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Abstract. In this paper, the concept of interval-valued intuitionistic fuzzy sets to subalgebras and ideals
of Hilbert algebras is introduced. The inverse image of interval-valued intuitionistic fuzzy subalgebras
and interval-valued intuitionistic fuzzy ideals of Hilbert algebras is studied and some related properties

are investigated. Equivalence relations on interval-valued intuitionistic fuzzy ideals are discussed.

1. Introduction

The concept of fuzzy sets was proposed by Zadeh [15]. The theory of fuzzy sets has several applica-
tions in real-life situations, and many scholars have researched fuzzy set theory. After the introduction
of the concept of fuzzy sets, several research studies were conducted on the generalizations of fuzzy
sets. The integration between fuzzy sets and some uncertainty approaches such as soft sets and rough
sets has been discussed in [1,3,4]. The idea of intuitionistic fuzzy sets suggested by Atanassov [2]
is one of the extensions of fuzzy sets with better applicability. Applications of intuitionistic fuzzy
sets appear in various fields, including medical diagnosis, optimization problems, and multi-criteria
decision-making [6—8]. The concept of Hilbert algebras was introduced in early 50-ties by Henkin and
Skolem for some investigations of implication in intuitionistic and other non-classical logics. In 60-ties,

these algebras were studied especially by Horn and Diego from algebraic point of view. Diego proved
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(cf. [11]) that Hilbert algebras form a variety which is locally finite. Hilbert algebras were treated by
Busneag (cf. [9], [10]) and Jun (cf. [13]) and some of their filters forming deductive systems were rec-
ognized. Dudek (cf. [12]) considered the fuzzification of subalgebras and deductive systems in Hilbert
algebras. In this paper, the concept of interval-valued intuitionistic fuzzy sets to subalgebras and ideals
of Hilbert algebras is introduced. The inverse image of interval-valued intuitionistic fuzzy subalgebras
and interval-valued intuitionistic fuzzy ideals of Hilbert algebras is studied and some related properties

are investigated. Equivalence relations on interval-valued intuitionistic fuzzy ideals are discussed.

2. Preliminaries

Before we begin the study, let's review the definition of Hilbert algebras, which was defined by
Diego [11] in 1966.

Definition 2.1. A Hilbert algebra is a triplet X = (X, -, 1), where H is a nonempty set, - is a binary

operation, and 1 is a fixed element of X such that the following axioms hold:

(1) (vx,y € X)(x-(y-x) =1),
(2) (vx,y.ze X)((x-(y-2)) - ((x-y)-(x-2)) =1),
(3) (Vx,yeX)(x-y=1Ly-x=1=x=y).

The following result was proved in [12].

Lemma 2.1. Let X = (X, -, 1) be a Hilbert algebra. Then

(1) (Vx e X)(x-x=1),
(2) (Vx € X)(1-x=x),
(3) (vx e X)(x-1=1),
(4) (Vxy.ze X)(x-(y-2) =y-(x-2)).

In a Hilbert algebra X = (X, -, 1), the binary relation < is defined by
(W,yeX)(x<yex-y=1),
which is a partial order on X with 1 as the largest element.

Definition 2.2. [14] A nonempty subset | of a Hilbert algebra X = (X, -, 1) is called an ideal of X if
(1) 1€,
(2) (Vxe X, Vyel)(x-ye€l),
(3) (vx € X,y y2 € )((y1- (v2-x)) - x €1).

A fuzzy set [15] in a nonempty set X is defined to be a function u : X — [0, 1], where [0, 1] is the

unit closed interval of real numbers.
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Definition 2.3. [12] A fuzzy set w in a Hilbert algebra X = (X, -, 1) is said to be a fuzzy subalgebra
of X if the following condition holds:

(Vx,y € X)(u(x-y) = min{u(x), n(y)}).

Definition 2.4. [5] A fuzzy set u in a Hilbert algebra X = (X, -, 1) is said to be a fuzzy ideal of X if

the following conditions hold:

(1) (Vx € X)(u(1) > u(x)),
(2) (vx,y € X)(u(x-y) > uy)),
(3) (Vx,y1,¥2 € X)(u((y1 - (y2 - x)) - x) = min{u(y1), u(y2)}).

Definition 2.5. [2] Let X be a nonempty set. An intuitionistic fuzzy set A in X is defined to be a

structure

A= {(x, ma(x),7a(x)) | x € X}, (2.1)

where up : X — [0, 1] is the degree of membership of x to [0, 1] and ya : X — [0, 1] is the degree of

non-membership of x to [0, 1] such that
(Vx € X)(0 < pa(x) +va(x) < 1),

and the intuitionistic fuzzy set A in (2.1) is simply denoted by A = (ua,Ya)-

Let D[O, 1] be the set of all closed subintervals of [0, 1]. Consider two elements D1, D, € D[0, 1].
If D1 = [a1, b1] and D, = [ay, by], then

rmin{D1, D>} = [min{a1, a2}, min{ by, bo}]
and
rmax{ D1, D>} = [max{a1, ax}, max{b1, bo}].
If D; = [a;, b]] € D[0, 1] for i =1,2,..., then we define
rsup{ Di} = [sup{a;}, sup{bi}].
] ]
Similarly, we define
rinfi{ D;} = [inf{a;}, inf{b;}].
] 1

Now we call D1 > D5 if and only if a1 > a» and by < by. Similarly, the relations D; < D, and
D1 = D5 are defined.

Definition 2.6. An interval-valued intuitionistic fuzzy (IVIF) set A in X is an object having the form
A={(x,pa(x),va(x)) | x € X}, where ua : X — D[0, 1] andya : X — D|0, 1]. The intervals u(x)

and ya(x) denote the intervals of the degree of belongingness and non-belongingness of the element
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x to the set D[0,1], where ua(x) = [uh(x), u4(x)] and va(x) = [¥4(x),¥4(x)] for all x € X with
the following condition:

(vx € X)(0 < ph(x) +7400) < 1).
For the sake of simplicity, we shall use the symbol A = (ua,va) for the IVIF set A =
{(x,pa(x),va(x)) | x € X}. Also note that wa(x) = [1 — p4(x), 1 — uh(x)] and Fa(x) =

[1—94(x), 1 — 44 (x)] for all x € X, where [ma(x),¥a(x)] represents the complement of x in A.
3. IVIF subalgebras of Hilbert algebras

Definition 3.1. An IVIF set A= (ua,Ya) in a Hilbert algebra X is called an IVIF subalgebra of X if

palx - y) = rmin{pa(x), pa(y)} ) |

(3.1)
Yalx - y) < rmax{va(x), va(y)}

(Vx,yeX)(

Example 3.1. Let X = {1, x,y, z,0} with the following Cayley table:

z

O N KX X =
e e
— o= X = X | X
i N e N N AN
= = N N N
— < N O oo

Then X is a Hilbert algebra. We define an IVIF set A = (ua,va) as follows:
[0.5,0.6] ifae{l, x,y, z}
pa(a) = .
[0.1,0.2] ifa=0

and
[0.3,0.4] ifae{l x,y, z}
Ya(a) = .
[0.4,0.5] ifa=0.
Then A is an IVIF subalgebra of X.

Proposition 3.1. Every IVIF subalgebra A = (ua,Ya) of a Hilbert algebra X satisfies ua(1) > ua(x)
and ya(1) < ya(x) for all x € X, where ua(l) and ya(1) are the upper bound and lower bound of
wa(x) and ya(x), respectively.

Proof. For any x € X, we have

pa(l)

pA(X - x)

rmin{ua(x), pa(x)}

= rmin{[un(x), a()], (4 (), kACO]}
[a(x), u4(x)]

pa(x)

v
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and

Ya(x - X)

rmax{ya(x), va(x)}

= rmax{[YL(x), Y4()], [YA(x), Y4 ()1}
[Ya(x), Y4(3)]

= va(x).

