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Abstract. The present paper analyzes a class of first-order fractional Fredholm integro differential

equations in terms of Caputo fractional derivative. In the literature, such kind of fractional integro-

differential equations have been solved using several numerical methods, while the exact solutions were

not obtained. However, the exact solutions are obtained in this paper for various linear and nonlinear

examples. It is shown that the exact solution of the linear problems is unique, while multiple exact

solutions exist for the nonlinear ones. Moreover, the obtained results reduce to the classical ones in

the relevant literature as the fractional order becomes unity. The obtained exact solutions can be

further invested by other researchers to validate their numerical/approximation methods.

1. Introduction

The fractional calculus (FC) has gained observable interest in recent years due to its applications

several fields [1-14]. The FC has been also extended to integro-differential equations (FIDEs) as ob-

served in the literature [15-28], where various numerical and analytical methods were applied to solve

for approximate solutions. We are concerned here with fractional Fredholm integro-differential equa-

tions (FFIDEs) of first-order. Although important results were reported [15-28] for FIDEs, obtaining

the exact solution of FFIDEs is not an easy task, even for simple equations as will be shown later. So,
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we consider in this paper the following class of FFIDEs:

C
0D

α
x u(x) = f (x) + λ

∫ b2

b1

K(x, τ, u(τ)) dτ, 0 < α ≤ 1, (1.1)

u(0) = h, (1.2)

where h, λ, b1 and b2 are given constants, f (x) is a given continuous function on [b1, b2]. The

objective of this paper is to introduce a direct analytic approach for obtaining exact solutions for the

class (1-2). It will be shown that the solution is unique when K(x, τ, u(τ)) is a linear function in

the unknown function u(τ). In addition, it will be declared that multiple exact solutions exists when

K(x, τ, u(τ)) is a nonlinear function in u(τ).

The Caputo definition is chosen as a fractional derivative in Eq. (1) and the structure of the paper

is as follows. In section 2, we give the main aspects of the FC. In addition, a basic Lemma will be

provided for the formal exact solution of the class (1-2). Sections 3 investigates the application of

the present approach on several linear and nonlinear problems. Besides, the way of obtaining exact

dual solution for the nonlinear case will be demonstrated in section 3. Moreover, it will be shown

that the present exact solutions reduce to the classical ones as α→ 1. Finally, section 5 outlines the

conclusions.

2. Main aspects of FC

The Riemann-Liouville fractional integral of order α is defined as [1]:

Jα0 u(x) =
1

Γ(α)

∫ x

0

(x − τ)α−1 u(τ)dτ α > 0. (2.1)

The Caputo’s FD of order α of a function u(x) is defined by

C
0D

α
x u(x) =

1

Γ(n − α)

∫ x

0

(x − τ)n−α−1u(n)(τ)dτ, n − 1 < α ≤ n. (2.2)

The Jα0 and C
0D

α
x are related by:

Jα0
(
C
0D

α
x u(x)

)
= u(x)−

n−1∑
m=0

u(m)(0)

m!
xm(0), (2.3)

which is useful when solving FDEs/FIEs. A basic property of the Jα0 is

Jα0 (x r ) =
Γ(r + 1)

Γ(α+ r + 1)
xα+r , r > −1. (2.4)
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The Mittag-Leffler function (MLF) of one-parameter is defined as

Eα(z) =

∞∑
m=0

zm

Γ(αm + 1)
, z ∈ C, (2.5)

while the two-parameter MLF is given as

Eα,β(z) =

∞∑
m=0

zm

Γ(αm + β)
, α > 0, β > 0. (2.6)

The following properties are also hold:

E1,2(z) = (ez − 1) / (z) , (2.7)

E2,1(−z2) = cos(z), E2,2(−z2) =
sin(z)

z
. (2.8)

Lemma 1. The analytic solution of the first-order FFIDE (1-2) is given by

u(x) = h + aλ

(
xα

Γ(α+ 1)

)
+ Jα0 (f (x)) , (2.9)

provided that the fractional integral of f (x), i.e., Jα0 (f (x)), exists and a is the constant given by

a =
∫ b2

b1
K(x, τ, u(τ)) dτ .

