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Abstract. We introduce the delta-integral representation of divided difference on arbitrary time scales
and utilize it to set criteria for n-convex functions involving delta-derivative on time scales. Conse-
quences of the theory appear in terms of estimates which generalize and extend some important facts

in mathematical analysis.

1. Introduction

Time scale calculus is a well known and rapidly growing theory in mathematical analysis which
unifies two distinct well-known mathematical areas named as continuous and discrete analysis. For
supplementary details and basics of time scale calculus, we invoke [1-3].

The notion of convexity with its various types have a noteworthy presence in literature, see [4—7] and
the references therein. The notion is firstly generalized on an arbitrary time scale in 2008 by Cristian
Dinu [8], subsequently a large number of estimation and inequalities for the functions that are convex
on time scales are in the continuous state of development, some of them are present in [9, 10]. Here
we consult with an exclusive variety of these functions, that is n-convex functions. The n-convexity
or higher order convexity firstly investigated by Eberhard Hopf [11] in his scholarly thesis. Further it
was discussed in different narrations by Popoviciu [12,13]. A comprehensive review of this family of
functions is elaborated in [5,14]. In [15] M. Rozarija, and J. Pecari¢ discussed some "Jensen-Type
Inequalities on Time Scales" involving real-valued n-convex functions. Higher order convex functions
has been discussed on time scales with constant graininess function by H. A. Baig and N. Ahmad

in [16], so there is a need to explore this class of functions on arbitrary time scales.
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This article is structured as follows. In section 2 we furnish few preliminaries, utilizing in the main
results. Section 3 is dedicated to construct a relationship between nth delta derivatives and nth-order
divided difference on arbitrary time scales. Afterward, we presented some mathematical inequalities

as consequences of our main results in the last section.

2. Preliminaries

A time scale T is defined to be an arbitrary closed subset of the real numbers R, with the standard
inherited topology. The forward jump operator and the backward jump operator are defined by o(t) :=
inf{s € T : s > t}, and p(t) := sup{s € T : s < t}, where inf¢p = supT and supp = infT. Let
u:T — R, uP(t) is representing the first delta derivative of function u at t € T*. The second-order

delta derivative of u at t is defined as, provided it exists
dA() = uBR(t) = (VB(1)A T S R

Similarly higher-order derivatives are defined as u®"(t) : T*" — R. The definition for rd-continuous

functions can be seen in [2]. The set of rd-continuous functions v : T — R is denoted by
Crg = Crg(T,R) = Cry(T).

The set consisting of first-order delta differentiable functions v and whose derivative is rd-continuous

is denoted by
Crg = Crg(T.R) = C;4(T).

The substitution rule and first mean value theorem for delta-integrals in time scales are presented
in [1-3].

Theorem 2.1. Assume v : T — R is strictly increasing and T := v(T) is a time scale. If u € C,q and
v e Cl, then fora, beT

b v(b)
VA(H)AL = oyt As. 2.1
/a u(DWB (DA / e ©)s (2.1)

Theorem 2.2. Let v and u be bounded and integrable functions on [a, b], and let v be nonnegative

(or nonpositive) on [a, b]. Let us set
M = sup{u(t) : t € [a, b)} m = inf{u(t):t€la b)}.
Then there exists a real number \ satisfying the inequalities m < A < M such that
b b
/ () (DAt = x/ (DAt
a a
The time scale monomials have been defined in [1, 3, 17] recursively as

go(t,s) = ho(t,s) =1fors, t e,
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Gesa(ts) = /tgk(cr(fy),s)m, hesa(t,s) = /thk(w,sm keNo.  (22)

These monomials satisfy the following relation for t € T and s € T*:
gn (t,5) = (=1)"ha (s, 1). (2.3)
Remark 2.1. [17] The functions h, and g, satisfy
gn(t,s) >0 and h,(t,s) >0 forallt > s.
Let us recall the Taylor's formula defined on time scales from [17].