Ya(1)

IN

Proposition 3.2. /f an IVIF set A= (a,Ya) in a Hilbert algebra X is an IVIF subalgebra, then

pa(l-x) > pa(x) )
Ya(l-x) <va(x) )

(VXGX)(

Proof. For any x € X, we have

v

rmin{ua(l), pa(x)}

= rmin{pa(x - x), wa(x)}
rmin{rmin{ua(x), pa(x)}, pa(x)}
pa(x)

pa(l-x)

Y

and
Ya(l-x) < rmax{vya(1),va(x)}

rmax{ya(x - x),va(x)}
rmax{rmax{ya(x), va(x)}, va(x)}
Ya(x).

IA

O

Theorem 3.1. An IVIF set A = (pa,va) = (w4, u4]. [vh.74]) in a Hilbert algebra X is an IVIF
subalgebra of X if and only if u’A, KA, 'y’A, and -y, are fuzzy subalgebras of X.

Proof. Let p/A and u4 be fuzzy subalgebras of X and x, y € X. Then /J,/A(X-y) > min{p,/A(X), ;J,f4(y)}
and pu(x - y) < minf{ua(x), wa(y)}. Now,

palx-y) = [uh(x-y), pa(x-y)]
[min{uy(x), wa(y)}, min{u4(x), wa(v)}

= rmin{[uh, (x), LA, [ (V). w4 ()]}
= rmin{ua(x), na(y)}.

Y

Again, let ’yA and 4 be fuzzy subalgebras of X and x,y € X. Then ’y/’é\(x cy) < max{fy’A(x),'yA(y)}
and ya(x - y) < max{ya(x), va(y)}. Now,

Yalx-y) = [valx-¥), v4(x - y)]

[max{(x), Ya(¥)}, max{y4(x), Y4(»)}]
rmax{[v}y, (), Y401, [va(y), YA}
rmax{ya(x),va(y)}.

A
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Hence, A = {[uly, u4], [vh, 74]} is an IVIF subalgebra of X.
Conversely, assume that A is an IVIF subalgebra of X. For any x, y € X,

[Wa(x - y), wa(x -9 = palx-y)

rmin{ua(x), pa(y)}

rmin{ [ (x), w4 O], [Wa(v), w41}

= [min{u)(x), wa(y)}, min{ui(x), u4(y)}]

v

and
[YAC ) a0 9] = valx-y)
< rmax{ya(x), va(y)}
= rmax{[v4(x), Y4()]. [va(), YA}
= [max{vy(x), YA} max{y4(x). 4 (1)}].
Thus p(x-y) > min{py(x), ka()}, w4 (x-y) = min{ug(x), s ()} Ya(x-y) < max{yy(x), Ya(¥)},
and y4(x - y) < max{v4(x),v4(y)}. Therefore, M’A, uj,’yﬁ\, and y4 are fuzzy subalgebras of X. [

Theorem 3.2. If A = (ua,va) and B = (ug,vs) are two IVIF subalgebras of a Hilbert algebra X,
then AN B = (wans. Yaus) Is an IVIF subalgebra of X.

Proof. Let x,y € X. Since A and B are IVIF subalgebras of X, by Theorem 3.1, we have

pans(xy) = [Whg(x - ¥) bhqg(x - ¥)]
[min{uy(x - y), wg(x - y)} min{u4(x - y), wi(x - y)}]

> [min{unqg (x), wans (M)} min{ubng(x), ans (V)]

= rmin{pans(x), kans(¥)}
and

Yaos(x-y) = [Yaus(x-¥). Yis(x - ¥)]

= [max{vy(x - y), v5(x - ¥)} max{ya(x - ¥), v4(x - ¥)}]

< [max{vaus (). Yaus (W)} max{vi 5 (x). YALs(V)}]

= rmax{yaus(x), Yaus(¥)}.
Hence, AN B = (uans, Yaus) is an IVIF subalgebra of X. O
Corollary 3.1. Let {A; | i=1,2,3,---} be a family of IVIF subalgebras of a Hilbert algebra X. Then

_Ori Aj is also an IVIF subalgebra of X, where _Ori Ai = {(x, rminpa, (x), rmaxya, (x)) | x € X}.
1= 1=

n
For any elements x and y of a Hilbert algebra X, let [] x-y denotes the expression x-(- -+ (x-(x-y))),

where x occurred n times.

Theorem 3.3. Let A= (ua,va) be an IVIF subalgebra of a Hilbert algebra X and let n € N. Then

n
(1) ua <Hx . X> > ua(x) for any odd number n,
n

(2) va (Hx : x) < ya(x) for any odd number n,
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n

(3) ua <Hx . x) = ua(x) for any even number n,
n

(4) va <Hx . x) = va(x) for any even number n.

Proof. Let x € X and assume that nis odd. Then n=2p — 1 for some positive integer p. We prove

the theorem by induction. Now, pa(x-x) = ua(l) > pa(x) and ya(x-x) = ya(1) < ya(x). Suppose
2p—1 2p—1

that ua < IT x- x) > ua(x) and ya < IT x- x> < ya(x). Then by assumption,

2(p+1)—1 2p+1
pa T xox) = uA(Hx-x>
2p—1

_— (flx.(x-(x‘x)))
= MA(H X'X>

> pa(x)
and
2(p+1)—1 2p+1
YA [T xx) = 'YA(HX'X>
2p—1
— o (T )
2p—1
= 'YA( I1 X'X>
< 7a(x),
which proves (1) and (2). Proofs are similar for the cases (3) and (4). O

Definition 3.2. Let A = (ua,va) be an IVIF set defined in a Hilbert algebra X. The IVIF sets ®A
and ®A are defined as DA = {(x, ua(x), ma(x)) | x € X} and @A = {(x,¥a(x),va(x)) | x € X}.

Theorem 3.4. If A = (ua,va) is an IVIF subalgebra of a Hilbert algebra X, then ®A and @A both
are IVIF subalgebras.

Proof. Let x,y € X. Then pua(x-y)=1[1,1] —pa(x-y) <[1,1] — rmin{ua(x), ua(y)} = rmax{1 —
wa(x), 1 — ua(y)} = rmax{ua(x), ua(y)}. Hence, @A is an IVIF subalgebra of X. Let x,y € X.
Then ya(x - y) = [1,1] = va(x - y) = [1, 1] = rmax{va(x), va(y)} = rmin{1 — ya(x),1 — va(y)} =
rmin{ya(x),va(y)}. Hence, ®A is also an IVIF subalgebra of X. O

The sets {x € X | pa(x) = pa(1)} and {x € X | va(x) = va(1)} are denoted by p} and v},

respectively. These two sets are also subalgebra of a Hilbert algebra X.

Theorem 3.5. Let A= (ua,va) be an IVIF subalgebra of a Hilbert algebra X, then the sets p,i and

fyi are subalgebras of X.
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Proof. Let x,y € pk. Then pa(x) = ua(l) = pa(y) and so

palx-y) <min{ua(x), pa(y)} = wa(l).

By using Proposition 3.1, we have ua(x -y) = ua(l); hence, x -y € ui. Again, let x,y € 'yi. Then
Ya(x) = va(1) = valy) and so, ya(x - y) < rmax{ya(x),va(¥)} = va(1). Again, by Proposition
3.1, we have ya(x - ¥) = va(1); hence, x - y € v4. Therefore, the sets p} and «y} are subalgebras of
X. O

Theorem 3.6. Let B be a nonempty subset of a Hilbert algebra X and A = (ua,ya) be an IVIF
[Oél,OtQ] ifxeB [91,92] ifxeB

' and ya(x) = ,
[B1,62] otherwise [01,02] otherwise
[a1, ao], [B1, B2, [01, 62], [61, 02] € DIO, 1] with [a1, az] > [B1, B2] and [01, 62] < [61, 2] and ax+62 <

1landB>+06> < 1. Then A is an IVIF subalgebra of X if and only if B is a subalgebra of X. Moreover,
1 _p_nal
g =B =3

set in X defined by ua(x) = { for all

Proof. Let A be an IVIF subalgebra of X. Let x,y € B. Then

palx - y) = rmin{ua(x), pa(y)} = rmin{fa1, @z, [a1, az]} = (o1, as]
and
Ya(x - y) < rmax{ya(x),va(y)} = rmax{[az, az], [a1, a2]} = [a1, a2].