Proof: The bounded integral involved in Eq. (1) can be assumed as a constant. Besides, we assume

that such integral is given by the constant a as

a =

∫ b2

b1

K(x, τ, u(τ)) dτ. (2.10)

Operating with Jα0 on Eq. (1) and implementing (2), (5), and (14), it then follows

u(x)− u(0) = Jα0 (aλ) + Jα0 (f (x)) , (2.11)

or

u(x) = h + aλJα0 (1) + Jα0 (f (x)) . (2.12)

Calculating Jα0 (1) from Eq. (6) at r = 0, we have Jα0 (1) = xα

Γ(α+1) . Substituting this last result into

Eq. (14) we obtain Eq. (11) which completes the proofs. �
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3. Examples

Example 1: Consider the FFIDE [29]

C
0D

α
x u(x) = 2

(
1−

∫ 1

0

u(τ) dτ

)
, u(0) = 0. (3.1)

Let

a1 =

∫ 1

0

u(τ) dτ, (3.2)

where a1 is an unknown constant. Accordingly, Eq. (15) becomes

C
0D

α
x u(x) = 2 (1− a1) . (3.3)

Applying the integral operator Jα0 on Eq. (17) and making use of Eq. (5), we have

u(x) = u(0) + 2 (1− a1) Jα0 (1), (3.4)

or

u(x) = 2 (1− a1)
xα

Γ(α+ 1)
. (3.5)

The constant a1 is evaluated by inserting (19) into (16), this yields

a1 = 2 (1− a1)

∫ 1

0

τα

Γ(α+ 1)
dτ =

2 (1− a1)

Γ(α+ 2)
. (3.6)

Solving Eq. (20) for a1, we obtain

a1 =
2

2 + Γ(α+ 2)
, (3.7)

and hence, Eq. (19) becomes

u(x) =

(
2Γ(α+ 2)

Γ(α+ 1) (2 + Γ(α+ 2))

)
xα. (3.8)

As α→ 1, Eq. (22) reduces to the exact solution u(x) = x for the classical form of Eq. (15), given

by u′(x) = 2
(

1−
∫ 1

0 u(τ) dτ
)
.

Example 2: Consider the FFIDE [29]

C
0D

α
x u(x) = 3 + 6x + x

∫ 1

0

τu(τ) dτ, u(0) = 0. (3.9)

Suppose that

a2 =

∫ 1

0

τu(τ) dτ, (3.10)
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where a2 is a constant to be determined, then Eq. (23) becomes

C
0D

α
x u(x) = 3 + (6 + a2) x. (3.11)

Operating with Jα0 on Eq. (25), it then follows

u(x) =
3xα

Γ(α+ 1)
+

(6 + a2)xα+1

Γ(α+ 2)
. (3.12)

From Eq. (24), we have

a2 =

∫ 1

0

(
3τα+1

Γ(α+ 1)
+

(6 + a2)τα+2

Γ(α+ 2)

)
dτ,

=
3

(α+ 2)Γ(α+ 1)
+

(6 + a2)

(α+ 3)Γ(α+ 2)
, (3.13)

which gives

a2 =
3α2 + 18α+ 21

(α+ 2) [(α+ 3)Γ(α+ 2)− 1]
. (3.14)

Therefore,

u(x) =
3xα

Γ(α+ 1)
+

(
6 +

3α2 + 18α+ 21

(α+ 2) [(α+ 3)Γ(α+ 2)− 1]

)
xα+1

Γ(α+ 2)
, (3.15)

and reduces, as α → 1, to u(x) = 3x + 4x2 which is the same solution in Ref. [29] for the classical

form: u′(x) = 3 + 6x + x
∫ 1

0 τu(τ) dτ .

Example 3: This example considers the FFIDE [29]

C
0D

α
x u(x) = −1 + cos x +

∫ π/2

0

τu(τ) dτ, u(0) = 0, (3.16)

which takes the form:

C
0D

α
x u(x) = (a3 − 1) + cos x, (3.17)

where a3 is a constant defined by

a3 =

∫ π/2

0

τu(τ) dτ. (3.18)

Expressing cos x as Maclaurin series and then applying Jα0 on both sides of Eq. (31), gives

u(x) = (a3 − 1) Jα0 (1) + Jα0

( ∞∑
m=0

(−1)mx2m

(2m)!

)
,

=
(a3 − 1) xα

Γ(α+ 1)
+

∞∑
m=0

(−1)m

(2m)!
×

Γ(2m + 1)xα+2m

Γ(α+ 2m + 1)
, (3.19)
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which is simplified as

u(x) =
(a3 − 1) xα

Γ(α+ 1)
+

∞∑
m=0

(−1)mxα+2m

Γ(α+ 2m + 1)
, (3.20)

or in terms of the MLF E2,α+1(−x2) as

u(x) =
(a3 − 1) xα

Γ(α+ 1)
+ xαE2,α+1(−x2). (3.21)

From Eq. (32) and Eq. (35), we have

a3 =

∫ π/2

0

(
(a3 − 1) τα+1

Γ(α+ 1)
+ τα+1E2,α+1(−τ2)

)
dτ,

=
(a3 − 1) (π/2)α+2

(α+ 2)Γ(α+ 1)
+ I, (3.22)

where the integral I is defined by

I =

∫ π/2

0

τα+1E2,α+1(−τ2) dτ. (3.23)

Solving Eq. (36) for a3, we obtain

a3 = −
(π/2)α+2

(α+ 2)Γ(α+ 1)− (π/2)α+2
+

(α+ 2)Γ(α+ 1)