Theorem 2.3. Let u be n-times delta-differentiable on T*", t € T and t, € T We have

n—1 . P (t) )
u(t) = Il ta) ™ (ta) =/ hn-1(t, (7)) u™ (7)Ay, (2.4)
k=0 ta
similarly,
n—1 . pH(t) )
u(®) = Y (D" 9ulta 0 () = [ (D gaaloln O mty, (@25)
k=0 ta
where k € Ng.

higher order convex functions defined on R as well as on Z through nth-order divided difference, in
which we randomly select n+ 1 points {ag, a1, ..., an}t from R or from Z, respectively and compute

the nth-order divided difference by the formula

_lava, - apiul — a0, a1, -+ an; U

2.
Pa— (2.6)

la0, a1, -+, an; U]

If (2.6) is non-negative we say that v is an n-convex function. Here (2.6) remains same for every
permutation of n+ 1 points.

To construct the criteria for n-convexity we need to introduce the forward operator o in the definition
of higher order convexity. So we adopt the same strategy as we did in [16]. Assume n+ 1 distinct
points tg,--- , t, € T and arrange them in an increasing order. Relabel these points in the time scale

T in terms of forward operator, that is
T = {to,0(t0), -+, 0"(t0)}.

Consequently we can define the nth-order divided difference for n+ 1 points as

2 n . _ .. n—1 .
[tO. O'(to), L ,O'n(to); U] _ [O'(fo), o (to), 0 (tglv(;’-i) _[t;)Ov O'(to), 0 (to), U]_ (27)
So a function v : T — R, is said to be n-convex if
[to,0(tp), -+ ,0"(tp); u] >0, (2.8)

where 0 : TONT — TN T.
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3. Main Results

Here we want to establish a criteria for n-convex function on arbitrary time scales which is stated
as u € C", is n-convex iff u”” > 0. It is sufficient to prove this on T. Firstly we introduce a new

representation of divided difference in terms of delta-integral, that can be seen in the next Theorem.

Theorem 3.1. Suppose u € C],(T,R). Let tg, t1,---, t, be n+ 1 distinct points in T, then
1 S1 Sn—1
[to, o(to), - . " (to): ] :/ Asl/ As, - / As,
0 0 0
x 1™ (sn[0"(t0) — 0" H(to)] + -+ + suo(to) — o] + 1), (3.1)

where n > 1 and s; € [0, 1].

Proof. Consider tg,t1, -+ ,th, n + 1 distinct points and the corresponding time scale T =

{tg, o(tg), -+ ,0"(tg)}. We prove (4.3) by induction method. For this we first show that

1
[to, o(0): 1] —/O (51 [0 (k) — to] + to) s (3.2)

Let us use the time scales substitution rule for integration (2.1), let the new variable of integration G

in the following manner (since o(t) # to)

B=v(s1) = sifo(to) — to] + to = v(s1) = U(S;))_foto'

here v=1 : [0,1] — T. By calculating delta derivative of v(s;) with respect to s; we get v2(s;) =

1
a(to)—to

corresponding limits are

therefore, s; € [0, 1] and v(sy) is strictly increasing such that v[ty, o(ty)] = [0, 1]. Hence the

(51=0)=B=1t) (sa=1) =B =o0(t)).

Since o(tg) # to, thus (3.2) can be written as
1
/ u® (slo(to) — to] + to)Asy
0

v(o(to)) A L
- / AL (s))Asy
v(to)

7 ut(g)
= ——A
/to '6

o(to) — to
1 o(to)
to

N o(to) — to <U(m

_ u(o(to)) — u(to)
o(to) —to




Int. J. Anal. Appl. (2022), 20:8 5

Now we make the inductive hypothesis that

[to, o(to), -+, 0" *(to); ]

1 S1 Sn—2
= / ASl / ASQ s / ASnfl
0 0 0

x " (501 [0" 7 (t0) = 0" 2(t0)] + -+ + silo(to0) — 1] + o).

In the integral in (3.1) we apply substitution rule of integration of time scales (2.1) by replacing

the variable of integration s, with 3.