So x -y € B. Hence, B is a subalgebra of X.
Conversely, suppose that B is a subalgebra of X. Let x,y € X. Consider two cases:
Case (i): If x,y € B, then x-y € B. Thus

pa(x - y) = [oa, az] = rmin{ua(x), na(y)}
and
Ya(x - y) = [61, 62] = rmax{ya(x), va(y)}.
Case (ii): If x ¢ Bory ¢ B, then ua(x - y) > [B1,82] = rmin{ua(x), ua(y)} and ya(x - y) <
[61,65] = rmax{va(x),¥a(y)}. Hence, A is an IVIF subalgebra of X. Now, u} = {x € X | pa(x) =

pa(1)} = {x € X | pa(x) = [a1, @2]} = B and y4 = {x € X [ ya(x) = 7a(1)} = {x € X | 7a(x) =
[01,6-]} = B. O

Definition 3.3. Let A= (ua,va) be an IVIF subalgebra of a Hilbert algebra X. For [s1, 5], [t1, t2] €
DI0, 1], the sets U(ua : [s1,52]) = {x € X | pa(x) > [s1, s2]} is called an upper [s1, sp]-level of A and
L(va:[t1, t2]) = {x € X | va(x) < [t1, to]} is called a lower [t1, tp]-level of A.

Theorem 3.7. IfA = (ua,va) s an IVIF subalgebra of a Hilbert algebra X, then the upper [s1, sz]-level

and lower [t1, to]-level of A are subalgebras of X.
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Proof. Let x,y € U(ua : [s1,52]). Then pa(x) < [s1,s2] and pa(y) < [s1,s2]. It follows that
pa(x - y) < rminf{ua(x), ua(y)} < [s1,s2] so that x -y € U(ua : [s1,52]). Hence, U(ua : [s1,52])
is a subalgebra of X. Let x,y € L(ya : [t1, t2]). Then ya(x) < [t1, to] and ya(y) < [t1, t2]. Thus
Ya(x - y) < rmax{ya(x), va(y)} < [t1, to] so that x -y € L(va : [t1, t2]). Hence, L(va: [t1, t2]) is a
subalgebra of X. O

Theorem 3.8. Let A= (ua,va) be an IVIF set in a Hilbert algebra X such that the sets U(ua : [s1, S2])
and L(vya : [t1,t2]) are subalgebras of X for every [s1,s5],[t1,t2] € DI[0,1]. Then A is an IVIF
subalgebra of X.

Proof. Let [s1,sp], [t1, t2] € DJ0,1] be such that U(ua : [s1,52]) and L(ya : [t1,t2]) are subal-
gebras of X. In contrary, let xp, o € X be such that pua(xo - o) < rmin{ua(x0), ua(yo)}. Let
pa(xo) = [01,62], pa(vo) = [03, 6], and pa(xo-yo0) = [s1, s2]. Then [s1, 53] < rmin{[61, 62], [03, 64]} =
[min{61, 03}, min{62, 64}]. So, s1 < min{61,03} and s, < min{6,, 64}. Consider,

[o1,p0] = %[MA(XO - yo) +rmin{ua(x0), ka(vo)}]
= 3[s1. ] + [min{61, 65}, min{62, 64}]]
= [3(s1 + min{61,03}), 3(s2 + min{62, 04})].

Therefore, min{61,03} > p1 = %(sl—l—min{@l, 03}) > s; and min{6,, 04} > po = %(sz—l—min{ez, 04}) >
s>. Hence, [min{61, 03}, min{62,64}] > [p1. p2] > [s1,S2], so that xp - yo & U(ua : [s1,S2]), which is a

contradiction because

pa(xo) = [61,62] = [min{61, 03}, min{62,04}] > [p1, p2]

and
ra(yo) = 103, 64] = [min{61, 03}, min{62, 64}] > [p1, p2]-

This implies that xo - yo € U(ua : [s1,52]). Thus pwa(x-y) < rmin{ua(x), ua(y)} for all x,y € X.
Again, in contrary, let xg, yo € X be such that ya(xo - Yo) > rmax{ya(x0),va(y0)}. Let ya(xo) =

[m.m2].7a(v0) = [m3.m4], and ya(xo - yo) = [t1,t2]. Then [t1, t] > rmax{[n1, m2]. [n3, m]} =
[max{n1, N3}, max{mz, ma}]. So t1 > max{m1, M3} and to > max{np,na}. Let us consider,

[B1.82] = 5[valxo - yo) + rmax{ya(x0). va(y0)}]
5[[t1, 2] + [max{n1, s}, max{"n2, na}]
= [5(t1 + max{n1,m3}), 5(t2 + max{nz, ma})].

Therefore, max{n;,n3} < B1 = %[(h + max{n1,n3})] < t1 and max{m,m} < B> = %[(t2 +
max{m2,m4})] < t2. Hence, [max{n1, n3}, max{n2, ma}] < [B1.B2] < [t1, t2] so that xp - yo & L(Va :
[t1, t2]), which is a contradiction because

Ya(x0) = 1. m2] < [max{ni, n3}, max{n2, n4}] > [B1.B2]
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and

Ya(¥o) = [m3,ma] = [max{n1, n3}, max{nz, ma}] > [B1,Bo].
This implies that xo - Yo € L(va : [t1, t2]). Thus ya(x - y) > rmax{ya(x),va(y)} for all x,y € X.
Therefore, A is an IVIF subalgebra of X. O

Theorem 3.9. Any subalgebra of a Hilbert algebra X can be realized as both the upper [s1, sz]-level

and lower [t1, to]-level of some IVIF subalgebra of X.

Proof. Let B be an IVIF subalgebra of X and A be an IVIF set on X defined by pua(x) =

: ifxeB , ifxeB
[, ao] - if x _ and ya(x) = Br. o] if x _ for all [a1, az], [B1,B2] € DJO, 1] and
[0,0] otherwise [1,1] otherwise

as + B> < 1. We consider the following cases:

Case (i) If x,y € B, then pa(x) = [a1, az],va(x) = [B1.B2], and pa(y) = [a1, az], valy) =
[B1,062]. Thus
pa(x - y) = [o, az] = rmin{[on, az], [, a2} = rmin{ua(x), wa(y)}
and
Ya(x - y) = [B1, B2] = rmax{[B1, B2]. [B1. B2]} = rmax{va(x), va(y)}.
Case (ii) If x € B and y ¢ B, then pa(x) = [a1, a2],va(x) = [B1,82], and pa(y) = [0,0],
Yaly) = [1.1]. Thus
pa(x - y) 2 [0,0] = rmin{[ay, 2], [0, 0]} = rmin{ua(x), na(y)}
and
Ya(x - y) = [1,1] = rmax{[B1, B2], [1, 1]} = rmax{ya(x), va(¥)}-
Case (iii) If x ¢ B and y € B, then pa(x) = [0,0], va(x) = [1, 1], pa(y) = [oa, 2], and yaly) =
By, Bo]. Thus
pa(x - y) = [0,0] = rmin{[0, 0], [a1, cro]} = rmin{pa(x), pa(y)}
and
Yalx - y) < [1,1] = rmax{[1, 1], [B1, Bo]} = rmax{~ya(x), va(¥)}.

Case (iv) If x ¢ B and y ¢ B, then pa(x) = [0, 0], va(x) = [L1,1], ua(y) = [0,0], and ya(y) =
[1,1]. Thus

pa(x - y) <1[0,0] = rmin{[0, 0], [0, 0]} = rmin{ua(x), wa(y)}
and
Ya(x - y) = [1,1] = rmax{[L, 1], [1, 1]} = rmax{ya(x), va(¥)}.