(α+ 2)Γ(α+ 1)− (π/2)α+2
I. (3.24)

Therefore, u(x) is finally given by

u(x) =

(
−

(π/2)α+2

(α+ 2)Γ(α+ 1)− (π/2)α+2
+

(α+ 2)Γ(α+ 1)

(α+ 2)Γ(α+ 1)− (π/2)α+2
I − 1

)
×

xα

Γ(α+ 1)
+ xαE2,α+1(−x2), (3.25)

and I is already defined by Eq. (37). The solution given by Eq. (39) reduces, as α→ 1, to

u(x) =

(
−

(π/2)3

3− (π/2)3
+

3

3− (π/2)3

∫ π/2

0

τ2E2,2(−τ2) dτ − 1

)
x + xE2,2(−x2),

=

(
−

(π/2)3

3− (π/2)3
+

3

3− (π/2)3

∫ π/2

0

τ sin τ dτ − 1

)
x + x

(
sin x

x

)
,

=

(
−

(π/2)3

3− (π/2)3
+

(π/2)3

3− (π/2)3

)
x + sin x, where

∫ π/2

0

τ sin τ dτ = 1,

= sin x, (3.26)

which is the corresponding solution for the classical form: u′(x) = −1 + cos x +
∫ π/2

0 τu(τ) dτ .
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Example 4: In this example, we considers the FFIDE [29]:

C
0D

α
x u(x) = −10x +

∫ 1

−1

(x − τ) u(τ) dτ, u(0) = 1. (3.27)

Assuming that

a4 =

∫ 1

−1

u(τ) dτ, a5 =

∫ 1

−1

τu(τ) dτ, (3.28)

then Eq. (41) becomes

C
0D

α
x u(x) = (a4 − 10) x − a5, (3.29)

where a4 and a5 are constants. Following the same analysis of the previous examples, we obtain

u(x) = 1 +
(a4 − 10) xα+1

Γ(α+ 2)
−

a5x
α

Γ(α+ 1)
. (3.30)

Substituting Eq. (44) into Eqs. (42) and performing the associated integrals, we get the following

system: (
1−

(
1− (−1)α

Γ(α+ 3)

))
a4 +

(
1 + (−1)α

Γ(α+ 2)

)
a5 = 2− 10

(
1− (−1)α

Γ(α+ 3)

)
, (3.31)(

1 + (−1)α

(α+ 3)Γ(α+ 2)

)
a4 −

(
1 +

1− (−1)α

(α+ 2)Γ(α+ 1)

)
a5 = 10

(
1 + (−1)α

(α+ 3)Γ(α+ 2)

)
. (3.32)

The solution of the system (45-46) can be obtained as

a4 =
∆1

∆
, a5 =

∆2

∆
, (3.33)

where ∆, ∆1, and ∆2 are given by the determinants:

∆ =

∣∣∣∣∣∣∣∣∣∣
1−

1− (−1)α

Γ(α+ 3)

1 + (−1)α

Γ(α+ 2)

1 + (−1)α

(α+ 3)Γ(α+ 2)
−1−

1− (−1)α

(α+ 2)Γ(α+ 1)

∣∣∣∣∣∣∣∣∣∣
, (3.34)

and

∆1 =

∣∣∣∣∣∣∣∣∣∣
2− 10

(
1−(−1)α

Γ(α+3)

) 1 + (−1)α

Γ(α+ 2)

10
(

1+(−1)α

(α+3)Γ(α+2)

)
−1−

1− (−1)α

(α+ 2)Γ(α+ 1)

∣∣∣∣∣∣∣∣∣∣
, (3.35)

∆2 =

∣∣∣∣∣∣∣∣∣∣
1−

1− (−1)α

Γ(α+ 3)
2− 10

(
1−(−1)α

Γ(α+3)

)
1 + (−1)α

(α+ 3)Γ(α+ 2)
10
(

1+(−1)α

(α+3)Γ(α+2)

)
∣∣∣∣∣∣∣∣∣∣
. (3.36)
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Hence, the solution of Eq. (41) is finally given by

u(x) = 1 +

(
∆1

∆
− 10

)
xα+1

Γ(α+ 2)
−
(

∆2

∆

)
xα

Γ(α+ 1)
. (3.37)

As α→ 1, u(x) given by Eq. (44) implies that

u(x) = 1 +
1

2

([
∆1

∆

]
α→1

− 10

)
x2 −

[
∆2

∆

]
α→1

x. (3.38)

Calculating ∆, ∆1, and ∆2 when α→ 1, we obtain

∆ = −
10

9
, ∆1 =

20

9
, ∆2 = 0. (3.39)

Thus, Eq. (52) becomes

u(x) = 1− 6x2, (3.40)

which is the corresponding solution of the classical form: u′(x) = −10x +
∫ 1
−1 (x − τ) u(τ) dτ .