B =v(sn) = sa[0"(to) — 0" (to)] + -+ + s1[o(to) — to] + to

Sn— (Sn—1[0" " (to) — 0" 2(to)] + - - - + s1[o(to) — to] + o)

v = 9(t) — 0" (1)

So that the delta derivative of v(s,) with respect to s, gives us

1
V(o) = o"(to) — 0" (o)’

The corresponding limits are
(5n=0) = (8 =00 = sn—1[0""'(t0) — 0" *(to)] + - - + s1[o(t0) — to] + to)
(S0 =5n-1) = (B =B1 = sp-1[0"(t0) — 0" *(t0)] + sn—2[0"*(t0) — 0" >(t0)]+
-+ s1{o(to) — to] + to).

Thus the innermost integral of (4.3) can transform in the following manner, since o"(ty) # 0" 1(tg)

/05"1 U (splo"(t0) — 0" H(to)]) + -+ - + s1[o(t0) — to] + to)Asy
_ /61 B g
B1
)
v (By) — " (Bo)
o"(to) — 0" (tg)

B, 0"(to) —0o"1(to)
However, by applying the inductive hypothesis we have

1 n—1
= Un(to) _ O'”_l(to) <UA (5)
1 st Sph_o UA”’I(ﬁl) _ UA”*l (,60)
/0 AS1/O A52"'/O Asp_q ( U”(to) — O’”_l(to) )
ulto, o(tg), -+, 0" 2(to), 0" (to)] — uto, o(to), -~ , 0" 2(to), " (to)]

o"(tg) — 0" 1(tg)
= [to, o(to), -+, 0" (to); ul.
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O

In the next Theorem we establish a relation between nth-order divided difference and nth-delta

derivative on arbitrary time scales, since in this result the points t; € T need not to be distinct.
Theorem 3.2. Let uc C[ (T, R), then for n+ 1 points form T we have

[to, (o), -+, 0"(t0); u] = u®" (€) (hi(sp-1,0)), (3.3)

where so =1, 0 </ <n, and § € [ty, o"(to)]r.

Proof. By using the time scale monomials (2.2) we can write a general notation for the integral
1 - _
Jo Ast 5 Asp -+ [577F Asp, that is

Sp—i
hi(sp—i,0) = / hi—1(Sp—i+1, 0)Asp_iy1. (3.4)
0

By the Remark 2.1 we can conclude that hp(s;,0) > 0 in (3.4) because all s; > 0. Now by applying
Theorem 2.2, (3.1) yields

x (hi(sn—i,0)) < [to, o(to), -, 0" (to); u] < X (hi(sp—;,0)),

or
.. n -
x < [to, o(t0), - -+ . 0"(to); u] < X
(hi(sn-i,0))
where x = min v®"(t) and X = maxu?"(t) for t € [to, 0"(to)]r. Then by the rd-continuity of u2"
there exists a A in this interval that is u2"(€) = X, such that
tg,o(to), - ,0"(ty); n
[OJ(O) O—(O)U]:UA(g).
(hi(sp-i, 0))

Here, we can directly achieve the next result.
Corollary 3.1. Let u: T — R is n-convex function iff u®" > 0, given that u®" exists.
Another useful property of n-convex function is represented in the next result.

Theorem 3.3. Let u(t) € C",(T,R) is n-convex function, then for every r € N, 1 <r <n—1, u&

is (n — r)-convex.

Proof. By Corollary 3.1 uA" > 0. Since u?" exists for every 1 <r < n-—1. Let us choose (n—r+1)
points from [t, tp]r such that T = {tg, o(to),--- 0" "(to)}, then by using (3.3) we can write

[to, o(to), -+, 0" " (to); ™ ] = (2" (€))®" (hn_,(5:.0))
= (u(€)™" (hn-+(s+,0)) >0, (3.5)

where ¢ € [tg, 0"~ (to)]r. Thus (3.5) shows that 2" is (n — r)-convex for every 1 < r < n— 1.
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4. Applications: Inequalities for n-convex functions

Let us present Levinson's type inequality for higher-order convex functions on time scales for this
we require the next result. Let t; € [t,, tp]r, for i = 1,---,z. Let b; > 0 such that >.7 ;b =1
therefore t € [t,, tp]T denoted by D7, bit;.

