delay differential equation:

dT

dt
(t) = f (t, T (t − τ), T (t)) =

1

cV ρ
[Ah(T (t − τ)− Tf ) + Aεσ(T 4(t)− T 4f )]

= αT (t − τ) + βT 4(t) + γ,

(3.3)

where α = (6 ∗ h)/(ρ ∗ c ∗ d), β = (6 ∗ ε ∗ σ)/(ρ ∗ c ∗ d) and γ = (α ∗ Tf ) + (β ∗ (T 4f )), and we

approximate the molten slag grains by spheres of radius d/2. We claim that the diameter d and thus

the surface A can be adjustable, by industrial methods to increase or decrease the transfer interface

between molten slag and the fluid. In reference ( [8]), the coefficients α, β and γ are calculated based

the physical parameters of model (1.1), to obtain

α = −5.208 10−6

β = −4.626 10−3

γ = 38381.568.

For sake of comparison of our delayed model to the non delayed model introduced in ( [8]), we are

using the same coefficients in our numerical study. Also, as in ( [8]), we take the initial temperature of

the slag to be Tin = T (0) = 1773K. Thus, in our following numerical investigation, we will consider
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the delayed initial value problem

(S)

{
dT
dt (t) = −5.208 10−6T (t − τ)− 4.626 10−3T 4(t) + 38381.568

Tin = 1773K.

If the delay τ is larger enough than the step of integration, the above fourth Runge-Kutta method

can be extended to a fourth Runge Kutta algorithm with delay by expressive constants K̃1, K̃2, K̃3

and K̃4 with the delayed form of the f (t, T (t − τ), T (t)). That is

K̃1 = hf (T (tn)) = h
[
αT (tn − τ) + βT 4(tn) + γ

]
;

K̃2 = hf (T (tn) + 1
2K̃1)

= h
[
α
(
T (tn) + 1

2K̃1
)
(tn−τ) + β(T (tn) + 1

2K̃1)
4 + γ

]
= h

[
α
(

(T (tn − τ) + 1
2(K̃1)(tn−τ)

)
+ β(T (tn) + 1

2K̃1)
4 + γ

]
,

(3.4)

where

(K̃1)(tn−τ) = hf (T (tn − τ))

= h
[
αT (tn − 2τ) + βT 4(tn − τ) + γ

]
;

(3.5)

K̃3 = hf (T (tn) + 1
2K̃2)

= h
[
α
(
T (tn) + 1

2K̃2
)
(tn−τ) + β

(
T (tn) + 1

2K̃2
)4

+ γ
]

= h
[
α
(

(T (tn − τ) + 1
2(K̃2)(tn−τ)

)
+ β

(
T (tn) + 1

2K̃2
)4

+ γ
]
,

(3.6)

where

(K̃2)(tn−τ) = hf
(
T (tn − τ) + 1

2(K̃1)(tn−τ)
)

= h

[
α

(
T (tn − 2τ) +

1

2
(K̃1)(tn−2τ)

)
+ β

(
T (tn − τ) +

1

2
(K̃1)(tn−τ)

)4
+ γ

]

(K̃1)(tn−2τ) = hf (T (tn − 2τ)) = h
[
αT (tn − 3τ) + βT 4(tn − 2τ) + γ

]
(3.7)

and

K̃4 = hf (T (tn) + K̃3)

= h
[
α
(
T (tn) + K̃3

)
(tn−τ) + β

(
T (tn) + K̃3

)4
+ γ

]
= h

[
α
(

(T (tn − τ) + (K̃3)(tn−τ)
]

+ β
(
T (tn) + K̃3

)4
+ γ

]
,

(3.8)
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where

(K̃3)(tn−τ) = hf
(
T (tn − τ) + 1

2(K̃2)(tn−τ)
)

= h

[
α

(
T (tn − 2τ) +

1

2
(K̃2)(tn−2τ)

)
+ β

(
T (tn − τ) +

1

2
(K̃2)(tn−τ)

)4
+ γ

]

(K̃2)(tn−2τ) = hf
(
T (tn − 2τ) + 1

2(K̃1)(tn−2τ)
)

= h

[
α

(
T (tn − 3τ) +

1

2
(K̃1)(tn−3τ)

)
+ β

(
T (tn − 2τ) +

1

2
(K̃1)(tn−2τ)

)4
+ γ

]

(K̃1)(tn−3τ) = hf (T (tn − 3τ)) = h
[
αT (tn − 4τ) + βT 4(tn − 3τ) + γ

]
.