Therefore, A is an IVIF subalgebra of X. [l
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Theorem 3.10. Let B be a subset of a Hilbert algebra X and A be an IVIF set in X defined by pua(x) =
{ [0, 0] ifxeB [61.82] ifxeB

and Ya(x) = for all [y, a], [B1, 8] € D[0, 1] and
[0, 0] otherwise AlX) {[1,1] otherwise [, 2], 61, 2] [0.1]

as + B> < 1. If A is realized as a lower level subalgebra and an upper level subalgebra of some IVIF

subalgebra of X, then B is a subalgebra of X.

Proof. Let A be an IVIF subalgebra of X and x,y € B. Then pa(x) = [a1,a2] = pa(y) and
Ya(x) = [B1.B2] =¥a(y). Thus

pa(x-y) <rmin{pa(x), pa(y)} = rmin{[ag, az], [on, ao]} = [o, o]
and
Ya(x - y) = rmax{ya(x), va(y)} = rmax{[B1, B2]. [B1. B2]} = [B1. B2l
which imply that x - y € B. Hence, B is a subalgebra of X. [l

4. IVIF ideals of Hilbert algebras

Definition 4.1. An IVIF set A= (ua,va) in a Hilbert algebra X is said to be an IVIF ideal of X if the

following conditions are hold:

Ya(1) < yalx) ) '
pa(x-y) > paly)

VX, X , 4.2
(vx.y e )<7A<x-y>smy>) (42
wa((vr - (y2-x)) - x) > rmin{pa(y1), na(y2)}

VX, v1, X . 4.3
(Fxpy2 € X) ( a0 - (2 - X)) - X) < rmax{yan), 1a02)} ) 43

Example 4.1. Let X = {1,x,y,z, 0} with the following Cayley table:

N

O N K X =
e e e e
N Y
[ I R N NI N
= = N N N
— < N O o|o

Then X is a Hilbert algebra. We define an IVIF set A = (ua,Ya) as follows:
[0.5,0.6] ifxe{l,x,y,z}
pa(x) = ,
[0.1,0.2] ifx=0

and

(x) = [0.3,0.4] ifxe{l,x,y,z}
V9T 10405 ifx=o0.
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Then A is an IVIF ideal of X.

Proposition 4.1. If A= (ua,va) is an IVIF ideal of a Hilbert algebra X, then

(¥.y € X) ( pa((y - x) - x) > paly) ) |

Yal(y - x) - x) < va(y)
Proof. Putting y3 =y and y» = 1 in (4.3), we have

pA((y - x) - x) = rmin{pa(y), pa(l)} = wa(y)
and

Ya((y - x) - x) < rmax{ya(y), va(1)} = va(y).

Lemma 4.1. If A= (ua,va) is an IVIF ideal of a Hilbert algebra X, then

VX, X x <
(x.y € )< <y:>{'YA(X)Z’YA(y)

Proof. Let x,y € X be such that x < y. Then x-y =1 and so

paly) = pa(l-y)
pa(((x-y)-(x-¥))-y)
rmin{pa(x - y), ka(x)}
rmin{pa(l), pa(x)}
pa(x).

ALY,

Thus
Yaly) = va(l-y)

Ya(((x-y) - (x-y))y)
rmax{ya(x - ¥), va(x)}
rmax{ya(1), va(x)}
Ya(x).

IN N

Theorem 4.1. Every IVIF ideal of a Hilbert algebra X is an IVIF subalgebra of X.

pa(x) < pa(y) ) _

(4.4)

(4.5)

Proof. Let A= (ua,va) be an IVIF ideal of X. Since y < x-y for all x, y € X, it follows from Lemma

4.1 that
pa(y) = pa(x-y)valy) < yalx-y).
It follows from (4.2) that

paly)
rmin{ua(x - y), pa(x)}
rmin{ua(x), ua(y)}

pa(x - y)

(AVARAVARLY,
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and
Yalx-y) < yaly)
< rmax{va(x - y),va(x)}
< rmax{ya(x),va(¥)}-
Hence, A is an IVIF subalgebra of X. O

Theorem 4.2. An IVIF set A = (ua, va) = {[uly, 4], [Y4, Y41} in a Hilbert algebra X is an IVIF ideal
of X if and only ifu’A, K4, 'y’A, and vy are fuzzy ideals of X.

Proof. Since p(1) > ph(x), u4(1) > p4(x), Y4(1) < va(x), and v4(1) < v4(x), we have pa(1) >
ta(x) and ya(1) < ya(x). Let x,y € X. Then

pa(x - y) = [alx - ), w4 )] > [a(y), wa()] = pa(y)
and
Yalx - y) = [Ya(x - ¥). Y40 )] < [Ya). ¥a)] = 1a(y)-
Let x,y1,y> € X. Then
(a1 - (v2 - %)) - x), a1 - (v2 - x)) - x)]
[min{ua(y1). wa(y2)}, min{ui(»1), 4(v2)}]

rmin{ [y (1), k4 (V)] [ (v2), 4 (v2)1}
= rmin{ua(y1), ua(y2)}

pa((yr- (2 x)) - x)

IV

and

[YA((r - (v2 - %)) - x), Y4 ((ve - (v2 - %)) - x)]
[max{¥a(y1), ¥a(¥2)}, max{¥4(y1), ¥4 (y2)}]
rmax{[ya(v1), YAW)], [Ya(v2), Y4 (y2)1}

= max{va(y1). 7a(y2)}.

Yal(y1 - (2 - X)) - x)

A

Hence, A = {[ul), u4], [vh, 741} is an IVIF ideal of X.

Conversely, assume that A is an IVIF ideal of X. Let x € X. Then [u4(1), p4(1)] = pa(l) >
pa(x) = [ua(x), s4()]; hence, (1) > ph(x) and v4(1) < Y4(x). Let x,y € X. Then [u(x -
V) A = palx-y) = pay) = [wa(y), 4 (y)]: hence, ph(x-y) > u(y) and u4(x-y) > ui(y).
Also, [Ya(x - ¥), Y4(x - ¥)] = valx - ¥) < vay) = [Ya). ¥4(¥)]; hence, Yy(x - y) < va(y) and
Yal(x-y) <va(y). Let x,y1,y2 € X. Then

(- (2 - %)) - %), wa (- (2 - %)) - x)]
pal(yi - (v2-x)) - x)

rmin{ua(y1), wa(y2)}

rmin{[uy(v1), w4 (1)l [Wa(y2), w4 ()]}

= [mi”{MIA(yl)v MIA(YQ)}v min{ua(v1), wa(y2)}H-

v
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Hence, py((y1 - (y2-x))-x) = min{us(y1), wa(2)} and w4 ((v1- (v2-x)) - x) > min{u4(y1), u4(y2)}-

Also,

[’Y’A((h (2 x)) - x) a1 - (2 - x)) - x)]

=Ya((y1 - (2 x)) - x)

< rmax{va(y1) va(y2)}

= rmax{[v4 (1), Y401)]. [YA(v2). Y4 (v2)1}

= [max{ya(y1) ¥a(y2)}, max{ya(y1), v4(2)}].

Hence, Y4 ((y1 - (y2-x)) - x) < max{ya(y1), Ya(y2)} and Y4((v1 - (v2- x)) - x) < max{v4(»1), 14(¥2)}-
Therefore, M’A, K4, fy’A, and «y3 are fuzzy ideals of X. O

Proposition 4.2. If A= (ua,va) and B = (ug,yg) are IVIF ideals of a Hilbert algebra X, then AN B

is an IVIF ideal of X.