Example 5: In order to show how to apply the present direct approach to solving nonlinear

FFIDEs, we consider here a simple example, given by the nonlinear FFIDE:

C
0D

α
x u(x) =

∫ 1

0

u2(τ) dτ, u(0) = 0, (3.41)

which can be written as

C
0D

α
x u(x) = a6, (3.42)

where a6 is a constant defined by

a6 =

∫ 1

0

u2(τ) dτ. (3.43)

On solving Eq. (56), we have

u(x) =
a6x

α

Γ(α+ 1)
. (3.44)

Evaluating a6 from Eq. (57), we obtain

a6 = a2
6

∫ 1

0

τ2α

(Γ(α+ 1))2 dτ, (3.45)

which leads to

a6

(
a6

(2α+ 1) (Γ(α+ 1))2 − 1

)
= 0. (3.46)

Solving this equation for a6, we obtain

a6 = 0, a6 = (2α+ 1) (Γ(α+ 1))2 . (3.47)
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The first value a6 = 0 leads u(x) = 0, which is a trivial solution. While the value a6 = (2α +

1) (Γ(α+ 1))2 gives

u(x) = (2α+ 1)Γ(α+ 1)xα, (3.48)

as a second solution. As α → 1, we obtain the corresponding solution u(x) = 3x for the classical

form u′(x) =
∫ 1

0 u
2(τ) dτ .

Example 6: We consider an additional nonlinear example:

C
0D

α
x u(x) = 10x − 5 +

∫ 1

0

u2(τ) dτ, u(0) = 0, (3.49)

Following the above analysis, we can obtain

u(x) =
(a7 − 5)xα

Γ(α+ 1)
+

10xα+1

Γ(α+ 2)
, (3.50)

and a7 is given as

a7 =

∫ 1

0

u2(τ) dτ. (3.51)

Substituting Eq. (64) into Eq. (65), yields

a7 =

∫ 1

0

[
(a7 − 5)2τ2α

(Γ(α+ 1))2
+

20(a7 − 5)τ2α+1

Γ(α+ 1)Γ(α+ 2)
+

100τ2α+2

(Γ(α+ 2))2

]
dτ. (3.52)

Performing this integral, we find that a7 is governed by the equation:

a7 =
(a7 − 5)2

(2α+ 1)(Γ(α+ 1))2
+

10(a7 − 5)

(Γ(α+ 2))2
+

100

(2α+ 3)(Γ(α+ 2))2
. (3.53)

Eq. (67) can be rewritten as

A(a7 − 5)2 + B(a7 − 5) + C = 0, (3.54)

where

A =
(a7 − 5)2

(2α+ 1)(Γ(α+ 1))2
, B =

10

(Γ(α+ 2))2
− 1, C =

100

(2α+ 3)(Γ(α+ 2))2
− 5. (3.55)

Solving Eq. (68) for the constant a7, we get

a7 = 5 +
1

2A

(
−B ±

√
B2 − 4AC

)
. (3.56)

From Eq. (64) and Eq. (70), we obtain

u(x) =
1

2A

(
−B ±

√
B2 − 4AC

)( xα

Γ(α+ 1)

)
+

10xα+1

Γ(α+ 2)
. (3.57)
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It can be seen from Eq. (71) that there are two different solutions for the present nonlinear example,

the first one is given by

u1(x) =
1

2A

(
−B +

√
B2 − 4AC

)( xα

Γ(α+ 1)

)
+

10xα+1

Γ(α+ 2)
, (3.58)

while the second solution is

u2(x) = −
1

2A

(
B +

√
B2 − 4AC

)( xα

Γ(α+ 1)

)
+

10xα+1

Γ(α+ 2)
. (3.59)

In order to check these two solutions, we evaluate them as α → 1. In this case, we have from Eqs.

(69) that

A =
1

3
, B =

3

2
, C = 0. (3.60)

Hence,

(u1(x))α→1 = 5x2, (3.61)

and

(u2(x))α→1 = −
9

2
x + 5x2, (3.62)

The solutions (75) and (76) are the same obtained one in Ref. [29] for the classical nonlinear version

u′(x) = 10x − 5 +
∫ 1

0 u
2(τ) dτ .

4. Conclusion

A class of first-order FFIDEs was investigated in terms of Caputo definition in FC. The analytic

solutions of several linear and nonlinear examples were obtained. For the linear FFIDEs, a unique

solution was obtained, while multiple solutions were obtained for the nonlinear FFIDEs. It was shown

that the linear problems posses unique solution of, while the nonlinear ones posses multiple solutions.

Furthermore, as the fractional order is unity, the results agree with to the corresponding classical

problems. This study may deserve extensions to further FFIDEs of higher-order.
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