(3.9)

Then,

Tn+1 = Tn +
1

6

(
K̃1 + 2K̃2 + 2K̃3 + K̃4

)
, for n = 1, 2, . . . , m − 1, (3.10)

where tn+1 = tn + h, h is the time step and m is the number of integration’s steps.

We will name the algorithm (3.4)-(3.10) the delayed fourth order Runge-Kutta algorithm that we will

denote by (DFOR-K). From the above computation, it is clear that since equation (3.3) is with one

constant delay τ , the (DFOR-K) depends on the delay of time equals to 4τ via (K̃1)(tn−3τ), in the

last line of (3.9). This proves the following theorem.

Theorem 3.1. Let τ be the delay in equation (3.3) and h be the integration step in the (DFOR-K)

(3.4)-(3.10). If τ ≥ h, then the (DFOR-K) (3.4)-(3.10) is a valid algorithm. Moreover, it depends

on delays τ , 2τ , 3τ and 4τ .

3.2. Numerical results. We present two numerical results. The first concerns the comparison be-

tween the model with delay, that it is physically more realistic, and the one without delay. The second

result consists in establishing the variation of the heat transfer as a function of the exchange surface

between the molten slag and the quenching fluid.

In Figure 1 and Table 1, we fix the thermal exchange surface of the molten slag with the fluid used

for the recovery of the heat to be A = 200 units of the sphere of diameter d modeling the grains

of the molten slag and we present the decrease in the temperature of the molten slag as a function

of time, with an integration step Timestep = 0.5 s, a delay τ = 4∗ Timestep, where the number of

steps of integration is m = 40. So, the simulation is in a time equal to 20 s. Clearly, we can see that,

when taking into account the delay, the decrease in temperature is more important, which implies a

saving of the time while transferring heat from the molten slag. Also, we see that the behaviour of

the temperature as a function of time presents some asymptote that seems to be the same for the

two models (without and with delay). This leads to think about the optimal time to spend in the heat

recovery process, in industry.
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Table 1. Table for the delay τ = 4 Pastemps = 4 steps of integration. pastemps=0.5 s, A =200

sphere unities, number of integration’s steps m = 40.