Proof. Let A= (ua,va) and B = (ug,vs) be IVIF ideals of X. Let x € X. Then

pang(1)

and
Yaus(1)

Let x,y € X. Then

pans(x-y) =
>

and
Yaus(x-y) =

VA

VAN | R I | AV |

[ang (1), 4np(1)]
[min{uly(1), wi (1)}, minfus (1), wi(1)}]
[min{y(x), w5 ()} mingu (), ws ()]
[U«,’qms(X)v Hang(X)]

pans(x)

'Y/AUB(l)v ’Y,[Z{U,g(l)]
max{v4(1), 75(1)}, max{v4(1), v4(1)}]
max{y4(x), ¥5(x)}, max{v4(x), ¥ (x)}]
’Y/AU,‘;(X): 'YZU,B(X)]

Yaus(X).

[Wans (X ¥), ans (X - ¥)]

[min{ui(x - y), ugx-y)} min{ui(x - y), pig(x - y)}]
[min{us(v), wp(¥)} min{us(y), kE()}]

[LL,lqu(y). U',Lél\mB(Y)]

rans(y)

[Vaus(X - ¥). Yaus(x - ¥)]

[max{ya(x - ¥), v (x - )}, max{y4(x - y), ¥ (x - ¥)}]
[max{¥4(y), v5(»)}, max{¥4(y), v4(»)}]

[’YL\UB()/)v ’Y,LAJUB()/)]

Yaus(Y)-
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Let x,y1,y € X. Then

pans((y1 - (y2-x)) - x)
= [fL/AmB((h “(y2-x)) - x), Mﬁ\ng((h “(y2-x)) - x)]

v

min{uh ((v1 - (v2 - X)) - x), (1 - (v2 - %)) - x)}, ]

| min{ui((v1 - (2 - %)) - x), wE((va - (02 - x)) - x)}

min{min{u/y(v1), Lh(v2)}, min{pls (1), s (v2)} 3}, ]

| min{min{u4(y1), ua(y2)} min{ug(y1), ug(y2)}}
min{min{uh(v1), (1)}, min{ph(v2), s (y2)} 1}, ]
| min{min{ui(y1), pg(y2)}, min{ug(v2), ug(y2)}}

= [min{uly5(1), Bang(v2)}, min{phqg (1), s (¥2)H
= rmin{uans(y1), kans(y2)}

and

Yaus((y1 - (y2 - x)) - x)
:[’Yﬁxus((h (2 x)) - x), Yaue(a - (v2 - x)) - x)]

IN

max{v4((v1 - (v2 - %)) - ), Y5 (1 - (v2 - x)) - )}, ]
max{ya((y1 - (v2-x)) - x), ¥g((y1 - (v2 - x)) - x)}
max{min{y, (1), Y4(y2)} min{v5(y1). Y& (y2)}}. ]
max{min{v4(y1). 74(y2)}, min{v4(v1), Y4 (v2)}}
max{min{y, (1), Y5(v1)}, min{vh(y2). Y& (y2)}}. ]
max{min{v4(y1). 74(v2)}. min{v4(v2), v4(v2)}}
)}

= [max{'YAmB(YI) 'YAmB(Y2)} max{'YAmB()/l) ’YAmB ¥2)}
= rmax{vans(¥1), Yane(¥2)}.

Hence, AN B is an IVIF ideal of X.

O

Corollary 4.1. If{A; = (1a,.v4,) | 1 € A} is a family of IVIF ideals of a Hilbert algebra X, then () A;

is an IVIF ideal of X.

Corollary 4.2. If A= (ua,va) is an IVIF ideal of a Hilbert algebra X, then A is also an IVIF ideal of

X.

Theorem 4.3. If A= (ua,va) is an IVIF ideal of a Hilbert algebra X, then @A and @A are both IVIF

ideals.

Proof. Assume that A = (ua,va) is an IVIF ideal of X. Let x € X. Then ma(1) = 1 — pa(l) <
1 —pa(x) < ma(x). Let x,y € X. Then ma(x-y) =1 —palx-y) < 1—paly) < paly). Let
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X, v1,y2 € X. Then

EA(1-(2-x)) ) = 1= pa((va- (2 %)) %)
1—rmin{ua(yi), ka(y2)}
rmax{1l —ua(y1), 1 —ua(y2)}
= rmax{za(y1). @a(y2)}.

IN

Hence, @A is an IVIF ideal of X.
Let x € X. Then 44(1) = 1 —va(1) > 1 —va(x) > Ja(x). Let x,y € X. Then ya(x-y) =
L—va(x-y) > 1=va(y) 27a(y). Let x,y1,y> € X. Then

Yal-02-x)-x) = 1T—=vallyr- (v2-x))-x)
> 1 —rmax{va(y1), va(y2)}
= min{l —7a()1). 1 —7a()2)}
= rmin{¥a(y1). Yay2)}.
Hence, @A is an IVIF ideal of X. -

Theorem 4.4. An IVIF set A= (ua,va) is an IVIF ideal of a Hilbert algebra X if and only if for every
[s1,52], [t1, to] € D[0, 1], the sets U(ua : [t1, t2]) and L(g, [s1, s2]) are either empty or ideals of X.

Proof. Let A = (a,¥a) be an IVIF ideal of X and let [s1, s5], [t1, t2] € DJ0, 1] be such that U(ua :
[t1, t2]) and L(ya : [s1, S2]) are nonempty sets of X. Itisclearthat 1 € U(ua : [t1, to])NL(va : [51, S2])
since pa(1) = [t1, 2] and ya(1) < [s1, 2]. Let x € X and y € U(pa : [t1, t2]). Then pa(y) = [t1, t2].
It follows that wa(x - y) > ua(y) > [t1,t2] so that x -y € U(ua : [t1,t2]). Let x € X and
yi,¥2 € U(pa @ [t1, t2]). Then pa(ya) > [t1, to] and pa(y2) = [t1, to]. Hence, pa((y1- (y2-x)) - x) =
min{ua(y1), ba(y2)} = [t to] so that (y1 - (y2 - x)) - x € U(pa : [t1, t2]). Hence, U(ua : [t1, t2])
is an ideal of X. Let x € X and y € L(ya : [s1,52]). Then ya(y) < [s1,5:]. It follows that
Ya(xy) <ya(y) < [s1,s2]sothat x-y € L(ya : [s1,52]). Letx € X and y1, > € L(va : [s1,52]). Then
Ya(y1) < [s1, 2] and va(y2) < [s1, 52]. Hence, ya((y1 - (y2- x)) - x) < max{va(y1), va(y2)} < [s1, 5]
so that (y1- (V2 x))-x € L(ya: [s1,52]). Hence, L(ya : [s1,52]) is an ideal of X.

Assume now that every nonempty sets U(ua : [t1, t2]) and L(ya : [s1,s2]) are ideals of X. If
wa(l) > pa(x)is not true for all x € X, then there exists xp € X such that pa(1l) < pa(xp). Butin this
case for [s1, 5] = 2(ua(1) + pa(xo)). Then xo € U(pa : [s1,52]), that is U(ua : [s1, 52]) # 0. Since
by the assumption, U(ua : [s1, s2]) is an ideal of X, then ua(1) > [s1, s2], which is impossible. Hence,
wa(1) > pa(x). Ifya(1) < ya(x) is not true, then there exists yy € X such that y4(1) < va(yo). But

in this case for [s{, s§] = 2(va(1) + va(0)). Then yo € L(va : [sb. §]), that is L(va : [sh, s§]) # 0.