Theorem 4.1. Let u is (n+ 2)-convex on T. Then for every t € T the function
u(t) =[t,o(t),---,a"(t); u], (4.1)
is a convex function.

Proof. By using (3.1), (4.1) can be expressed as

u(t) =[t,a(t),--- . o"(t); ul

= /1 /51 .. /5n1 UA"(Sn[U”(t) — 0”_1(t)] + -+ si[o(t) — t] + t)As, -+ - Asy.
0 Jo 0

Therefore u2" is convex by Theorem 3.3, thus for fixed S, o/(t) for j=1,---,n we can write

n n

u?" Z%[Gj(t) — o N (D)) + ZZ: biti | < XZ: biu®" Zsj[af(t) — o (D] + 1
i=1 i=1

Jj=1 Jj=1

which concludes the proof. [l

Theorem 4.2. /f u is (n+ 2)-convex on T, then the given inequality is true

V4
ult,o(t),- o™ <> bifti,o(t), -+, o"(t); u]. (4.2)
i=1
Proof. The proof is the direct consequence of Theorem 4.1. [l

Remark 4.1. Let T = R in Theorem 4.2, inequality (4.2) coincides with inequality (4) in [18], this
Levinson's type inequality itself having a great importance in literature which is used to develop further

divided difference estimates for n-convex functions in [19].

Further, we present certain useful inequalities involving n-convex functions on time scales by using

the criteria for n-convexity, that is v2" > 0.

Theorem 4.3. Let to, tg € T, suppose u € CIH(T, R) be (n+1)-convex function on [ta, tg]. Then
for each t € (tq, tg), the following inequalities hold

n-1 . . pH(t)
S el )i () + u® (ta)/ ho (£, 0 (7)) < u(t)
k=0 ta

n—1

k n ’7*1(1')
<t et @)+ @) [ sty (49
k=0 te
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where to, < p""Y(tg). If n is odd, then

n—1 . . P (t)
> e e () + ¥ () [ haa(t o)y < (o)
k=0 s

n 1(t)
<th(t tg) 2 (tg) + u® (ta) hn—1(t, o(7))A, (4.4)

and if n is even, the given inequality holds

n-1 . . P (t)
> (e t0)o () + ¥ () [ ha(8.0(9) By < u(t)
k=0 i

n-1 . . P (1)
<Y mlt ) @)+ () [ healt oy @5)
k=0 t

Proof. If u'is (n+ 1)—convex on T¥" which implies that ¢ > 0, then v2" is increasing on T*", i.e
uh" (ty) < uB"(y) < uP"(tg) for each 7y € [ta, tg], let o(7y) < t so that h,_1(t, o (7)) is non-negative,
then from (2.4) we get

/p”‘ (t)hn—l(tvo-( Nu(te)Ay < u(t) th (t, to)u™ (ta)

pn 1 t
<[ o) (o
ta
which executes the proof for (4.3).

Let nis odd and t < o(7y) so that g,—1(c(7y), t) > 0, thus we can write

/5 (1) tgn_1(a (), t)uA" (ta) Dy
o

nfl(t)

< / (1) g (0 (r ) (1) Ay
p"L(t)

S/B (1) gn-1(o (), t)u™ (t5) Ay,
p"1(1)

A P (t)
= (1) / o1 (t, o (7)) Ay
7]

n—l(t)
< / T (o () () Ay

. n 1(1’)
<uh (ta)/ hp—1(o(y), t)A,
s
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which gets the form

(1) / s (£ o)) B
< u(t) - Z he(t, tg)u™ (tp)
k=0

An p" (1)
<u (ta)/ hn—1(o(7), £)A,
ts

which executes the proof for (4.4).