Iteration Times (s) Delayed temperature Not delayed temperature

0 0.0000000000000000 1773.0000000000000 1773.0000000000000

1 0.50000000000000000 1496.3627665694594 1487.6130483245572

2 1.0000000000000000 1228.2200943503881 1260.5919326885185

3 1.5000000000000000 1011.7376907722477 1078.3396255965374

4 2.0000000000000000 843.90934123125589 931.22909171791252

5 2.5000000000000000 715.08690804465118 812.09212122248778

6 3.0000000000000000 616.41586854571949 715.41277990356048

7 3.5000000000000000 540.85202877542747 636.85701598717617

8 4.0000000000000000 482.97008411070431 572.97465271184217

9 4.5000000000000000 438.62089061602052 520.99665252349666

10 5.0000000000000000 404.63356920917545 478.68924422998879

11 5.5000000000000000 378.58332275097030 444.24459090912433

12 6.0000000000000000 358.61453884968427 416.19650804817417

13 6.5000000000000000 343.30637504591556 393.35426511243531

14 7.0000000000000000 331.57045335400164 374.74995043192519

15 7.5000000000000000 322.57283358988946 359.59628591699783

16 8.0000000000000000 315.67440783299958 347.25264075992033

17 8.5000000000000000 310.38531550573572 337.19755665628946

18 9.0000000000000000 306.33005421868648 329.00648616513820

19 9.5000000000000000 303.22076278047979 322.33372710777883

20 10.000000000000000 300.83675480171695 316.89774647706361

21 10.500000000000000 299.00883657838762 312.46924901901673

22 11.000000000000000 297.60728872134200 308.86147204479352

23 11.500000000000000 296.53265440274487 305.92228806723062

24 12.000000000000000 295.70867813729103 303.52777670666762

25 12.500000000000000 295.07689267128490 301.57699142269786

26 13.000000000000000 294.59246909462632 299.98769831306481

27 13.500000000000000 294.22103526397939 298.69290600508037

28 14.000000000000000 293.93623652689627 297.63803951277356

29 14.500000000000000 293.71786551843422 296.77863839112746

30 15.000000000000000 293.55042824457450 296.07848181653878
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31 15.500000000000000 293.42204466040243 295.50806134363791

32 16.000000000000000 293.32360570627554 295.04333682354223

33 16.500000000000000 293.24812697431037 294.66472295529155

34 17.000000000000000 293.19025313632625 294.35626369636543

35 17.500000000000000 293.14587796555929 294.10495969758477

36 18.000000000000000 293.11185298858754 293.90022039122590

37 18.500000000000000 293.08576409385415 293.73341762396927

38 19.000000000000000 293.06576024566658 293.59752201192765

39 19.500000000000000 293.05042215001640 293.48680668521655

40 20.000000000000000 293.03866155349442 293.39660593217508

Our second numerical test focus on the effect of the variation of the contact surface between the

quenching fluid and the molten slag surface on the heat transfer rate from this molten slag. It is

clear that increasing this exchange surface has as an effect to increase the speed of the heat recovery

from the molten slag, in both cases of modeling with delay (Figure 2) and without delay (Figure 3).

Also, it is clear that while passing from surface A = 100 to surface A = 200, temperature decreases

faster than while passing from A = 200 to A = 300 an so on, for the same abscise of time, see for

example for t = 5s of (Figure 2). This leads to think about the optimally profitable surface that

should be considered in industrial protocols. Moreover, the behavior of the temperature as a function

of time presents some horizontal asymptote that should define the stopping time of the heat recovery

procedure, in practice.

Combining the above two statements, as a result, even more heat exchange speed is gained one takes

into account the delay and increases the surface of the contact.

Remark 3.1. The fact when passing from surface A = 100 to surface A = 200, temperature decreases

faster than when passing from A = 200 to A = 300 an so on, may be du to the hypothesis we made in

the beginning that is τ2 << τ1. In a forthcoming paper, we will deal with the model (1.3) and discuss

the situation based on this model that we think to be a compete one.
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Figure 1. Decrease in the temperature, τ = 4∗ timestep, timestep= 0.5s and m = 40.

Figure 2. Decrease in the temperature for different surface of heat transfer: A=100,

200, 300, & 400; τ = 4∗ timestep, timestep= 0.5s and m = 40.

Figure 3. Decrease in the temperature for different surface of heat transfer: A=100,

200, 300, & 400, without delay, timestep= 0.5s, m = 40.
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4. Conclusion

Heat recovery and re-use of the huge amount of thermal energy offered by the very high temper-

ature of the metallurgical and mining waste, in molten slag allow to built a circular economic model

and prevent environmental damages. Such industrial procedure should be an efficient process both in

the sense of duration of heat recovery and the optimal logistic protocol. In this paper, we proposed

a time delayed model that is more realistic then the instantaneous one. Our model is mathematically

well posed and numerically solvable using a variant of Runge-Kutta method which is popular. First,

we proved that our model is more efficient compared to the classical one, in the sense that the heat

recovery is faster; this saves time in industry. Also, we proved that there should exist both a stopping

time to the quenching process and an optimal surface of the contact between the molten slag and the

quenching fluid, so that the heat recovery procedure is maximally profitable, in industry.
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