Since by the assumption, L(ya : [s}, s(]) is an ideal of X, then ya(1) < [s{, s{], which is impossible.
Hence, va(1) < vya(x). If pa(x-y) > ua(y) is not true for all x,y € X, then there exist xp, yg € X
such that pa(xo - ¥o) < pa(v). Let [t1, 2] = 5(wa(xo - ¥o) + ta()). Then t € [0,1] and

ua(xo - Yo) < t < ua(¥), which prove that yp € U(ua : t). Since U(ua @ t) is an ideal of X,
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X0+ Yo € U(ua : t). Hence, ua(xo - vo) > t, a contradiction. Thus pua(x - y) > wa(y) is true for
all x,y € X. If ya(x-y) < va(y) is not true for all x,y € X, then there exist xp, yo € X such that
Ya(x0 - Y0) > va(¥0). Let [tg, t§] = 3(7va(x0 - Yo) +va(%0)). Then [t5, tg] € D[0, 1] and va(xo - Yo) >
[t0, t§] > va(yo)., which prove that yo € L(va : [t} t{]). Since L(va : [ty t{]) is an ideal of X,
x0-Yo € L(va : [ty t{]). Hence, ya(xo-y0) < [t{, t}§], a contradiction. Thusya(x-y) < ya(y) is true for
all x,y € X. Suppose that ua((y1-(v2-x))-x) > rmin{ua(y1), wa(y2)} is not true for all x, y1, y» € X.
Then there exist ug, vp, xo € X such that pa((uo - (vo - x0))) - x0) < rmin{ua(uo), ua(vo)}. Taking
[0, p"] = 3(a((to- (Vo X0))) - X0) +rmin{ua(uo), ha(vo)}). Then wa((uo- (vo-x0))-x0) < [p/, p"] <
rmin{ua(to), ba(vo)}, which prove that ug, vo € U(ua : [P, p"]). Since U(ua : p[p’, p"]) is an ideal of
X, (uo-(vorx0))x0 € U(ua : [p', p"]), a contradiction. Thus pa((y1-(y2:x))-x) > rmin{ua(y1), pa(y2)}
is true for all x, y1, y» € X. Suppose that ya((y1-(y2-x))-x) < rmax{ya(y1),va(y2)} is not true for all
X, ¥1,y2 € X. Then there exist ug, vo, Xo € X such that ya((uo- (vo-Xo) - x0) > rmax{ya(uo),va(vo)}.
Taking [pg, pg] = 3(va((to - (vo - X0)) - X0) + rmax{va(to), ¥a(v0)}). Then ya((uo - (vo - x0)) - o) >
[p6. pG] > rmax{ya(uo), va(v)}, which prove that ug, vo € L(va : [Py, Pgl). Since L(va : [pg, p5]) is
an ideal of X, (ug - (vo - x0)) - X0 € L(va : [Ph, P§]), a contradiction. Thus ya((y1 - (y2 - x)) - x) <
rmax{ya(y1),va(y2)} is true for all x, y1, y» € X. Hence, A is an IVIF ideal of X. O

5. Product of IVIF subalgebras/ideals in Hilbert algebras

Definition 5.1. Let A = (ua,va) and B = (ug,vs) be IVIF sets in Hilbert algebras X and Y,
respectively. The cartesian product AX B = {((x,y), (uaxug)(x,y), (vaxys)(x,y)) | x € X,y € Y}
defined by

(a x pg)(x, y) = rmin{pa(x), ue(y)}
and
(va x v8)(x,y) = rmax{va(x),v8(y)},
where ua X ug : X xY — D[0,1] and ya x yg : X x Y — D[0,1] forallx € X andy € Y.

Remark 5.1. Let X and Y be Hilbert algebras. We define the binary operation - on X XY by
(x,y) - (u,v)=(x-u,y-v) forevery (x,y),(u,v) € X XY, then clearly (X xY,-,(1,1)) is a Hilbert

algebra.

Proposition 5.1. /f A = (ua,va) and B = (ug,yg) are IVIF subalgebras of Hilbert algebras X and
Y, respectively, then the cartesian product A x B is also an IVIF subalgebra of X x Y.



18 Int. J. Anal. Appl. (2022), 20:25

Proof. Let (x1,y1), (x2,¥2) € X x Y. Then

(wa x ue)((x1,y1) - (x2, ¥2))

= (ua X ue)((x1-x2), (v1-y2))

=rmin{ua(xt - x2), us(y1 - y2)}

> rmin{rmin{ua(x1), wa(x2)}, rmin{us(y1) us(y2)}}
= rmin{rmin{pa(x1), us(y1)}, rmin{ua(x2), ue(y2)}}
=rmin{(ua x ug)(x1, y1), (ka X pg)(x2, y2)}

and

(va x v8)((x1,31) - (X2, ¥2))

= (va xv8)((x1 - x2), (y1 - y2))

= rmin{ya(x1 - x2), v8(y1 - ¥2)}

< rmin{rmax{ya(x1), ¥a(x2)}, rmax{vs(y1).v8(y2)} }
= rmax{rmin{ya(x1), v8(¥1)}, rmin{va(x2), v8(y2) }}
= rmax{(pa X ug)(x1, 1), (ka X ug)(x2, y2)}.

Hence, A x B is an IVIF subalgebra of X x Y. [l

Lemma 5.1. /f A= (ua,va) and B = (ug,yg) are two IVIF subalgebras of Hilbert algebras X and
Y, respectively, then (A x B) = (ua X ug, ba X g) is an IVIF subalgebra of X x Y.

Proof. It is sufficient to prove only the part of ta X g. Let (x1,y1), (X2, ¥2) € X X Y. Then

(ma x we)((x1,y1) - (x2,¥2))

= (Ba x me)((x1 - x2), (y1-y2))

= rmax{fa(x1 - x2), Be(Y1 - y2)}

=rmax{l — pa(x1-x2), 1 — us(y1-y2)}

< rmax{1 — rmin{pa(x1), pa(x2)}, 1 — rmin{ug(y1), ua(y2)}}

= rmax{rmax{1 — pa(x1), 1 — ug(y1)}, rmax{l — ua(x2), 1 — up(y2)}}
= rmax{rmax{ia(x1), ug(y1)}, rmax{pa(x2), k5(y2)}}

= rmax{(a X 1g)(x1, y1), (Ba X LB)(x2, y2)}.

Hence, ©(A x B) is an IVIF subalgebra of X x Y. ]

Lemma 5.2. If A= (ua,va) and B = (ug,yg) are two IVIF subalgebras of Hilbert algebras X and
Y, respectively, then @(A x B) = (¥a X ¥, YA X ¥g) Is an IVIF subalgebra of X X Y.
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Proof. It is sufficient to prove only the part of ¥4 x 5. Let (x1,y1), (x2,¥2) € X X Y. Then

(Ya x ¥6)((x1, 1) - (X2, 2))

= (¥a x¥8)((x1 - x2), (1 - y2))

= rmin{ya(x1 - x2), ¥8(y1 - y2)}

=rmin{l —ya(x1 - x2), 1 —v8(y1 - y2)}

> rmin{1 — rmax{ya(x1), va(x2)}, 1 — rmax{vg(y1).v8(y2) }}

= rmin{rmin{1 — va(x1), 1 = v8(y1)}, rmin{1 — ya(x2), 1 — v8(y2)}}
= rmin{rmin{ya(x1),¥8(y1)}, rmin{¥a(x2). ¥5(y2)}}

= rmin{(Ya X ¥8)(x1, 1), (Va x ¥B8)(x2. y2) }.

Hence, ®(A x B) is an IVIF subalgebra of X x Y. O

Theorem 5.1. The IVIF sets A= (ua,va) and B = (ug,yg) are IVIF subalgebras of Hilbert algebras
X and Y, respectively if and only if (A x B) and ®(A x B) are IVIF subalgebras of X x Y.

Proof. It follows from Lemmas 5.1 and 5.2. |

Proposition 5.2. If A= (ua,va) and B = (ug,ys) are two IVIF ideals of Hilbert algebras X andY,
respectively, then the cartesian product A x B is also an IVIF ideal of X x Y.

Proof. Let (x,y) € X x Y. Then

rmin{ua(1), ug(1)}
rmin{ua(x), us(y)}
= (pa X ps)(x.y)

(a x up)(1,1)

v

and

(ya xv8)(1,1) = rmax{ya(1),75(1)}
rmax{ya(x),v8(y)}}
(va xvB8) (X, ¥).

IN

Let (x1,x2), (y1,¥2) € X x Y. Then

(ma x pe)((x1,x2) - (y1,¥2)) = (max us)((x1-y1), (X2 y2))
rmin{pa(x - y1), ue(x2 - y2)}
rmin{pa(yi), us(y2)}

(ka x ug)(y1. y2)

v

and

(va x v8)((xa - y1), (x2 - ¥2))
= rmax{ya(x1 - y1),v8(x2 - ¥2)}
rmax{ya(y1). v8(y2)}

(va x v8) (V1. ¥2).