Let n is even then we have
(=1 (1) < (1) () < (1) (f),
then by adopting the same steps we can prove (4.5). Il

Therefore, we can extract the particular cases of Theorem 4.3 by considering different time scales.

First by taking T = R we obtained the following result which agrees Theorem 1 in [20].

Theorem 4.4. Let u(t) be (n+1)—convexon [t tg]. Then forallt € (t4, tg), the following inequality
holds

S U0 (k<) < Z - (ta) (£~ ta)* + U(n;(!tﬁ)(t TR 40

k!
k=0

For odd n the following inequality is true

Z (tﬁ)(t tg)k < u(t) < Z (tﬁ) —tg)k+ 2 (t"‘)(t— tg)", (4.7)

k=0

and for even n the following inequality holds

n—1

k (n)
Z (tﬁ —t5)k + Un(t)( tg)" < u(t) < Z tﬁ (t — tg)k. (4.8)

k=0
Now by considering T = Z in Theorem 4.3 we get the discrete analogues of the inequalities
(4.6),(4.7) and (4.8). Therefore, o(t) =t+ 1, 0"(t)=t+n, p(t) =t —1and p"(t) =t —n.

Theorem 4.5. Let u; : [ty, tg] — R be an (n + 1)—convex sequence. Then for all t € (tq, tg), the
following inequality holds

LA = (t—v—1)0-1
Z “ta(t— ta)  + A"upy > (t=y-1) < u (4.9)
— = (n—1)!

t—n o (n—1)
_Z ”ta(r—ta) rar, 3 U (77_3! | (4.10)

Y=ta
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For odd n the following inequality is true

n—1

Auy n (t—~—1)01
> o (t—tp) K4 A"y Z e < uy (4.11)
k=0 v=tg
n—1 Ak t—n _
A Utg K (t —y— 1)(n 1)
< (= 1) + Ay, > RS (4.12)
k=0 V=tg
and for even n the following inequality holds
n—=1 Ak _
A Utg n (t_ - 1)(n b
(= K4 Ay, Z e < uy (4.13)
k=0 Y=tg
Uts K n (t—vy—1)D
< Z (= t5) + Ay, Z CEE (4.14)

The next result is obtained by considering n =1 in (4.3) and (4.4).

Corollary 4.1. Let ty, tg € T, if u is convex on [ty, tg], then the given inequalities hold for all
t € [ta, tp]

max{u(ta) + u®(ta)(t — ta), u(ts) + u®(t5)(t — t5)} < u(t)

< minfu(ta) + U3 (t)(¢ — ta), u(te) + tA(t)(E— tg)}.  (4.15)
The next result is obtained by considering n =2 in (4.3) and (4.5).

Corollary 4.2. Let ty, tg € T, if u is 3—convex on [ta. tg], then the given inequalities hold for all
t € [ty, tﬁ]T

) p(t)
max {U(toz) + UA(ta)(t - ta) + u® (toz)/ (’Y - ta)A’Yv U(tﬁ) + UA(tﬁ)(t - tﬁ)

(t)
0P (1) / (v—tﬁmw}su(t)gmin{u<ta)+uA(tﬁ><t—ta>

o(1)

P (k) / (y — 1)y, uts) + (2 (¢ — 1) + U™ (1) / (w—tﬁmw}.

Remark 4.2. When we take T = R in Corollaries 4.1 and 4.2 we get the results which coincide with
Corollary 1 and Corollary 2 in [20] respectively. Moreover Corollary 4.1 for T = R is used to derive

more useful result in [21].

5. Conclusion

The notion of n-convexity has been discussed in [16], on specific time scales that are R or hZ.
Here we extend the theory on arbitrary time scale and developed the relationship between the delta
derivatives of order n and the nth-order divided difference using integral representation of nth-order

divided difference on time scales, see [5,22]. Further we utilized this relationship to derive some
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dynamic inequalities from which we are able to extract some difference inequalities that are equally
important in the study of difference equations and their applications.
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