(va xv8)((x1, x2) - (y1.¥2))

IN
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Let (x1,¥1), (x2,¥2), (x3,¥3) € X x Y. Then

(ma x ue)(((x2, y2) - (x5, y3) - (x1,¥1))) - (x1, 1))

= (pa x up)(((x2- (x3-x1)) - x1)), (v2- (¥3-¥1)) “ 1))
rmin{ua((x2 - (s - x1)) - x1), ue((y2 - (y3-y1)) - y1)}
rmin{rmin{ua(x2), ka(x3)}, rmin{ug(y2), ue(y3)}}
rmin{rmin{ua(x2), u(¥2)}, rmin{ua(xs), us(y3)}}
=rmin{(ua X ug)(x2, y2), (ka X ug)(x3,¥3)}

v

and

(va x v8)(((x2, ¥2) - (33, y3) - (x1, 1)) - (x1,¥1))

= (vax78)(((2 - (x3-x1)) - x1)), (V2 (v3-¥1)) " »1))
rmax{ya((x2 - (x3 - x1)) - x1), v8((y2 - (¥3- 1)) " y1)}
rmax{rmax{ya(x2), va(x3)}, rmax{vg(y2), v5(y3)}}
rmax{rmax{ya(x2), v8(y2)}, rmax{va(xs). v5(y3)}}
rmax{(va X v8)(x2, ¥2), (va X ¥8) (X3, ¥3)}.

A

Hence, A x B is an IVIF ideal of X x Y. O

Lemma 5.3. If A = (ua,va) and B = (ug,vs) are two IVIF ideals of Hilbert algebras X and Y,
respectively, then ®(A X B) = (ua X ug, ia X g) Is an IVIF ideal of X x Y.

Proof. It is sufficient to prove only the part of ta X ig. Let (x,y) € X x Y. Then

rmax{a(1), (1)}

rmax{1 — pa(1), 1 —pup(1)}
rmax{1l — pa(x),1 —us(y)}
(3 * B8)(x. ).

(A x @E)(1,1)

I IA

Let (Xl,Xz), (yl,y2) € X xY. Then

(a x zB)((x1 - y1), (x2 - y2))
rmax{a(xi - y1), k(X2 - ¥2)}

rmax{l — pa(x1-y1), 1 —ug(x2-y)}
rmax{l —ua(y1), 1 —us(y)}
rmax{fa(y1), B6(y2)}

(Ba x we)(v1, y2).

(Ba x wB)((x1, x2) - (y1.¥2))

(I VAN [
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Let (x1,¥1), (x2,¥2), (x3,¥3) € X x Y. Then

(Ba x we)((x2 y2) - ((x3,¥3) - (x1.31))) - (X1, 1))
= maxwe)((x2- (x3-x1)) - x1)), (v2- (¥3-¥1)) - y1))
rmax{fa((x2 - (x3 - x1)) - x1), Ba((y2 - (v3 - y1)) - »1)}
rmax{1 — ua((x2- (x3-x1)) - x1), 1 — pa((y2- (v3-y1)) - 1)}
rmax{1 — rmin{pa(x2), ua(x3)} 1 — rmin{ug(y2), ue(ys)}}
rmax{rmax{1 — pa(x2), 1 — pg(y2)}, rmax{1l — pa(x3), 1 — us(y3)}}
rmax{rmax{fa(x2), ke (y2)}, rmax{ia(xs), ne(y3)}}
= rmax{(a x 1g)(x2, ¥2), (Ba X &g)(x3,¥3)}.
Hence, &(A x B) is an IVIF ideal of X x Y. O

A 1

Lemma 5.4. If A = (ua,va) and B = (ug,vs) are two IVIF ideals of Hilbert algebras X and 'Y,
respectively, then @(A X B) = (Ya X Y5, Ya X ¥g) Is an IVIF ideal of X x Y.

Proof. It is sufficient to prove only the part of ¥4 X ¥5. Let (x,y) € X x Y. Then

rmin{Ya(1), 75(1)}

rmin{1 —va(1),1 —vg(1)}
rmin{1 —ya(x), 1 —v8(y)}
(Ya x ¥B)(x,¥).

(Va x78)(1. 1)

[AVART

Let (Xl,Xz), (yl,y2) € X xY. Then

(Ya x¥8)((x1 - 1), (x2 - y2))
rmin{¥a(x1 - y1), ¥8(x2 - y2)}

rmin{1 —ya(x1-y1), 1 —v8(x2 - y2)}
rmin{l —va(y1). 1 —v8(y2)}
rmin{¥a(y1). ¥8()2)}

= (Ya x78)(11, y2)-

(Ya x 76)((x1, x2) - (1. ¥2))

[V

Let (x1,51), (x2,¥2),(x3,¥3) € X X Y. Then

(Ya x 78)(((x2, ¥2) - ((x3,¥3) - (x1,1))) - (x1, y1))
= (Ya x78)((02 - (x3-x1)) - x1), ((v2 - (y3-31)) - y1))
= rmin{Ya((x2 - (x3 - x1)) - x1). Ya((v2 - (y3-31)) - y1)}
=rmin{l —ya((2 - (x3-x1)) - x1), 1 —=va((2 - (v3-y1)) " y1)}
> rmin{1l — rmax{ya(x2), va(x3)}, 1 — rmax{vg(y2), v8(y3)}}
= rmin{rmin{1 — ya(x2), 1 —v8(y2)}, rmin{1 — va(x3s), 1 — vg(v3)}}
= rmin{rmin{Ya(x2), Y5 (y2)}, rmin{¥a(x3), ¥5(y3)} }
=rmin{(7a X 7¥8)(x2, y2), (Ya x ¥8)(x3. ¥3)}.
Hence, ®(A x B) is an IVIF subalgebra of X x Y. O
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Theorem 5.2. The IVIF sets A = (ua,va) and B = (ug,ys) are IVIF ideals of Hilbert algebras X
and Y, respectively if and only if ®(A x B) and ®(A x B) are IVIF ideals of X x Y.

Proof. It follows from Lemmas 5.3 and 5.4. |

Theorem 5.3. Let A= (ua,va) and B = (ug,vyg) be any two IVIF sets in Hilbert algebras X and
Y, respectively. If A x B is an IVIF subalgebra of X x Y, then nonempty upper [s1, sp]-level cut
U(ua X ug : [s1,52]) and nonempty lower [t1, to]-level cut L(ya X g : [t1, t2]) are subalgebras of
X xY forall [s1, 5], [t1, t2] € D[O, 1].

Proof. It follows from Theorem 3.7. O

Theorem 5.4. Let A = (ua,va) and B = (ug,vs) be any two IVIF sets in Hilbert algebras X
and Y, respectively. If A x B is an IVIF ideal of X x Y, then nonempty upper [s1, s2]-level cut
U(ua X g : [s1,S2]) and nonempty lower [ty, ta]-level cut L(ya X v : [t1, to]) are ideals of X x Y for
all [s1, s2], [t1, t2] € DJO, 1].

Proof. It follows from Theorem 4.4. O

A mapping f : X — Y of Hilbert algebras is called a homomorphism if f(x -y) = f(x) - f(y) for
all x,y € X. Note that if f : X — Y is a homomorphism of Hilbert algebras, then f(1) = 1. Let
f : X =Y be a homomorphism of Hilbert algebras. For any IVIF set A= (ua,va) in Y, we define an
IVIF set f~1(A) = (ur-10ay. Yr-10a)) in X by

pr-1a)(X) = wa(f(x)) and ve-104)(x) = va(f(x)) Vx € X.

Proposition 5.3. Let f : X — Y be a homomorphism of a Hilbert algebra X into a Hilbert algebra Y
and A = (ua,va) an IVIF subalgebra of Y. Then the inverse image f ~1(A) of A is an IVIF subalgebra
of X.

Proof. Let x,y € X. Then

Hr-1ay(X-y) = pa(f(x-y))

= pa(f(x)-f(y))
rmin{ua(f(x)). pa(f(y))}
rmin{ps-10ay(X), 102y (¥)}

v

and
"Yf—l(A)(X'J/) = yalf(x-y))
= va(f(x)-f(y))
< rmax{ya(f(x)), va(f(v))}
= rmax{yr-10a)(x), Yr-10a)(¥) }-
Hence, f~1(A) of A is an IVIF subalgebra of X. O
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Theorem 5.5. Let f : X — Y be a homomorphism of a Hilbert algebra X into a Hilbert algebra 'Y
and A = (a,va) be an IVIF ideal of Y. Then the inverse image f~1(A) = (tg-1(ay. Ye-1(a)) is an
IVIF ideal of X.

Proof. Since f is a homomorphism of X into Y, then f(1) = 1 € Y and, by the assumption,
ua(f(1)) = pa(l) > wa(y) for every y € Y. In particular, ua(f(1)) > pa(f(x)) for all x € X.
Hence, wr1(a)(1) > pr1ea)(x) for all x € X. Also, va(f(1)) = va(1) < yaly) for every y € Y. In
particular, yg(f(1)) < vg(f(x)) for all x € X. Hence, vr-1(a)(1) < ¥r-1(a)(x) for all x € X, which
proves (4.1). Now let x,y € X. Then, by the assumption,

pr1ca)(x - y) = pa(f(x-y)) = pa(f(x) - £(y)) > palf(y)) = pr1a ()
and
Y18 (X - ¥) =va(f(x - y)) =va(F(x) - £(¥)) < va(F(¥)) = Y10 (V).

which proves (4.2). Let x, y1,y» € X. Then by assumption,

prray (- (2 x)) - x) = palf(yi- (v2-x) - x))

= pa(f(n) - (Fy2-x)) - f(x))
pa(fyr - (v2-x)) - f(x))
pa(f(yr-(y2-x)) - x)
rmin{ua(f(y1)), na(f(y2))}
rmin{us-10a) (V1) Kr-10a)(v2)}

AV 1|

and

Y112+ x)) - x) = yalf(yr- (y2-x) - x))
Ya(f(y1) - (F(y2 - x)) - £(x))
Ya(f(y1 - (y2-x)) - F(x))
Ya(f(y1- (2 x)) - x))
rmax{ya(f (1)), va(f(y2))}

= rmax{"¥r-1a) (Y1) Vr-1(a)(v2) },

which proves (4.3). Hence, f~1(A) is an IVIF ideal of X. O

IN

6. Equivalence relations on IVIF subalgebras/ideals

Let .Z(H) be the family of all IVIF ideals of a Hilbert algebra X and let t = [t1, t2] € DJ[0, 1].

Define binary relations Ut and Lt on .#(H) as follows:
(AB)eU' & Ulua:t)=U(ug:t), (AB)eL! & L(ya:t)=L(ys: 1),

respectively, for A = (ua,v4) and B = (ug,7yg) in £ (H). Then clearly Ut and Lt are equivalence
relationson Z(H). Forany A = (ua,va) € Z(H), let [A]ye (resp., [A],¢) denote the equivalence class
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of A modulo Ut (resp., L), and denote by .#(H)/U* (resp., .#(H)/L") the system of all equivalence

classes modulo Ut (resp., Lt); so
F(H)/U" = {[Aly | A= (1a,va) € F(H)},
respectively,
I (H)/L = {[Ale | A= (ka,va) € F(H)}.
Now let /(H) denote the family of all ideals of X and let t = [t1, 2] € DJ[0, 1]. Define maps f;

and g; from #(H) to I(H) U {0} by f;(A) = U(ua : t) and g:(A) = L(ya : t), respectively, for all
A= (ua,va) € Z(H). Then f; and g; are clearly well defined.

Theorem 6.1. For any t = [t1,to] € D[0,1], the maps f; and g: are surjective from #(H) to
I(H)u{0}.

Proof. Let t = [t1, t2] € D0, 1]. Note that 0 = (0,1) is in .#(H), where 0 and 1 are IVIF sets in
X defined by 0(x) = [0,0] and 1(x) = [1,1] for all x € X. Obviously, (0) = U(0,t) = U([0,0] :
[t1.t2]) =0 = L([1,1] : [t1, t2]) = L(1 : t) = g¢(0). Let G(+ 0) € I(H). For G = (x6.Xg) € -Z(H),
we have f(G) = U(xc : t) = G and g+(G) = L(Xg;t) = G. Hence, f; and g; are surjective. O

Theorem 6.2. The quotient sets % (H)/Ut and #(H)/Lt are equipotent to I(H) U {0} for every
t =[t1, o] € D[0, 1].

Proof. For t = [t1, to] € DI[0, 1], let f* (resp., g;) be a map from #(H)/U* (resp., #(H)/L?) to
I(H) U {0} defined by 77 ([Alye) = fe(A) (resp., gi([Ale) = g¢(A)) for all A= (na,va) € J(H). If
Ulpa : t) =U(ug : t) and L(ya @ t) = L(vs : t) for A= (ua,va) and B = (ug.vg) € F(H), then
(A, B) € Ut and (A, B) € L%, hence, [Alyt = [B]yr and [A] .+ = [B].:. Therefore, the maps f;* and
g; are injective. Now let G(# 0) € I(H). For G = (x6.Xg) € -#(H), we have

ff([Glur = £:(G) = U(xg : t) = G,
9;([Glir = 9:(G) = L(XG. t) = G.
Finally, for 0 = (0,1) € .#(H), we get
7 ([0]ye = f:(0) = U(0, t) = 0,
97 ([0]+ = g:(0) = L(1,t) = 0.
This shows that f and g; are surjective. ]
For any t = [t1, to] € DJ0, 1], we define another relation Rt on .#(H) as follows:
(A B)ER" & U(pa:t)NL(ya:t)=U(ug:t)NL(ys:t)

for any A= (ua,va), B = (ug,v8) € £ (H). Then the relation R is also an equivalence relation on
J(H).
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Theorem 6.3. For any t = [t1, t2] € D[0,1], the map ¢ : F(H) — I(H) U {0} is defined by
©e(A) = f(A)N gt (A) for each A= (ua,va) € F(H) as surjective.

Proof. Let t = [t1, t] € D[0,1]. For 0 = (0,1) € .#(H),
0+(0) = £:(0) N g:(0) = U(0, t) N L(0, t) = 0.
For any H € .#(H), there exists H = (xy,XH) € -#(H) such that
pe(H) = fr(H) N gr(H) = U(xn : t) N L(XH, t) = H.

Hence, ; is surjective. [l
Theorem 6.4. For any t = [t1, to] € D0, 1], the quotient set #(H)/R" is equipotent to I(H) U {(0}.

Proof. Let t = [t1, to] € D[0, 1] and let ¢} : Z(H)/R* — I(H)U{0} be a map defined by pi([Alg:) =
p:(A) for all [Alge € S (H)/R". If 9i([Alre) = ¢i([Blge) for any [Alg:, [Blg: € #(H)/R", then
fr(A) N ge(A) = :(B) N ge(B), thatis, U(ua : t)NL(ya : t) = U(ug : t) N L(ys : t); hence,
(A, B) € Rt. It follows that [A]g: = [B]rt so that ¢} is injective. For 0 = (0,1) € .#(H),

07 ([0]re) = 0:(0) = £:(0) N g:(0) = U(0, t) N L(1, 1) = 0.
If H e #(H), then for H = (xn.XH) € -#(H), we have
01 ([Hlgre) = @e(H) = fe(H) N ge(H) = Ulxy : t) N L(XR, t) = H.
Hence, 7} is surjective, this completes the proof. [l

The same type of results are also true for IVIF subalgebras.
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